Skip to main content

Part of the book series: Topics in Applied Chemistry ((TAPP))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. H. Day, Thermochromism, Chem. Rev., 63, 65–80 (1963).

    Article  CAS  Google Scholar 

  2. H. Dürr and H. Bouas-Laurent (eds.), Photochromism: Molecules and Systems, Elsevier, Amsterdam (1990).

    Google Scholar 

  3. J. Vitry, Photochromie et thermochromie, Chim. Ind. Genie Chim. 102, 1333–1349 (1969).

    CAS  Google Scholar 

  4. J. H. Day, Chromogenic materials—electrochromic and thermochromic, in: Kirk-Othmer Encyclopedia of Chemical Technology, 3rd ed. (M. Grayson, and D. Eckroth, eds.). Vol. 6, pp. 129–142, John Wiley & Sons, New York (1979). pp. 129–142.

    Google Scholar 

  5. M. M. Sidky, Thermochromism, Chem. Stosow. 27, 165–182 (1983).

    CAS  Google Scholar 

  6. R. C. Bertelson, in: Photochromism (G. H. Brown, ed.), pp. 45–431, John Wiley & Sons, New York (1971).

    Google Scholar 

  7. N. Y. C. Chu, Photochromism ofspiroindolinenaphthoxazine. I. Photophysical properties, Can. J. Chem. 61, 300–305 (1983).

    CAS  Google Scholar 

  8. R. Guglielmetti, in: Photochromism: Molecules and Systems (H. Dürr and H. Bouas-Laurent, eds.), pp. 314–466, Elsevier, Amsterdam (1990).

    Google Scholar 

  9. S. Nakamura. K. Uchida, A. Murakami and M. Irie, Ab initio MO and 1H NMR NOE studies of photochromic spironaphthoxazine, J. Org. Chem. 58, 5543–5545 (1993).

    CAS  Google Scholar 

  10. V. Malatesta, G. Ranghino, U. Romano, and P. Allegrini, Photochromic spironaphthoxazines: A theoretical study, Int. J. Quantum Chem. 42, 879–887 (1992).

    Article  CAS  Google Scholar 

  11. H. Pommier, A. Samat, R. Guglielmetti, M. Rajzmann, and G. Pépe, Investigation of some photochromic structures by molecular mechanics and SCF MO calculations, Mol. Cryst. Liq. Cryst. 246, 241–246 (1994).

    CAS  Google Scholar 

  12. P. Laréginie, V. Lokshin, A. Samat, R. Guglielmetti, and G. Pèpe, First permanent opened forms in spiro[indoline-oxazine] series: Synthesis and structural elucidation, J. Chem. Soc., Perkin Trans. 2 1996, 107–111.

    Google Scholar 

  13. J. L. Pozzo, A. Samat, R. Guglielmetti, and D. De Keukeleire, Solvatochromic and photochromic characteristics of new l,3-dihydrospiro[2H-indole-2, 2′-[2H]-bipyrido[3,2-f][2,3-h][l,4]benzo-xazines], J. Chem. Soc. Perkin Trans. 2 1993, 1327–1332.

    Google Scholar 

  14. G. Favaro, F. Masetti, U. Mazzucato, G. Ottavi, P. Allegrini, and V. Malatesta, Photochromism, therrnochromism and solvatochromism of some spiro[indolinoxazine]-photomerocyanine systems: Effects of structure and solvent, J. Chem. Soc., Faraday Trans. 90, 333–338 (1994).

    Article  CAS  Google Scholar 

  15. G. Favaro, F. Ortica, and V. Malatesta, Photochromism and therrnochromism of spiro[indolinox-azines] in normal and reversed micelles, J. Chem. Soc., Faraday Trans. 91, 4099–4103 (1995).

    Article  CAS  Google Scholar 

  16. G. Favaro, V. Malatesta, U. Mazzucato, G. Ottavi, and A. Romani, Thermally reversible photoconversion of spiroindoline-naphthooxazines to photomerocyanines: A photochemical and kinetic study, J. Photochem. Photobiol. A. 87, 235–241 (1995).

    CAS  Google Scholar 

  17. G. Favaro, V. Malatesta, U. Mazzucato, C Miliani, and G Ottavi, A comprehensive kinetic, thermodynamic and photochemical study of some spiro-indoline-oxazines, Proc. Indian Acad. Sci., Chem. Sci 6, 659–612 (1995).

    Google Scholar 

  18. Y. S. Lee, J. G. Kim, Y. D. Huh, and M. K. Kim, Thermochromism of spiropyran and spirooxazine derivatives, J. Korean. Chem, Soc. 38, 864–872 (1994).

    CAS  Google Scholar 

  19. S. M. Aldoshin, V. A. Lokshin, A. N. Rezonov, N. V. Volbushko, N. E. Shelepin, M. I. Knyazhanskii, L.O. Atovmyan, and V. I. Minkin, Synthesis and photo-and thermochromic properties of spiropyrans of the 2-oxaindane series with polycondensed chromene fragments, Khim. Geterotsikl. Soedin, 1987, 744–755.

    Google Scholar 

  20. S. P. Makarov, B. Ya. Simkin, and V. I. Minkin, Photo-and thermochromic spirans.17. Theoretical prediction of barriers of thermal reactions involving valence isomerization of spiropyrans, Chem. Hetervcycl. Compd. 1988, 140–145.

    Google Scholar 

  21. T. B. Krasieva, Ya. N. Malkin, V. A. Lokshin, S. V. Mel’nichuk, S. A. Tikhomirov, and V. A. Kuz’min, Photochemistry of dithiolane spiropyrans containing polycondensed chromene fragments, Izv. Akad. Nauk SSSR. Ser. Khim. 1989, 2504–2510.

    Google Scholar 

  22. B. Hellrung and H. Balli, Investigations on the thermochromism of a series of spirocyclic compounds and color formers with heterocyclic parts and O or N as the key atom, Helv. Chim. Acta 72, 1583–1589 (1989).

    Article  CAS  Google Scholar 

  23. I. Ya. Kasparova, O. P. Shmakova, M. V Mel’nik, B. M. Gutsulyak, and P. P. Kisilitsa, Thermochromism of new derivatives of benzopyran, Zh. Fiz. Khim. 60, 504–506 (1986).

    CAS  Google Scholar 

  24. B. M. Gutsulyak, Kh. V. Gutsulyak, V. S Mazhara, M. V. Mel’nik, and I. I. Sereda, Thermal transformations ofchromenoacridines, yZh. Prikl. Spektrosk. 59, 343–346 (1993).

    CAS  Google Scholar 

  25. A. N. Flerova, A. L. Prokhoda, N. P. Yudina, E. L. Zaitseva, and V. A. Krongauz, Photochromy of organic substances. VII. Synthesis and properties of photochromic bis(indolinospiropyrans), Khim. Geterotsikl. Soedin. 1973, 1631–1638.

    Google Scholar 

  26. R. M. Gitina, A. L. Prokhoda, N. P. Yudina, E. L. Zaitseva, and V. A. Krongauz, Photochromism of organicsubstances.VIII.Synthesis and properties of photochromic 6-methacryloylamino-benzothiazolinospiropyrans, Khim. Geterotsikl. Soedin., 1973, 1639–1642.

    Google Scholar 

  27. F. Ribes, R. Guglielmetti, and J. Metzger, Synthesis of bifunctional spiropyrans of benzothiazolines and indolines, Bull. Soc. Chim. Fr. 1972, 143–47.

    Google Scholar 

  28. Ya. N. Malkin, V.A. Kuz’min, G. G. Dyadyusha, A. N. Boguslavskaya, and F. A Mikhailenko, The thermochromic and photochemical properties of bis-spiropyrans, Bull. Acad. Sci. USSR 25, 526–540 (1976).

    Google Scholar 

  29. A. I. Kriprianov, Absorption spectra of organic dyes containing two chromaphores in the molecule, Usp. Khim. 40, 1283–1308 (1971).

    Google Scholar 

  30. I. Kriprianov and G. G. Dyadyusha, Absorptionspectraof organicdyes containingtwo conjugated chromophores in a molecule, Ukr. Khim. Zh 35, 608–615 (1969).

    Google Scholar 

  31. D. Eloy and P. Jardon, Photochromism, thermochromism and solvatochromism of spironaphthoxazines: Mechanistic aspects, Mol. Cryst. Liq. Cryst. 246, 291–294 (1994).

    CAS  Google Scholar 

  32. V. Malatesta, P. Allegrini, and L. L. Montanari, A solid-state (CP-MAS)13C nuclear magnetic resonance study of selected photo(thermo)chromic spiro(indolinonaphthoxazine)s, Appl. Magn. Reson. 7, 551–557 (1994).

    CAS  Google Scholar 

  33. G. Castaldi, P. Allegrini, R. Fusco, L. Longo, and V. Malatesta, New thermo-and photochromic 10-methylspiro[dibenzoti[b, f][1,4]oxazepino-ll,3′-3 H-naphtho[2,1-b]-l,4-oxazines], J. Chem. Soc., Chem. Commun. 1991, 1257–1258.

    Google Scholar 

  34. B. Ya. Simkin, S. P. Makarov, N. G. Furmanova, K. Sh. Karaev, and V. I. Minkin, Photo-and thermochromic spirans. 15. Effect of structural factors on C 8piro —O bond length, Khim. Geterotsikl. Soedin. 1984 747–752.

    Google Scholar 

  35. I. Minkin, This monograph Vol.1 Chapter 8.

    Google Scholar 

  36. L. P. Olekhnovitch, I. E. Mikhailov, V. I. Minkin, N. G. Furmanova, O. E. Kompan, Yu. T. Strutchkov, and A. V. Lukash, XIV. Structure and tautomerism ofo-2,4,6-trinitroaryl derivatives of o-hydroxyaldehydes andthe correspondingimines,Zhr. Org.Khim. 18, 484–493 (1982).

    Google Scholar 

  37. P. N. Day, Zh. Wang, and R. Pachter, Ab-initio study of the ring-opening reactions of pyran, nitrochromene and spiropyran, J. Phys. Chem. 99, 9730–9738 (1995).

    Article  CAS  Google Scholar 

  38. A. Mannschreck, K Lorenz, and M. Schinabeck see Chapter 6.

    Google Scholar 

  39. F. Zerbetto, S. Monti, and G. Orlandi, Thermal and photochemical interconversion of spiropyran and merocyanines. A semiempirical all-valence-electron study, J. Chem. Soc. Faraday Trans. 80, 1513–1527 (1984).

    CAS  Google Scholar 

  40. G. Garros, I. Chuev, S. Aldoshin, M. Rajzmann, R. Guglielmetti, and A. Samat, unpublished results.

    Google Scholar 

  41. D. Ollis, K. L. Ormand, and I. O. Sutherland, Nuclear Magnetic Resonance studies of the electrocyclic reactions of thermochromic spiropyrans, J. Chem Soc. Chem. Commun. 1968, 1697–1699.

    Google Scholar 

  42. V. S. Marevtsev, N. L. Zaichenko, V. D. Ermakova, S. I. Beshenko, V A. Linskii, A. T. Gradyushko, and M. I. Cherkashin, Effect of electron-donor and electron-acceptor substituents on photo-and thermochromic properties of indoline spiropyrans, Bull. Acad. Sci. USSR, Chem. Sci. 89 1591–1596 (1980).

    Google Scholar 

  43. S. Toppet, W. Quintens and G. Smets, NMR study of the inversion at carbon 2 of some l?,3?,3?-trimethylindolino disubstituted spirobenzopyranes, Tetrahedron 31, 1957–1958 (1975).

    Article  CAS  Google Scholar 

  44. F. M. Menger and M. Perinis, Acid catalysis in a thermochromic system Tetrahedron Lett. 47, 4653–4656 (1978).

    Google Scholar 

  45. Y. Sueishi, M. Ohcho, and N. Nishimura, Kinetic studies of solvent and pressure effects on thermochromic behavior of 6-nitrospiropyran, Bull Chem. Soc. Jpn. 58, 2608–2613 (1985).

    CAS  Google Scholar 

  46. Y. Sueishi, M. Ohcho, S. Yamamoto, and N. Nishimura, A Kinetic study of the thermal conversion of 1′′,3′,3′-trimethylspiro[2H-l-benzopyran-2,2′-indoline]-8-carboxylic acid,Bull. Chem Soc. Jpn. 59, 3666–3668 (1986).

    CAS  Google Scholar 

  47. N. Nishimura, J. Miyake, and Y. Sueishi, Thermal isomerization of 1′,3′,3′-trimethyl-8-nitro-spiro [2H-l-benzopyran-2,2?-indoline]-6-carboxylic acid, Bull Chem. Soc. Jpn. 62, 1777–1780 (1989).

    CAS  Google Scholar 

  48. Y. Sueishi and T. Nishimura, Complexation of spiropyrans with cyclodextrins; Effects of βand λ-cyclodextrins on the thermal isomerization of 6-SO3-spiropyran, J. Phys. Org. Chem. 8, 335–340 (1995).

    CAS  Google Scholar 

  49. M. Campredon, A. Samat, R. Guglielmetti and A. Alberti, Double-trapping oftriplet biradicals in the cleavage of spiropyrans and spirooxazines, Gazz. Chim. Ital. 123, 261–264 (1993).

    CAS  Google Scholar 

  50. A. S. Kholmanskii, G. I. Veniaminova, E. V. Savina, V. A. Lokshin, and N. G. Rambidi, The dependence of the kinetic characteristics of thermochromic and photochromic transformations of spiropyrans on the structures, Teor. Eksp. Khim. 23, 476–480 (1987).

    CAS  Google Scholar 

  51. J. B. Flannery, The photo-and thermochromic transients from substituted 1′,3′,3′-trimethylindo-linobenzospiropyrans, J. Am. Chem. Soc. 90, 5660–5671 (1968).

    Article  CAS  Google Scholar 

  52. J. Zhou, Y. Li, Y. Tang, F. Zhao, and X. Song, A new method for the determination of thermo-chromic equilibrium constant of indoline spiropyran, Wuli Huaxue Xuebao 11, 97–100 (1995).

    CAS  Google Scholar 

  53. O. Chaudé, Etude spectrophotométrique de l’isomérisation de divers spiranes thermochromes Cah. Phys. (Fr.) 1954, 50–18, 50-53, 52-3, and 52-48.

    Google Scholar 

  54. E. Hadjoudis, in: Photochromism: Molecules and Systems (H. Dürr and Bouas-Laurent, eds.), pp. 685–712, Elsevier, Amsterdam (1990).

    Google Scholar 

  55. A. Senier and F. G. Shepheard, Studies in phototropy and thermotropy. Part 1. Arylidene and naphthylidene-amines, J. Chem. Soc. 95, 1943–1955 (1909).

    CAS  Google Scholar 

  56. M. D. Cohen and G. M. J. Schmidt, Photochromy and thermochromy ofanils, J. Phys. Chem. 56, 2442–2445 (1962).

    Google Scholar 

  57. M. D. Cohen, G. M. J. Schmidt, and S. Flavian, Topochemistry. Part XXVI. The absorption spectra of some thermochromic N-salicylideneanilines and hydroxynaphthylideneanilines in the crystal, J. Chem. Soc. 1964, 2041–2501.

    Google Scholar 

  58. R. Nakagaki, T. Kobayashi, J. Nakamura, and S. Nagakura, Spectroscopic and kinetic studies of the photochromism of N-salicylideneanilines and related compounds, Bull. Chem. Soc. Jpn. 50, 1909–1912 (1977).

    CAS  Google Scholar 

  59. E. Hadjoudis, Photochromism and thermochromism of N-salicylideneanilines and N-salicylide-neaminopyridines, J. Photochem. 17, 355–363(1981).

    CAS  Google Scholar 

  60. S. M. Aldoshin, L. O. Atovmyan, and O. S. Filipenko, Structural aspects of photo-and thermochromic conversions of crystal salicylalarylimines, Proceedings of the 14th Conference on Applied Crystallorgraphy. Vol. 2, pp. 483–488 (1990).

    Google Scholar 

  61. S. M. Aldoshin and I. I. Chuev, in: Crystal Chemical Design of Prototropic Systems with Intra-and Inter-molecular Transfer of Protons: Results and Prospects for Practical Application (D. W. Jones and A. Katrusiak, eds.), Vol 6, pp. 79–92, International Union of Crystallography/Oxford University Press, Oxford (1992).

    Google Scholar 

  62. M. I. Knyazhanskii, S. M. Aldoshin, A. V. Metelitza, A. Ya. Bushkov, O. S. Filipenko, and L. O. Atovmyan, Photostable structural analogs of photochromic anils of ortho-hydroxyaldehydes, Khim. Fiz. 10, 964–970 (1991).

    CAS  Google Scholar 

  63. S. M. Aldoshin, and L. O. Atovmyan, Structural aspect of photo-and thermochemistry of crystalline salicylalarylimines, Khim. Fiz. 3, 915–826 (1984).

    CAS  Google Scholar 

  64. S. M. Aldoshin, M. I. Knyazhanskii, Ya. R. Tymyanskii, L. O. Atovmyan, and O. A. Dyachenko, Influence of intermolecular interactions on photo-and thermochromic properties of salicylal-arylimine crystals, Khim. Fiz 1982, 1015–1023.

    Google Scholar 

  65. E. Hadjoudis, Spectroscopic studies on the thermochromic and photochromic Schiff bases, Presented at the 9th National Conference on Molecular Spectroscopy. Sofia, Bulgaria 1980.

    Google Scholar 

  66. E. Hadjoudis, M. Vittorakis, and I. Moustakali-Mavridis, Photochromism and thermochromism of Schiff bases in the solid state and in rigid glasses, Tetrahedron 43, 1345–1360 (1987).

    Article  CAS  Google Scholar 

  67. E. Hadjoudis, Solid state photochromism of anils, Mol Cryst. Liq. Cryst. 246, 127c134 (1994).

    Google Scholar 

  68. E Hadjoudis, J. Argyroglou, E. Lambi, and I. Moustakali-Mavridis, Structural-directing effects in the photochromism of anils, Mol Eng. 1, 67–74 (1991).

    Article  CAS  Google Scholar 

  69. E. Hadjoudis, J. Argyroglou, and I. Moustakali-Mavridis, Solid state photochromism and thermochromism of N-salicylidenebenzylamines and N-salicylidene-2-thienylamines, Mol. Cryst. Liq. Cryst. 156, 39–48 (1988).

    CAS  Google Scholar 

  70. E. Lambi, D. Gegiou, and E. Hadjoudis, Thermochromism and photochromism of N-salicylide-nebenzylamines and N-salicylidene-2-aminomethylpyridine, J. Photochem. Photobiol. A 86, 241–246 (1995).

    CAS  Google Scholar 

  71. A. Rontoyianni, E. Hadjoudis, and I. M. Mavridis, Solid-state photochromism and thermo-chromism of N-(5-bromosalicylidene)-2-phenylethylamine, Mol. Cryst. Liq. Cryst. Sci. Technol., Sect. A 242, 489–494 (1994).

    CAS  Google Scholar 

  72. M. I. Knyazhanskii and A. V Metelitsa, Photoinduced Processes in Azomethine Compounds and Their Structural Analogs, Rostov University, Rostov-on-Don (1992).

    Google Scholar 

  73. G. Pistolis, E. Hadjoudis, and I. M. Mavridis, Photoactivity with cyclodextrin cavities: Inclusion complexes of anils with cyclodextrins Mol. Cryst. Liq. Cryst. Sci. Technol., Sect. A 242, 483–487 (1994).

    CAS  Google Scholar 

  74. T. Inabe, I. Gautier-Luneau, N. Hoshino, K. Okaniwa, H. Okamoto, T. Mitani, U. Nagashima, and Y. Maruyama, Structure and optical properties of thermochromic Schiff bases. Charge transfer interaction and proton transfer in the N-tetrachlorosalicylideneaniline and N-tetrachlorosalicyli-dene-1-pyrenylamine crystals, Bull. Chem. Soc Jpn. 64, 801–810 (1991).

    CAS  Google Scholar 

  75. E. Hadjoudis and J. Argyroglou, Photochromism and thermochromism of methyl12-amino-dehydroabietate Schiff bases, J. Mol. Struct. 114, 41–44 (1984).

    Article  CAS  Google Scholar 

  76. E. Hadjoudis and J. Argyroglou, Photochromism and thermochromism of solid salicylidene-dehydroabietylamines and salicylidene-6-amino methyldehydroabietates, Mol. Cryst. Liq. Cryst. 134, 245–253 (1986).

    CAS  Google Scholar 

  77. T. Kawato, H. Kanatomi, H. Koyama, and T. Igarashi, Photoisomerization and thermoisomerization II: Steric requirements for photochromism and thermochromism of N,N′-bis(salicylidene)-diamines, J. Photochem. 33, 199–208 (1986).

    Article  CAS  Google Scholar 

  78. N. Hoshino, T. Inabe, T. Mitani and Y. Maruyama, Structure and optical properties of a thermochromic Schiff base: Thermally induced-intramolecular proton transfer in the N,N′-bis(salicylidene)-p-phenylenediamine crystals, Bull. Chem. Soc. Jpn. 61, 4207–4214 (1988).

    CAS  Google Scholar 

  79. M. S. M. Rawat and J. L. Norula, Photochromism in bis-N,N′-salicylideneanilines and N,N′-disalicylidenediamines, Indian J. Chem. 26B, 232–237 (1987).

    CAS  Google Scholar 

  80. M. I. Ayad, A. Mashaly, and M. M. Ayad, Thermal behaviour and electrical properties of some biologically active sulfonamide Schiff bases, Thermochim. Acta 184, 173–182 (1991).

    Article  CAS  Google Scholar 

  81. A. Takase, S. Sakagami, K. Nonaka, and T. Koga, Spectroscopic studies of the thermochromism of N-(2-hydroxy-4-methoxyberizylidene)-4-nitroaniline, J. Raman Spectrosc. 24, 447–451 (1993).

    Article  CAS  Google Scholar 

  82. S. H. Alarcon, A. C. Olivieri, and M. Gonzalez-Sierra, 13C NMR spectroscopicandAM1 study of the intramolecular proton transfer in anils of salicylaldehyde and 2-hydroxynaphthalene-1-carbaldehyde, J. Chem. Soc. Pertin Trans. 2 1994, 1067–1070.

    Google Scholar 

  83. E. Hadjoudis, F. Milia, J. Seliger, V. Zagar, and R. Blinc, 14N NQR investigation of some thermochromic and photochromic salicylideneanilines and related compounds, Chem. Phys. 156, 149–155 (1991).

    Article  CAS  Google Scholar 

  84. T. Inabe, I. Luneau, T. Mitani, Y. Maruyama, and S. Takeda, Proton transfer in N-(2-hydroxy-l-naphthylmethylene)-1-pyreneamine and N,N′-bis(2-hydroxy-1-naphthylmethylene)-p-phenyl-enediamine crystals, Bull Chem. Soc. Jpn. 67, 612–621 (1994).

    CAS  Google Scholar 

  85. Z. Cimerman, R. Kiralj, and N. Galic, The structure and tautomeric properties of 2-(3-pyridylmethyliminomethyl)phenol, J. Mol. Struct 323, 7–14 (1994).

    Article  CAS  Google Scholar 

  86. T. Inabe, N. Hoshino, T. Mitani, and Y. Maruyama, Structure and optical properties of a thermochromic Schiff base. Low-temperature structural studies of the N,N′-disalicylidene-p-phenylenediamine and N,N′-disalicylidene-l,6-pyrenediamine crystals, Bull, Chem. Soc. Jpn. 62 2245–2251 (1989).

    CAS  Google Scholar 

  87. S. Takeda, H. Chihara, T. Inabe, T. Mitani, and Y. Maruyama, NMR study of proton dynamics in the NHO hydrogen bonds in the thermochromic crystals of N-salicylideneanilines, Chem. Phys. Lett 189(1), 13–17(1992).

    Article  CAS  Google Scholar 

  88. S. Takeda, H. Chihara, T. Inabe, T. Mitani, and Y. Maruyama, NMR study of proton dynamics in the hydrogen bonds in the thermochromic crystals of N-salicylideneaniline derivatives, Mol. Cryst. Liq. Cryst. Sci. Technol., Sect. A 216, 235–240 (1992).

    CAS  Google Scholar 

  89. K. Wozniak, H. He, J. Klinowski, W. Jones, T. Dziembowska, and E. Grech, Intramolecular hydrogen bonding in N-salicylideneanilines: X-ray diffraction and solid state NMR studies, J. Chem. Soc. Faraday Trans. 91, 77–85 (1995).

    Article  Google Scholar 

  90. F. H. Allen, J. E. Davies, J. J. Galloy, O. Johnson, O. Kennard, C. F. Macrae, E. M. Mitchell, G. F. Mitchell, J. M. Smith, and D. G. Watson, The development of version-3 and version-4 of the Cambridge Structural Database system, J. Chem. Inf. Comput. Sci. 31, 187–204 (1991).

    Article  CAS  Google Scholar 

  91. M. Carles, D. Eloy, L. Pujol, and H. Bodot, Photochromic and thermochromic salicylidenamines: Isomerization in the crystal, infrared identities and conformational influence, J. Mol. Struct. 156, 43–58(1987).

    Article  CAS  Google Scholar 

  92. E. Hadjoudis, I. Moustakali-Mavridis, F. Mili, J. Seliger, R. Blinc, and V. Zegar, Nuclear quadrupole resonance studies of Schiff bases, Bull. Magn. Reson. 6, 116–122 (1984).

    CAS  Google Scholar 

  93. F. Milia, E. Hadjoudis, and J. Seliger, Hydrogen bond studies in thermochromic and photo-chromic N-salicylidene anilines, J. Mol. Struct. 177, 191–197(1988).

    Article  Google Scholar 

  94. J. Sleiger, V. Zagar, R. Blinc, E. Hadjoudis, and F. Milia, 1H-14N and 1H-17O nuclear quadrupole resonance in thermochromic N-5-chlorosalicylideneaniline, Chem. Phys. 142, 237–244 (1990).

    Google Scholar 

  95. X. H. Fang, Y. Zhang, and X. Z. You, Theoretical studies on the mechanisms of proton transfer in Schiff bases, J. Mol Struct. (Theochem). 334, 81–89 (1995).

    Article  CAS  Google Scholar 

  96. K. A. Muszkat, in: Chemistry of Quinoïd Compounds Vol. 2 (S. Patai, and Z. Rappoport, eds. pp. 203–224, John Wiley & Sons Chichester, (1988).

    Google Scholar 

  97. Y. Tapuhi. O. Kalisky, and I. Agranat, Thermochromism and thermal E, Z isomerizations in bianthrones, J. Org. Chem. 44, 1949–1952 (1979).

    Article  CAS  Google Scholar 

  98. I. Agranat, and Y. Tapuhi, Dynamic stereochemistry in overcrowded ethylenes. Conformational behavior of bianthrones, J. Org. Chem. 44, 1941–1948 (1979).

    CAS  Google Scholar 

  99. R. Korenstein, K. A. Muszkat, and S. Sharafy-Ozeri, Photochromism and thermochromism through partial torsion about an essential double bond. Structure of the B colored isomers of bianthrones, J. Am. Chem Soc. 95, 6177–6181 (1973).

    Article  CAS  Google Scholar 

  100. F. Cavelier-Frontin, G. Pepe, J. Verducci, D. Siri, and R. Jacquier, Prediction of the best linear precursor in the synthesis of cyclotetrapepides by molecular mechanic calculation, J. Am. Chem. Soc. 114, 8885–8890 (1992) and references therein.

    Article  CAS  Google Scholar 

  101. O. Kikuchi, and Y. Kawakami, An MO study ofconformation behavior of bianthrone and its ions, J. Mol. Struct. (Theochem) 137, 365–372 (1986).

    Article  Google Scholar 

  102. D. Evans, and A. Fitch, Measurement of the thermochromic equilibrium constant of a non-thermochromic compound: l,l′-dimethylbianthrone, J. Am. Chem. Soc. 106, 3039–3041 (1984).

    CAS  Google Scholar 

  103. G. Shoham, S. Cohen, M. R. Suissa, and I. Agranat, in: Molecular Structure, Chemical Reactivity and Biological Activity (J. J. Stezowski, J. L. Huang, and M. C. Shao, eds.), pp. 290–312, Oxford University Press, Oxford (1988).

    Google Scholar 

  104. H. Dürr, Perspectives in photochromism: A novel system based on the 1,5-electrocyclisation of heteroanalogous pentadienyl anions, Angew. Chem. Int. Ed. Engl. 28, 413–431 (1989).

    Article  Google Scholar 

  105. J. J. Stezowskii, P. U. Biedermann, T. Hildenbrand, J. A. Dorsch, C. J. Eckhardt, and I. Agranat, Overcrowded enes of the tricycloindane-l,3-dione series:Interplay of twisting, folding and pyramidalization, J. Chem. Soc., Chem. Commun. 1993, 213–215.

    Google Scholar 

  106. N. A. Bailey, and S. E. Hull, The structures of diisopropyl 9,9′-bifluorenylidene-l,l′-dicarboxy-late and 9′,9′-bifluorenylidene-l, l′-dicarboxylate, and 9′,9′-biflorenylidene Acta Crystallogr. Sect. B, 34, 3289–3295 (1978).

    Article  Google Scholar 

  107. G. Favini, M. Simmonetta, M. Sottocornola, and R. Todeschi, Geometry and energy of overcrowded ethylene. II. Bornanylidene, fenchylidene, and bifluorenylidene derivatives, J. Comput. Chem. 3(2), 178–184 (1982).

    Article  CAS  Google Scholar 

  108. O. Kikuchi, K. Matsushita, M. Morihashi, and M. Nakayama, A molecular orbital study of conformational behavior of 9,9′-bifluorenylidene, Bull. Chem. Soc. Jpn. 59, 3043–3046 (1986).

    CAS  Google Scholar 

  109. B. L. Feringa, W. F. Jager, and B. De Lange, Resolution of sterically overcrowded ethylenes; a remarkable correlation between bond lenghts and racemization barriers, Tetrahedron Lett. 33, 2887–2890 (1992).

    Article  CAS  Google Scholar 

  110. Y. C. Yip, X. Wang D. K. P. Ng, T. C. W. Mak, P. Chiang, and T. Y. Luh, Transition metal promoted reactions, 29. (Z)-2,2′-Disubstituted bifluorenylidenes by intramolecular desulfurdi-merization reactions J. Org. Chem. 55, 1881–1889 (1990).

    Article  CAS  Google Scholar 

  111. I. Agranat, and Y. Tapuhi, Steric effects in fast thermal Z, E isomerization of overcrowded ethylenes. Conformational behavior of N-N′-dimethylbiacridans, J. Am. Chem Soc. 100, 5604–5609 (1978).

    Article  CAS  Google Scholar 

  112. I. Agranat, and Y. Tapuhi, Dynamic stereochemistry and steric effects in overcrowded ethylenes. Conformational behavior of dixanthylenes, J. Am. Chem. Soc. 101, 665–671 (1979).

    Article  CAS  Google Scholar 

  113. B. L. Feringa, W. F. Jager, and B. de Lange, Sterically overcrowded alkenes; a stereospecific photochemical and thermal isomerization ofbenzoannellated bithioxanthylidene, J. Chem. Soc., Chem. Commun. 1993, 288–290.

    Google Scholar 

  114. J. W. town, and K. Matsukato, 1,3-Dipolar cycloadditions to an isoquinolinium inline obtained by thermally disallowed valence tautomerism of a 6-cyclohexylimino-1, 1a, 6,6a-tetrahydro-1a-phenylindeno[l,2-b]aziridine J. Chem. Soc. 1970, 692–693.

    Google Scholar 

  115. A. Padwa, and E. Vega, Photochromic aziridines. On the photochemical valence tautomerization and cycloaddition reactions of substituted indano[1,2-b]aziridine, J. Org. Chem. 40, 175–181 (1975).

    CAS  Google Scholar 

  116. Y. Mori, K. Maeda, and Y. Ohashi, 1-Cyclohexyl-6-(cyclohexylimino)-1a-phenylindano[1,2-b] aziridine, Acta Crystallogr., Sect. 46, 2489–2491 (1990).

    Google Scholar 

  117. S. Mataka, K. Takahashi, M. Tashiro, W.-H. Lin, S. I. Iwasaki, T. Tsutsui, S. Saito, S. Akiyama, and T. Yonemitsu, Color change (yellow orange) of 4,6,7,-tri(alkoxy-substituted aryl)-l,2,5-thiadiazolo[3,4-c]pyridines in the solid phase, J. Heterocycl. Chem 26, 215–219 (1989).

    CAS  Google Scholar 

  118. H. Quast, K. Knoll, E. M. Peters, K. Peters, and H. G. Von Schnering, 2,4,6,8-Tetraphenylbar-baralane-an orange-red, thermochromic hydrocarbon devoid of a chromophore, Chem. Ber. 126, 1047–1060 (1993).

    CAS  Google Scholar 

  119. H. Quast, E. Geissler, T. Herkert, K. Knoll, E. M. Peters, K. Peters, and H. G. Von Schnering, 2,6-Dicyano-4,8-Diphenylbarbaralane, Chem. Ber. 126, 1465–1475 (1993).

    CAS  Google Scholar 

  120. H. Quast, T. Herkert, A. Witzel, E. M. Peters, K. Peters, and H. G. Von Schnering, 2,6-Dicyano-l,5-dimethyl-4,8-diphenylsemibullvalene. Synthesis, structure and the reactions with triplet oxygen, Chem Ber. 127, 921–932 (1994).

    CAS  Google Scholar 

  121. V. N. Komissarov, L. Yu. Ukhin, V. A. Kharlanov, L. V Vetoshkina, L. E. Konstantinovskii, S. M. Aldoshin, O. S. Filipenko, M. A. Novozhilova, and L. O. Atovmyan, Unusual synthesis, structure and thermochromic properties of novel hindered cyclohexadienones, Izv. Akad. Nauk. SSSR, Ser. Khim. 1991, 1121–1129.

    Google Scholar 

  122. S. M. Aldoshin, O. S. Filipenko, M. A. Novozhilova, L. O. Atovmyan, V N. Komissarov, and L. Yu. Ukhin, Synthesis and crystal structure of thermochromic 2,6-di-tert-butyl-4-dimethylamino-4-(2-hydroxyphenyl)cyclohexadien-2,5-one, Izv. Akad. Nauk SSSR, Ser. Khim. 1991, 1808–1813.

    Google Scholar 

  123. V. N. Komissarov, L. Yu. Ukhin, V. A. Kharlanov, V A. Lokshin, E. Yu. Bulgarevich, V. I. Minkin, O. S. Filipenko, M. A. Novozhilova, S. M. Aldoshin, and L. O. Atovmyan, Photo-and thermochromic Mannich bases. 1. Mannich bases from 3,5-di-tert-butyl-4-hydroxybenzaldehyde and 2-naphthols, Izv. Akad. Nauk SSSR, Ser. Khim. 1992, 2389–2399.

    Google Scholar 

  124. V. N. Komissarov, V A. Kharlanov, L. Yu. Ukhin, E. Yu. Bulgarevich, and V I. Minkin, Photo-and thermochromic Mannich bases. Derivatives of 2,6-di-tert-butylphenol and aromatic ortho-hydroxy aldehydes, Zh. Org. Khim. 28, 513–517 (1992).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

Samat, A., Lokshin, V. (2002). Thermochromism of Organic Compounds. In: Crano, J.C., Guglielmetti, R.J. (eds) Organic Photochromic and Thermochromic Compounds. Topics in Applied Chemistry. Springer, Boston, MA. https://doi.org/10.1007/0-306-46912-X_11

Download citation

  • DOI: https://doi.org/10.1007/0-306-46912-X_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-45883-5

  • Online ISBN: 978-0-306-46912-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics