Biological Applications— Supramolecular Chemistry

  • Masahiko Inouye
Part of the Topics in Applied Chemistry book series (TAPP)


Crown Ether Supramolecular Chemistry Merocyanine Form Artificial Receptor Selective Coloration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. Dugas, Bioorganic Chemistry—A Chemical Approach to Enzyme Action, 2nd ed., Springer-Verlag, New York (1989).Google Scholar
  2. 2.
    G. W. Gokel, (ed.), Advances in Supramolecular Chemistry, Vols. 1, 2, and 3, JAI, Greenwich, Conn. (1990, 1992, and 1993).Google Scholar
  3. 3.
    F. Vögtle, Supramolecular Chemistry, John Wiley & Sons, Chichester (1991).Google Scholar
  4. 4.
    H.-J. Schneider and H. Dürr (eds.), Frontiers in Supramolecular Organic Chemistry and Photochemistry, VCH, Weinheim (1991).Google Scholar
  5. 5.
    H.-G. Löhr and F. Vögtle, Chromo-and fluoroionophores. A new class of dye reagents, Acc. Chem. Res. 18, 65–72 (1985).Google Scholar
  6. 6.
    J.-M. Lehn, Supramolecular chemistry—scope and perspectives, molecules, supermolecules, and molecular devices, Angew. Chem. Int. Ed. Engl. 27, 89–112 (1988).Google Scholar
  7. 7.
    A. W. Czarnik, in: Frontiers in Supramolecular Organic Chemistry and Photochemistry (H.-J. Schneider and H. Dürr, eds.), pp. 109–122, VCH, Weinheim (1991).Google Scholar
  8. 8.
    H. Bouas-Laurent, J.-P. Desvergne, F. Fages, and P. Marsau, in: Frontiers in Supramolecular Organic Chemistry and Photochemistry (H.-J. Schneider and H. Dürr, eds.), pp. 265–286, VCH, Weinheim (1991).Google Scholar
  9. 9.
    V Balzani and F. Scandola, Supramolecular Photochemistry, Ellis Horwood, Chichester (1991).Google Scholar
  10. 10.
    T. Kaneda, in: Crown Ethers and Analogous Compounds, Studies in Organic Chemistry, Vol. 45 (M. Hiraoka, ed.), pp. 311–334, Elsevier, Amsterdam (1992).Google Scholar
  11. 11.
    A. W. Czarnik, in: Advances in Supramolecular Chemistry, Vol. 3 (G. W. Gokel, ed.), pp. 131–157, JAI, Greenwich, Conn. (1993).Google Scholar
  12. 12.
    S. Shinkai, Calixarenes—the third generation of supramolecules, Tetrahedron 49, 8933–8968 (1993).CrossRefGoogle Scholar
  13. 13.
    A. W. Czarnik (ed.), Fluorescent Chemosensors for Ion and Molecule Recognition, American Chemical Society, Washington, D.C. (1993).Google Scholar
  14. 14.
    R. J. P. Williams, On first looking into nature’s chemistry, Chem. Soc. Rev. 1980 281–364.Google Scholar
  15. 15.
    A. Fersht, Enzyme, Structure and Mechanism, 2nd ed., W. H. Freeman, New York (1985).Google Scholar
  16. 16.
    B. Albert, D. Bray, J. Lewis, M. Raff, K. Robert, and J. D. Watson, Molecular Biology of the Cell, 2nd ed., Chapters 12 and 19, Garland Publishing, New York (1989).Google Scholar
  17. 17.
    M. F. Perutz, Mechanisms of Cooperativity and Allosteric Regulation in Proteins, Cambridge University Press, Cambridge (1989).Google Scholar
  18. 18.
    G. H. Brown (ed.), Photochromism, Wiley-Interscience, New York (1971).Google Scholar
  19. 19.
    G. Montagnoli and B. F. Erlanger (eds.), Molecular Models of Photoresponsiveness, Plenum Press, New york (1983).Google Scholar
  20. 20.
    H. Dürr and H. Bouas-Laurent (eds.), Photochromism: Molecules and Systems, Elsevier, Amsterdam (1990).Google Scholar
  21. 21.
    D. Hug, The activation of enzymes with light, Photochem. Photobiol Rev. 3, 1–33 (1978).Google Scholar
  22. 22.
    F. Vögtle, Supramolecular Chemistry, pp. 207–229, John Wiley & Sons, Chichester (1991).Google Scholar
  23. 23.
    I. Willner and B. Willner, in: Bioorganic Photochemistry, Vol. 2: Biological Applications of Photochemical Switches (H. Morrison, ed.), pp. 1–110, John Wiley & Sons, New York (1993).Google Scholar
  24. 24.
    G. Smets, Photochromic phenomena in solid phase, Adv. Polym. Sci. 50, 17–44 (1983).Google Scholar
  25. 25.
    O. Pieroni, A. Fissi, and F. Ciardelli, Light-induced effects on photoresponsive polymers, Photochem. Photobiol. 44, 785–791 (1986).Google Scholar
  26. 26.
    V A. Krongauz, in: Photochromism: Molecules and Systems (H. Dürr and H. Bouas-Laurent, eds.), pp. 793–820, Elsevier, Amsterdam (1990).Google Scholar
  27. 27.
    O. Pieroni, J. L. Houben, A. Fissi, P. Costantino, and F. Ciardelli, Reversible conformational changes induced by light in poly(L-glutamic acid) with photochromic side chains, J. Am. Chem. Soc. 102, 5913–5915(1980).CrossRefGoogle Scholar
  28. 28.
    A. Ueno, K. Takahashi, J. Anzai, and T. Osa, Photocontrol of polypeptide helix sense by cis-trans isomerism of side-chain azobenzene moieties, J. Am. Chem. Soc. 103, 6410–6415 (1981).CrossRefGoogle Scholar
  29. 29.
    F. Ciardelli, O. Pieroni, A. Fissi, and J. L. Houben. Azobenzene-containing polypeptides: Photoregulation of conformation in solution, Biopolymers 23, 1423–1437 (1984).CrossRefGoogle Scholar
  30. 30.
    A. Fissi, O. Pieroni, and F. Ciardelli, Photoresponsive polymers: Azobenzene-containing poly(L-lysine), Biopolymers 26, 1993–2007 (1987).CrossRefGoogle Scholar
  31. 31.
    M. Sato, T. Kinoshita A. Takizawa, and Y. Tsujita, Photoinduced conformational transition of polypeptides containing azobenzenesulfonate in the side chains, Macromolecules 21, 1612–1616 (1988).Google Scholar
  32. 32.
    P. H. Vandeywer and G. Smets, Photochromic polypeptides, J. Polym. Sci., Part A-1 8, 2361–2374 (1970).Google Scholar
  33. 33.
    G. Smets, Photochromic behavior of polymeric systems and related phenomena, Pure Appl. Chem. 30, 1–24 (1972).Google Scholar
  34. 34.
    F. Ciardelli, D. Fabbri, O. Pieroni, and A. Fissi, Photomodulation of polypeptide conformation by sunlight in spiropyran-containing poly(L-glutamic acid), J. Am. Chem. Soc. 111, 3470–3472 (1989).CrossRefGoogle Scholar
  35. 35.
    O. Pieroni, A. Fissi, A. Viegi, D. Fabbri, and F. Ciardelli, Modulation of the chain conformation of spiropyran-containing poly(L-lysine) by the combined action of visible light and solvent, J. Am. Chem. Soc. 114, 2734–2736 (1992).CrossRefGoogle Scholar
  36. 36.
    B. F. Erlanger, Photoregulation of biologically active macromolecules, Annu. Rev. Biochem. 45, 267–283 (1979).Google Scholar
  37. 37.
    G. Montagnoli, O. Pieroni, and S. Suzuki, Control of peptide chain conformation by photoisomerising chromophores: Enzymes and model compounds, Polym. Photochem. 7, 279–294 (1983).Google Scholar
  38. 38.
    I. Willner, S. Rubin, and A. Riklin, Photoregulation of papain activity through anchoring photochromic azo groups to the enzyme backbone, J. Am. Chem. Soc. 113, 3321–3325 (1991).Google Scholar
  39. 39.
    I. Willner, S. Rubin, and T. Zor, Photoregulation of α-chymotrypsin by its immobilization in a photochromic azobenzene copolymer, J. Am. Chem. Soc. 113, 4013–4014 (1991).Google Scholar
  40. 40.
    I. Willner, S. Rubin, J. Wonner, F. Effenberger, and P. Bäuerle, Photoswitchable binding of substrates to proteins: Photoregulated binding of α-D-mannopyranose to concanavalin A modified by a thiophenefiilgide dye, J. Am. Chem. Soc. 114, 3150–3151 (1992).Google Scholar
  41. 41.
    I. Willner, M. Lion-Dagan, S. Rubin, J. Wonner, F. Effenberger, and P. Bäuerle, Photoregulation of α-chymotrypsin activity in organic media: Effects of bioimprinting, Photochem. Photobiol. 59, 491–496 (1994).Google Scholar
  42. 42.
    I. Willner, S. Rubin and Y. Cohen, Photoregulated binding of spiropyran-modified concanavalin A to monosaccharide-functionalized self-assembled monolayers on gold electrodes, J. Am. Chem. Soc. 115, 4937–4938 (1993).Google Scholar
  43. 43.
    I. Willner, S. Rubin, R. Shatzmiller, and T. Zor, Reversible light-stimulated activation and deactivation of α-chymotrypsin by its immobilization in photoisomerizable copolymers, J. Am. Chem. Soc. 115, 8690–8694 (1993).Google Scholar
  44. 44.
    M. Lion-Dagan, E. Katz, and I. Willner, Amperometric transduction of optical signals recorded by organized monolayers of photoisomerizable biomaterials on Au electrodes, J. Am. Chem. Soc. 116, 7913–7914(1994).CrossRefGoogle Scholar
  45. 45.
    M. Lion-Dagan, E. Katz, and I. Willner, A bifunctional monolayer electrode consisting of 4-pyridyl sulfide and photoisomerizable spiropyran: Photoswitchable electrical communication between the electrode and cytochrome c, J. Chem. Soc., Chem. Commun. 1994, 2741–2742.Google Scholar
  46. 46.
    I. Willner, M. Lion-Dagan, S. Marx-Tibbon, and E. Katz, Bioelectrocatalyzed amperometric transduction of recorded optical signals using monolayer-modified Au-electrodes, J. Am. Chem. Soc. 117, 6581–6592 (1995).Google Scholar
  47. 47.
    M. Lion-Dagan, S. Marx-Tibbon, E. Katz, and I. Willner, Photoswitchable electrical communication of glucose oxidase and glutathione reductase with electrode surfaces through photoisomerizable redox mediators, Angew. Chem. Int. Ed. Engl. 34, 1604–1606 (1995).CrossRefGoogle Scholar
  48. 48.
    I. Willner, R. Blonder, and A. Dagan, Reversible optical recording by a dinitrophenol antibody-catalyzed ring opening of 6,8-dinitrospiropyran, J. Am. Chem. Soc. 116, 3121–3122 (1994).Google Scholar
  49. 49.
    I. Willner, R. Blonder, and A. Dagan, Application of photoisomerizable antigenic monolayer electrodes as reversible amperometric immunosensors, J. Am. Chem. Soc. 116, 9365–9366 (1994).Google Scholar
  50. 50.
    M. Inouye, M. Ueno. T. Kitao, and K. Tsuchiya, Alkali metal recognition induced isomerization of spiropyrans, J. Am. Chem. Soc. 112, 8977–8979 (1990).CrossRefGoogle Scholar
  51. 51.
    M. Inouye, M. Ueno, K. Tuschiya, N. Nakayama, T. Konishi, and T. Kitao, Alkali-metal cation recognition induced isomerization of spirobenzopyrans and spironaphthoxazines possessing a crown ring as a recognition site: Multifunctional artificial receptors, J. Org. Chem. 57, 5377–5383 (1992).Google Scholar
  52. 52.
    M. Inouye, M. Ueno, and T. Kitao, Transmission of recognition information to other sites in a molecule: Proximity of two remote sites in the spirobenzopyran by recognition of alkali-metal cations, J. Org. Chem. 57, 1639–1641 (1992).Google Scholar
  53. 53.
    M. Inouye, Y. Noguchi, and K. Isagawa, Sensitive and selective coloration ofcryptand-type crown spirobenzopyrans for alkaline earth metal cations, Angew. Chem. Int. Ed. Engl. 33, 1163–1166 (1994).CrossRefGoogle Scholar
  54. 54.
    K. Kimura, T. Yamashita, and M. Yokoyama, Cation-specific isomerization of crowned spirobenzopyrans, J. Chem. Soc., Chem. Commun. 1991, 147–148.Google Scholar
  55. 55.
    K. Kimura, T. Yamashita, and M. Yokoyama, Synthesis, cation complexation, isomerization and photochemical cation-binding control of spirobenzopyrans carrying a monoazacrown moiety at the 8-position, J. Chem. Soc., Perkin Trans. 2 1992, 613–619.Google Scholar
  56. 56.
    K. Kimura, T. Yamashita, M. Kaneshige, and M. Yokoyama, Crowned spironaphthoxazine: Lithium ion-selective colouration and ion-regulated thermal stability of its coloured form, J. Chem. Soc., Chem. Commun. 1992, 969–970.Google Scholar
  57. 57.
    M. Inouye, K. Kim, and T. Kitao, Selective coloration of spiro pyridopyrans for guanosine derivatives, J. Am. Chem. Soc. 114, 778–780 (1992).CrossRefGoogle Scholar
  58. 58.
    M. Inouye, Artificial signaling receptors for biologically important chemical species, Coord. Chem. Rev. 148, 265–283(1996).CrossRefGoogle Scholar
  59. 59.
    H. Sasaki, A. Ueno, J. Azai, and T. Osa, Benzo-l 5-crown-5 linked spirobenzopyran. I. Photocontrol of cation-binding ability and photoinduced membrane potential changes, Bull. Chem. Soc. Jpn. 59, 1953–1956(1986).Google Scholar
  60. 60.
    K. Kimura, T. Yamashita, and M. Yokoyama, Photochemical control of ionic conduction by crowned spirobenzopyran, Chem. Lett. 1991, 965–968.Google Scholar
  61. 61.
    K. Kimura, T. Yamashita, and M. Yokoyama, Photochemical switching of ionic conductivity in composite films containing a crowned spirobenzopyran, J. Phys. Chem. 96, 5614–5617 (1992).Google Scholar
  62. 62.
    K. Kimura, M. Kaneshige, T. Yamashita, and M. Yokoyama, Cation complexation, photochromism, and reversible ion-conducting control of crowned spironaphthoxazine, J. Org. Chem. 59, 1251–1256 (1994).Google Scholar
  63. 63.
    J. Sunamoto, K. Iwamoto, Y. Mohri, and T. Kaominato, Liposomal membranes. 13. Transport of an amino acid across liposomal bilayers as mediated by a photoresponsive carrier, J. Am. Chem. Soc. 104, 5502–5504(1982).Google Scholar
  64. 64.
    J. Sunamoto, K. Iwamoto, M. Akutagawa, M. Nagase, and H. Kondo, Rate control by restricting mobility of substrate in specific reaction field. Negative photochromism of water-soluble spiropyran in AOT reversed micelles, J. Am. Chem. Soc. 104, 4904–4907 (1982).Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • Masahiko Inouye
    • 1
  1. 1.Department of Applied Materials ScienceOsaka Prefecture UniversityOsakaJapan

Personalised recommendations