Advertisement

EPR and Radical Processes

  • Angelo Alberti
Part of the Topics in Applied Chemistry book series (TAPP)

Keywords

Electron Paramagnetic Resonance Electron Paramagnetic Resonance Spectrum Electron Paramagnetic Resonance Spectroscopy Sodium Dodecyl Sulfate Micelle Spin Density Distribution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Carrington and A. D. McLachlan, Introduction to Magnetic Resonance, Harper & Row, New York (1967).Google Scholar
  2. 2.
    J. E. Wertz and J. R. Bolton, Electron Spin Resonance, Elementary Theory and Practical Applications, McGraw-Hill, New York (1972).Google Scholar
  3. 3.
    N. M. Atherton, Electron Spin Resonance, Theory and Applications, John Wiley & Sons, New York (1973).Google Scholar
  4. 4.
    F. Gerson, High Resolution E.S.R. Spectroscopy, Verlag Chemie, Weinheim (1970).Google Scholar
  5. 5.
    F. Bruin, F. W. Heineken, M. Bruin, and A. Zahlan, ESR spectrum of the 4,4′-dipyridyl radical, J. Chem. Phys. 36, 2783–2785 (1962).CrossRefGoogle Scholar
  6. 6.
    J. R. Bolton, A. Carrington, and J. dos Santos-Veiga, Electron spin resonance studies of semiquinones and related nitrogen heterocyclic molecules in acid solution, Mol. Phys. 5, 465–473 (1962).Google Scholar
  7. 7.
    C. S. Johnson, Jr. and H. S. Gutowsky, High-resolution ESR spectra ofphotochemically generated free radicals: The Viologens, J. Chem. Phys. 39, 58–62 (1963).Google Scholar
  8. 8.
    H. M. McConnell, Indirect hyperfine interaction in the paramagnetic resonance spectra ofaromatic free radicals, J. Chem. Phys. 24, 764–766 (1956).Google Scholar
  9. 9.
    R. L. Barton and G. K. Fraenkel, Electron spin resonance spectra of methyl-substituted dihydropyrazine cations and related radicals, J. Chem. Phys. 41, 1455–1468 (1964).Google Scholar
  10. 10.
    C. Lamy, D. Guerrin-Ouler, C. Niccolin, and C. Siero, EPR studies and INDO calculations on the molecular structure of radicals derived from some N-alkylpyridinium salts, Mol. Phys. 34, 161–170 (1977).Google Scholar
  11. 11.
    A. G. Evans, J. C. Evans., and M. W. Baker, Study of bipyridyl radical cations. Part 5. Effect of structure on the dimerisation equilibrium, J. Chem. Soc., Perkin Trans. 2 1977, 1787–1789.Google Scholar
  12. 12.
    D. W. Clack, J. C. Evans, A. Y. Obaid, and C. C. Rowlands, The assignment of the hyperfine coupling constants for the pyridyl protons in aryl and alkyl N-substituted bipyridylium radical cations, Tetrahedron 39, 3615–3620 (1983).CrossRefGoogle Scholar
  13. 13.
    A. L. Rieger and P. H. Rieger, Magnetic resonance studies of some bipyridylium dications and cation radicals, J. Chem. Phys. 88, 5845–5851 (1984).Google Scholar
  14. 14.
    J. C. Evans, A. G. Evans, N. H. Nouri-Sorkhabi, A. Y. Obaid, and C. C. Rowlands, An electron spin resonance, ENDOR, and TRIPLE resonance study of methyl-substituted N,N′-diphenyl-4,4′-bipyridylium dichloride radical cations, J. Chem. Soc., Perkin Trans. 2 1985, 315–318.Google Scholar
  15. 15.
    D. W. Clack, J. C. Evans, A. Y. Obaid, and C. C. Rowlands, An electron spin, ENDOR, and TRIPLE resonance and INDO study of fluorine-substituted N,N′-diphenyl-4,4′-bipyridynium radical cations, J. Chem. Soc., Perkin Trans. 2 1985, 1653–1657.Google Scholar
  16. 16.
    P. Crouigneau, O. Enea, and C. Lamy, A comparative electron spin resonance study of adsorbed cation-radicals generated “in situ” by electrochemical and photochemical reduction of some viologen derivatives, Nouv. J. Chim. 10, 539–543 (1986).Google Scholar
  17. 17.
    O. Enea, P. Crouigneau, J. Moser, M. Grätzel, and S. Hunig, On the pimerization of bridged viologen radicals photoproduced at the surface of illuminated TiO2 sols, New J. Chem. 15, 267–271 (1991).Google Scholar
  18. 18.
    J. G. Gaudiello, P. K. Gosh, and A. J. Bard, Polymer films on electrodes. 17. The application of simultaneous electrochemical and electron spin resonance techniques for the study of two viologen-based chemically modified electrodes, J. Am. Chem. Soc. 107, 3027–3032 (1985).Google Scholar
  19. 19.
    J. R. White and A. J. Bard, Clay modified electrodes. Part IV. The electrochemistry and electron spin resonance of methyl viologen incorporated into montmorillonite films, J. Electroanal. Chem. 197, 233–244 (1986).CrossRefGoogle Scholar
  20. 20.
    P. M. S. Monk, R. D. Fairweather, M. D. Ingram, and J. A. Duffy, Evidence for the product of the viologen comproportionation reaction being a spin-paired radical cation dimer, J. Chem. Soc., Perkin Trans. 2 1992, 2039–2041.Google Scholar
  21. 21.
    M. Ata, M. Aoyagi, Y. Kubozono, and Y. Gondo, Spectroscopic investigation of methyl viologen radical cation included in β-cyclodextrin, Chem. Lett. 1989, 341–344.Google Scholar
  22. 22.
    Z. Porat, Y.-M. Tricot, and I. Rubinstein, New multicharged viologen derivatives. Part 2. Unusual electrochemical behaviour in solution, J. Electroanal. Chem. 315, 225–243 (1991).Google Scholar
  23. 23.
    P. D. Sullivan and M. L. Williams, ESR and X-ray study of the structure of Diquat (dy6,7-dihydrodipyridol[l,2-a:2′,1′-c]pyrazinedium) cation radical and dication, J. Am. Chem. Soc. 98, 1711–1716 (1976).Google Scholar
  24. 24.
    K. B. Yoon and J. K. Kochi, Direct observation of superoxide electron transfer with viologens by immobilization in zeolite, J. Am. Chem. Soc. 110, 6586–6588 (1988).Google Scholar
  25. 25.
    K. Takahashi, T. Nihira, K. Akiyama, Y. Ikegami, and E. Fukuyo, Synthesis and characterization of new conjugation-extended viologens involving a central aromatic linking group, J. Chem. Soc., Chem. Commun., 1992, 620–622.Google Scholar
  26. 26.
    N. S. Sariciftci, M. Mehring, K. U. Gaudl, P. Bäuerle, H. Neugebauer, and A. Neckel, Third generation of conducting polymers: Spectroelectrochemical investigations on viologen functionalized poly(3-alkylthiophenes), J. Chem. Phys. 96, 7164–7170 (1992).CrossRefGoogle Scholar
  27. 27.
    M. Lapkowski and G. Bidan, Electrochemical, spectroelectrochemical and EPR properties of poly(pyrrole-viologens), J. Electroanal. Chem. 362, 249–256 (1993).CrossRefGoogle Scholar
  28. 28.
    K. Yamamura, Y. Okada, S. Ono, K. Kominami, and I. Tabushi, New liquid crystalline viologens exhibiting electric stimulus-response behavior, Tetrahedron Lett. 28, 6475–6478 (1987).CrossRefGoogle Scholar
  29. 29.
    A. E. Kaifer and A. J. Bard, Micellar effects on the reductive electrochemistry of methylviologen, J. Phys. Chem. 89, 4876–4880 (1985).CrossRefGoogle Scholar
  30. 30.
    K. Suga, K. Maemura, M. Fujihira, and S. Aoyagui, ESR studies of the dynamic properties of ion radicals captured by surfactant micelles, Bull Chem. Soc. Jpn. 60, 2221–2226 (1987).Google Scholar
  31. 31.
    M. J. Colaneri, L. Kevan, D. H. P. Thompson, and J. K. Hurst, Variations of alkylmethylviologen radical cation-water interactions in micelles and vesicles from ESEM spectroscopy: Effect ofalkyl chain length, J. Phys. Chem. 91, 4072–4077 (1987).CrossRefGoogle Scholar
  32. 32.
    M. J. Colaneri, L. Kevan, and R. Schmehl, An electron spin resonance study of charge separation in frozen sodium dodecyl sulfate micellar solutions containing tris(2,2′-bipyridine)ruthenium (II) complexes and alkylmethylviologens J. Phys. Chem. 93, 397–401 (1989).CrossRefGoogle Scholar
  33. 33.
    M. Sakaguchi and L. Kevan, Photoionization of alkylmethylviologens in vesicles: Effects of the alkyl chain length in alkylmethylviologen and radical conversion to surfactant radicals, J. Phys. Chem. 93, 6039–6043 (1989).CrossRefGoogle Scholar
  34. 34.
    H. J. D. McManus and L. Kevan, Electron spin resonance, electron spin echo, and electron nuclear double resonance investigations of the photoreduction yield of a series of alkylmethylviologens in dihexadecyl phosphate vesicles: Effect of added cholesterol, J. Phys. Chem 95, 10172–10178 (1991)CrossRefGoogle Scholar
  35. 35.
    H. J. D. McManus, Y. S. Kang, and L. Kevan, Electron spin resonance, electron spin echo, and electron nuclear double resonance studies of the photoreduction yield of a series of alkylmethyl-viologens in sodium dodecyl sulfate and dodecyltrimethylammonium chloride micelles; Effect of the alkyl chain length of the viologen, J. Phys. Chem. 96, 5622–5628 (1992).Google Scholar
  36. 36.
    M. Sakaguchi, P. Baglioni, and L. Kevan, Photoreduction of alkylmethylviologens with α tocopherol in dioctadecyldimethylammonium chloride vesicles, J. Phys. Chem. 96, 2772–2776 (1992).CrossRefGoogle Scholar
  37. 37.
    H. Nakamura, S. Usui, Y. Matsuda, T. Matsuo, K. Maeda, and T. Azumi, Time-resolved electron spin resonance spectra of linked radical pairs on laser excitation of zinc tetraphenylporphyrin-viologen systems, J. Phys. Chem. 97, 534–536 (1993).Google Scholar
  38. 38.
    K. Takuma, T. Sakamoto, T. Nagamura, and T. Matsuo, Novel properties of the self-assembling amphiphatic viologen system. 1. A study of electron-exchange reactions in micellar systems, J. Phys. Chem. 85, 619–621 (1981).CrossRefGoogle Scholar
  39. 39.
    F. Feichtmayr and G. Scheibe, Photodissociation into radicals as the cause of phototropy in quinol derivatives, Z. Naturforsch. 13B, 51 (1958).Google Scholar
  40. 40.
    D. A. Wiersma and W. C. Nieuwpoort, Electron spin resonance of photochromic β-tetrachloro-α-ketonaphthalene, Chem. Phys. Lett. 2, 637–639 (1968).Google Scholar
  41. 41.
    G. Kortüm and G. Greiner, Zur Photochromie des 2,3,4,4-Tetrachlor-l-keto-dihydronaphthalins (β-TkN) Ber. Bunsenges. Phys. Chem. 77, 459–465 (1973).Google Scholar
  42. 42.
    F. P. A. Zweegers and C. A. G. O. Varma, ESR oftriplet states in single crystals ofphotochromic 2,3,4,4-tetrachloro-l-keto-l,4-dihydronaphthalene (β-TKN) Chem. Phys. 12, 231–235 (1976).CrossRefGoogle Scholar
  43. 43.
    F. P. A. Zweegers and C. A. G. O. Varma, Photochromism of 2,3,4,4-tetrachloro-l-oxo-1,4-dihydronaphthalene, J. Phys. Chem. 83, 1821–1828 (1979).CrossRefGoogle Scholar
  44. 44.
    R. C. Bertelson, in: Photochromism (G. H. Brown, ed.), Wiley-Interscience, New York (1971), and references therein.Google Scholar
  45. 45.
    T. Bercovici, R. Heiligman-Rim, and E. Fischer, Photochromism in spiropyrans, VI. Trimethy-lindolinobenzospiropyran and its derivatives, Mol. Photochem. 1, 23–55 (1969).Google Scholar
  46. 46.
    A. V. Zubkov, Polarization of electrons during the formation of radical pairs, Dokl. Akad. Nauk SSSR 216, 1095–1097 (1974); Chem. Abstr. 81, 104205j (1974).Google Scholar
  47. 47.
    J. M. McBride and G. T. Evans, Steady-state optical spin polarization from a spiropyran at 105 K. Possible evidence for a diradical, Chem. Phys. Lett 36, 41–45 (1975).CrossRefGoogle Scholar
  48. 48.
    G. T. Evans, Steady-state optical spin polarization. Theory of the high yield anisotropic ESR intensity, Chem. Phys. Lett. 36, 46–48 (1975).CrossRefGoogle Scholar
  49. 49.
    C. Lenoble and R. S. Becker, Photophysics, photochemistry, kinetics, and mechanism of the photochromism of 6′-nitroindolinospiropyran, J. Phys. Chem. 90, 62–65 (1986).Google Scholar
  50. 50.
    M. Campredon, A. Samat, R. Guglielmetti, and A. Alberti, Double-trapping oftriplet biradicals in the cleavage of spiropyrans and spirooxazines, Gazz. Chim. Ital. 123, 261–264 (1993).Google Scholar
  51. 51.
    P. Maruthamuthu and J. C. Scaiano, Biradicals double trapping by nitric oxide. An electron spin resonance study, J. Phys. Chem. 82, 1588–1591 (1978).Google Scholar
  52. 52.
    M. Campredon, R. Guglielmetti, A. Samat, and A. Alberti, ESR studies on some spiropyrans, spironaphthopyrans, and spirooxazines, J. Chim. Phys. 91, 1830–1836 (1994).Google Scholar
  53. 53.
    V. Malatesta, F. Renzi., M. L. Wis, L. Montanari, M. Milosa, and D. Scotti, Reductive degradation of photochromic spiro-oxazines. Reaction of the merocyanine forms with free radicals, J. Org. Chem. 60, 5446–5448 (1995).CrossRefGoogle Scholar
  54. 54.
    V Malatesta, R. Millini, and L. Montanari, Key intermediate product of oxidative degradation of photochromic spirooxazines. X-ray crystal structure and electron spin resonance analysis of its 7,7,8,8-tetracyanoquinodimethane ion-radical salt, J. Am. Chem. Soc. 117, 6258–6264 (1995).CrossRefGoogle Scholar
  55. 55.
    J.-W. Zhou, Y.-T. Li, and X.-Q. Song, Investigation of the chelation of a photochromic spiropyran with Cu(II), J. Photochem. Photobiol., A87, 37–42 (1995).Google Scholar
  56. 56.
    L. A. Ulanova, E. V. Pykhtina, and B. V Tolkachev, EPR spectra and π-electronic structure of anion radicals ofnitro-substituted indoline spiropyran, Khim. Geterotsikl. Soedin. 11, 1477–1481 (1984); Chem. Abstr. 102, 112743a (1985).Google Scholar
  57. 57.
    M. Campredon, R. Guglielmetti, A. Samat, G. Gronchi, and A. Alberti, Radical anions from some photochromic nitro compounds. An electron paramagnetic resonance and electrochemical study, Res. Chem. Intermed. 19, 307–318 (1993).Google Scholar
  58. 58.
    A. Alberti, M. Campredon, G. Gronchi, and A. Samat, EPR and electrochemical studies of radicals from photochromic compounds, Mol. Cryst. Liq. Cryst. 246, 327–330 (1994).Google Scholar
  59. 59.
    M. Campredon, G. Giusti, R. Guglielmetti, A. Samat, G. Gronchi, A. Alberti, and M. Benaglia, Radical ions and germyloxyaminoxyls from nitrospiro[indoline-naphthopyrans]. A combined electrochemical and EPR study, J. Chem. Soc., Perkin Trans. 2 1993, 2089–2094.Google Scholar
  60. 60.
    A. Alberti, C. Barberis, M. Campredon, G. Gronchi, and M. Guerra, An EPR electrochemical, and ab initio investigation on the nature of the radical ions formed in the reduction of some photochromic compounds of the spiroindolinic series, J. Phys. Chem. 99, 15779–15784 (1995).CrossRefGoogle Scholar
  61. 61.
    A. T. Balaban, N. Negoita, and R. Baican, A new stable spiropyranic aminyloxide (nitroxide), Org. Magn. Res. 9, 553–554 (1977).Google Scholar
  62. 62.
    G. A. Russell, C. L. Myers, P. Bruni, F. A. Neugebauer, and R. Blankespoor, Semidiones. X. Semidione radical anions derived from indan-2.3-dione, coumaran-2.3-dione, thianaphthalenequi-none, isatin, and N-hydroxyisatin. Nitroxide radicals derived from isatin, dioxindole, oxindole, and other indole derivatives, J. Am. Chem. Soc. 92, 2762–2768 (1970).Google Scholar
  63. 63.
    P. Bruni and M. Colonna, Nitroxide and anion radicals derived from isatogen and related indole derivatives, Tetrahedron 29, 2425–2435 (1973).Google Scholar
  64. 64.
    A. T. Balaban, H. G. Aurich, J. Trösken, E. Brugger, D. Döpp, and K. H. Sailer, Aminyloxides (nitroxides) from 1-hydroxy-2-indolinones, Tetrahedron 30 739–744 (1974).CrossRefGoogle Scholar
  65. 65.
    C. Berti, M. Colonna, L. Greci, and L. Marchetti, Stable nitroxide radicals from phenylisatogen and arylimino-derivatives with organo-metallic compounds, Tetrahedron 31, 1745–1753 (1975).CrossRefGoogle Scholar
  66. 66.
    L. Marchetti, L. Greci, and M. Poloni, Nitroxide radicals from N-hydroxyisatin, Gazz. Chim. Ital. 107, 7–10 (1977).Google Scholar
  67. 67.
    B. Luccioni-Houzé, P. Nakache, M. Campredon, R. Guglielmetti, and G. Giusti, Synthesis of new photochromic compounds containing a spin-trap or a spin-label, Res. Chem. Intermed. 22, 449–458 (1996).Google Scholar
  68. 68.
    A. V. Zubkov, Paramagnetic products of the radiolysis of indoline spiropyrans, Khim. Vys. Energ. 8, 354–357 (1974); Chem. Abstr. 144151v (1974).Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • Angelo Alberti
    • 1
  1. 1.I.Co.C.E.A.—CNRBolognaItaly

Personalised recommendations