Skip to main content

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Baba, M., Tanaka, H., De Clercq, E., Pauwels, R., Balzarini, J., Schols, D., Nakashima, H., Perno, C. F., Walker, R. T., and Miyasaka, T. 1989. Highly specific inhibition of human immunodeficiency virus type 1 by a novel 6-substituted acyclouridine derivative. Biochem. Biophys. Res. Com-mun. 165: 1375–1381.

    Google Scholar 

  • Balkenkohl, F., Von Dem Bussche-Hunnefield, C., Lansky, A. and Zechel, C. 1996. Combinatorial synthesis of small molecules. Angew. Chem. Int. 35:2288–2337.

    Google Scholar 

  • Bujacz, G., Jaskólski, M., Alexandratos, J., Wlodawer, A., Merkel, G., Katz, R. A. and Skalka, A. M. 1996. The catalytic domain of avian sarcoma virus integrase: conformation of the active-site residues in the presence of divalent cations. Structure 4: 89–96.

    Google Scholar 

  • Cai, M., Zheng, R., Caffrey, M., Craigie, R., Clore, G. M. and Gronenborn, A. M. 1997. Solution structure of the N-terminal zinc binding domain of HIV-1 integrase. Nat. Struct. Biol. 4: 567–577.

    Google Scholar 

  • Carrillo, A., Stewart, K. D., Sham, H. L., Norbeck, D. W., Kohlbrenner, W. E., Leonard, J. M. Kempf, D. J. and Molla, A. 1998. In vitro selection and characterization of human immunodeficiency virus type 1 variants with increased resistance to ABT-378, a novel protease inhibitor. J. Virol. 72:7532–7541.

    Google Scholar 

  • Cherepanov, P., Este, J. A., Rando, R. F., Ojwang, J. O., Reekmans, G., Steinfeld, R., David, G., De Clercq, E., and Debyser, E. 1997. Mode of interaction of G-quartets with the integrase of human immunodeficiency virus type 1. Mol. Pharmacol. 52: 771–780.

    Google Scholar 

  • Coleman, R. L. and Holtzer, C. 1998. AIDS KNOWLEDGE DATABASE. 4 HIV-Related Drug Information. http://hivinsite.ucsf.edu/akb/1997/.

    Google Scholar 

  • Condra, J. H., Schleif, W. A., Blahy, O. M., Gabryelski, L. J., Graham, D. J., Quintero, J. C., Rhodes, A., Robbins, H. L., Roth, E., Shivaprakash, M., Titus, D., Yang, T., Teppler, H., Squires, K. E., Deutsch, P. J. and Emini, E. A. 1995. In vivo emergence of HIV-1 variants resistant to multiple protease inhibitors. Nature 374: 569–571.

    Google Scholar 

  • De Clercq, E. 1998. The role of non-nucleoside reverse transcriptase inhibitors (NNRTIs) in the therapy of HIV-1 infection. Antiviral Res. 38: 153–179.

    Google Scholar 

  • Dyda, F., Hickman, A. B., Jenkins, T. M., Engelman, A., Craigie, R. and Davies, D. R. 1994. Crystal structure of the catalytic domain of HIV-1 integrase: Similarity to other polynucleotidyl transferases. Science 266: 1981–1986.

    Google Scholar 

  • Eijkelenboom, A. P., Lutzke, R. A., Boelens, R., Plasterk, R. H, Kaptein, R., and Hård, K. 1995. The DNA-binding domain of HIV-1 integrase has an SH3-like fold. Nat. Struct. Biol. 2: 807–810.

    Google Scholar 

  • Eijkelenboom, A. P., van den Ent, F. M., Vos, A., Doreleijers, J. F., Ard, K., Tullius, T. D., Plasterk, R. H., Kaptein, R. and Boelens, R. 1997. The solution structure of the amino-terminal HHCC domain of HIV-2 integrase: a three-helix bundle stabilized by zinc. Curr. Biol. 7: 739–746.

    Google Scholar 

  • Este, J. A., Cabrera, C., Schols, D., Cherepanov, P., Gutierrez, A., Witvrouw, M., Pannecouque, C., Debyser, Z., Rando, R. F., Clotet, B., Desmyter, J. and De Clercq, E. 1998. Human immunodeficiency virus glycoprotein gp120 as the primary target for the antiviral action of AR177 (Zintevir) Mol. Pharmacol. 53: 340–345.

    Google Scholar 

  • Goldgur, Y., Dyda, F., Hickman, A. B., Jenkins, T. M., Craigie, R. and Davies, D. R. 1998. Three new structures of the core domain of HIV-1 integrase: an active site that binds magnesium. Proc. Natl. Acad. Sci. USA 95: 9150–9154.

    Google Scholar 

  • Greenlee, W. J. 1990. Renin inhibitors. Med. Res. Rev. 10: 173–236.

    Google Scholar 

  • Huang, H., Chopra, R., Verdine, G. L., and Harrison, S. C. 1998. Structure of a covalently trapped catalytic complex of HIV-1 reverse transcriptase: implications for drug resistance. Science 282: 1669–1675.

    Google Scholar 

  • Hubbard, R. E. 1997. Can drugs be designed? Curr. Opin. Biotechnol. 8: 696–700.

    Google Scholar 

  • Jacobo-Molina, A., Ding, J., Nanni, R. G., Clark, Jr., A. D., Lu, X., Tantillo, C., Williams, R. L., Kamer, G., Ferris, A. L. and Clark, P. 1993. Crystal structure of human immunodeficiency virus type 1 reverse transcriptase complexed with double-stranded DNA at 3.0 A resolution shows bent DNA. Proc. Natl. Acad. Sci. USA 90: 6320–6324.

    Google Scholar 

  • Jager, J., Smerdon, S. J., Wang, J., Boisvert, D.C. and Steitz, T. A. 1994. Comparison of three different crystal forms shows HIV-1 reverse transcriptase displays an internal swivel motion. Structure 2: 869–876.

    Google Scholar 

  • Kohl, N. E., Emini, E. A., Schleif, W. A., Davis, L. J., Heimbach, J. C., Dixon, R. A., Scolnick, E. M. and Sigal, I. S. 1988. Active human immunodeficiency virus protease is required for viral infectivity. Proc. Natl. Acad. Sci. USA 85: 4686–4690.

    Google Scholar 

  • Kohlstaedt, L. A., Wang, J., Friedman, J. M., Rice, P. A. and Steitz, T. A. 1992. Crystal structure at 3.5 Å resolution of HIV-1 reverse transcriptase complexed with an inhibitor. Science 256: 1783–1790.

    Google Scholar 

  • Kroeger, S. M., Michejda, C. J., Hughes, S. H., Boyer, P. L., Janssen, P. A., Andries, K., Buckheit, R. W. J. and Smith, R. H. J. 1997. Molecular modeling of HIV-1 reverse transcriptase drug-resistant mutant strains: implications for the mechanism of polymerase action. Protein Eng. 10: 1379–1383.

    Google Scholar 

  • Leach, A. R. 1996. The use of molecular modelling to discover and design new molecules, In Molecular Modelling Principles and Applications (Leach, A. R., ed.) Longman Publishers Ltd., Singapore.

    Google Scholar 

  • Lodi, P. J., Ernst, J., Kuszewski, J., Hickman, A. B., Engelman, A., Craigie, R., Clore, G. M. and Gronenborn, A. M. 1995. Solution structure of the DNA binding domain of HIV-1 integrase. Biochemistry 34: 9826–9833.

    Google Scholar 

  • Maignan, S., Guilloteau, J. P., Zhou-Liu, Q., Clement-Mella, C. and Mikol, V. 1998. Crystal structures of the catalytic domain of HIV-1 integrase free and complexed with its metal cofactor: high level of similarity of the active site with other viral integrases. J. Mol. Biol. 282: 359–368.

    Google Scholar 

  • Merluzzi, V. J., Hargrave, K. D. Labadia, M., Grozinger, K., Skoog, M., Wu, J. C., Shih, C. K., Eckner, K., Hattox, S. and Adams, J. 1990. Inhibition of HIV-1 replication by a nonnucleoside reverse transcriptase inhibitor. Science 250: 1411–1413.

    Google Scholar 

  • Miller, M., Jaskolski, M., Rao, J. K. M., Leis, J. and Wlodawer, A. 1989. Crystal structure of a retroviral protease proves relationship to aspartic protease family. Nature 337: 576–579.

    Google Scholar 

  • Navia, M. A., Fitzgerald, P. M., McKeever, B. M., Leu, C. T., Heimbach, J. C., Herber, W. K., Sigal, I. S., Darke, P. L. and Springer, J. P. 1989. Three-dimensional structure of aspartyl protease from human immunodeficiency virus H1V-1. Nature 337: 615–620.

    Google Scholar 

  • Pauwels, R., Andries, K., Desmyter, J., Schols, D., Kukla, M. J., Breslin, H. J., Raeymaeckers, A., Van Gelder, J., Woestenborghs, R. and Heykants, J. 1990. Potent and selective inhibition of HIV-1 replication in vitro by a novel series of T1BO derivatives. Nature 343: 470–474.

    Google Scholar 

  • Pearl, L. H. 1987. The catalytic mechanism of aspartic proteinases. FEBS Lett. 214: 8–12.

    Google Scholar 

  • Pommier, Y., Pilon, A. A., Bajaj, K., Mazumder, A. and Neamati, N. 1997. HIV-1 integrase as a target for antiviral drugs. Antivir. Chem. Chemother. 8: 463–483.

    Google Scholar 

  • Ratner, L., Haseltine, W., Patarca, R., Livak, K. J., Starcich, B., Josephs, S. F., Doran, E. R., Rafalski, J. A., Whitehorn, E. A. and Baumeister, K. 1985. Complete nucleotide sequence of the AIDS virus, HTLV-III. Nature 313: 277–284.

    Google Scholar 

  • Ren, J., Esnouf, R., Hopkins, A., Ross, C., Jones, Y., Stammers, D. and Stuart, D. 1995. The structure of HIV-1 reverse transcriptase complexed with 9-chloro-TIBO: lessons for inhibitor design. Structure 15: 915–926.

    Google Scholar 

  • Sansom, C. 1998. Extending the boundaries of molecular modeling. Nat. Biotechnol. 16: 917–918.

    Google Scholar 

  • Schinazi, R. F., Larder, B. A. and Mellors, J. W. 1997. Mutations in retroviral genes associated with drug resistance. Intl. Antiviral News 5: 129–142.

    Google Scholar 

  • Spruance, S. L., Pavia, A. T., Mellors, J. W., Murphy, R., Gathe, J. J., Stool, E., Jemsek, J. G., Dellamonica, P., Cross, A. and Dunkle, L. 1997. Clinical efficacy of monotherapy with stavudine compared with zidovudine in HIV-infected, zidovudine-experienced patients. A randomized, double-blind, controlled trial. Bristol-Myers Squibb Stavudine/019 Study Group. Ann. Intern. Med. 126: 355–363.

    Google Scholar 

  • Swain, A. L., Miller, M. M., Green, J., Rich, D. H., Schneider, J., Kent, S. B. and Wlodawer, A. 1990. X-ray crystallographic structure of a complex between a synthetic protease of human immunodeficiency virus 1 and a substrate-based hydroxyethylamine inhibitor. Proc. Natl. Acad. Sci. USA 87: 8805–8809.

    Google Scholar 

  • Vacca, J. P. and Condra, J. H. 1997. Clinically effective HIV-1 protease inhibitors. Drug Discov. Today 2: 261–272.

    Google Scholar 

  • Volberding, P. A., Lagakos, S. W., Koch, M. A., Pettinelli, C., Myers, M. W., Booth, D. K., Balfour, H. H. J., Reichman, R. C., Bartlett, J. A. and Hirsch, M. S. 1990. Zidovudine in asymptomatic human immunodeficiency virus infection. A controlled trial in persons with fewer than 500 CD4-positive cells per cubic millimeter. The AIDS Clinical Trials Group of the National Institute of Allergy and Infectious Diseases. N. Engl. J. Med. 322: 941–949.

    Google Scholar 

  • Vondrasek, J. and Wlodawer, A. 1997. Database of HIV proteinase structures. Trends Biochem. Sci. 22: 183–183.

    Google Scholar 

  • Wlodawer, A. and Erickson, J. W. 1993. Structure-based inhibitors of HIV-1 protease. Annu. Rev. Biochem. 62: 543–585.

    Google Scholar 

  • Wlodawer, A., Miller, M., Jaskolski, M., Sathyanarayana, B. K., Baldwin, E., Weber, I. T., Selk, L. M., Clawson, L., Schneider, J. and Kent, S. B. H. 1989. Conserved folding in retroviral proteases: Crystal structure of a synthetic HIV-1 protease. Science 245: 616–621.

    Google Scholar 

  • Wlodawer, A. and Vondrasek, J. 1998. Inhibitors of HIV-1 protease: A major success of structureassisted drug design. Annu. Rev. Biophys. Biomol. Struct. 27: 249–284.

    Google Scholar 

  • Wlodawer, A. and Vondrasek, J. 1999. Database of crystal structures of HIV protease. http://www.ncifcrf.gov/HIVdb

    Google Scholar 

  • Yamazaki, T., Hinck, A. P., Wang, Y.-X., Nicholson, L. K., Torchia, D. A., Wingfield, P., Stahl, S. J., Kaufman, J. D., Chang, C.-H., Domaille, P. J. and Lam, P. Y. 1996. Three-dimensional solution structure of the HIV-1 protease complexed with DMP323, a novel cyclic ureatype inhibitor, determined by nuclear magnetic resonance spectroscopy. Protein Science 5: 495–506.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

Sansom, C., Wlodawer, A. (2002). Drugs Targeted at HIV — Successes and Resistance. In: Rodrigo, A.G., Learn, G.H. (eds) Computational and Evolutionary Analysis of HIV Molecular Sequences. Springer, Boston, MA. https://doi.org/10.1007/0-306-46900-6_12

Download citation

  • DOI: https://doi.org/10.1007/0-306-46900-6_12

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-7923-7994-2

  • Online ISBN: 978-0-306-46900-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics