Skip to main content

Cellular Correlates of Eyeblink Classical Conditioning

  • Chapter
Eyeblink Classical Conditioning: Volume 2
  • 143 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alkon, D.L. (1983) Learning in marine snails. Scientifc American, 249, 70–84.

    Google Scholar 

  • Alkon, D.L. (1989) Memory storage and neural systems. Scientific American, 261, 42–50.

    Article  PubMed  Google Scholar 

  • Anderson, C. W. & Keifer, J. (1997). The cerebellum red nucleus are not required for in vitro classical conditioning of the turtle abducens nerve response. Journal of Neuroscience, 17, 9736–9745.

    PubMed  Google Scholar 

  • Bank, B., De Weer, A,, Kuzirian, A. M., Rasmussen, H., & Alkon, D. L. (1988). Classical conditioning induces long-term translocation of protein kinase C in rabbit hippocampal CA1 cells. Proceedings of the National Academy of Sciences (USA), 85, 1988–1992.

    Google Scholar 

  • Berger, T. W., Alger, B. E., & Thompson, R. F. (1978). Neuronal substrates of classical conditioning in the hippocampus. Science, 192, 483–485

    Google Scholar 

  • Berger, T. W., Rinaldi, P. C., Weisz, D. J., & Thompson, R.F. (1983). Single-unit analysis of different hippocampal cell types during classical conditioning of rabbit nictitating membrane response. Journal of Neurophysiology, 50, 1197–1219.

    PubMed  Google Scholar 

  • Berthier, N. E., & Moore, J. W. (1986). Cerebellar Purkinje cell activity related to the classically conditioned nictitating membrane response. Experimental Brain Research, 63, 341–350.

    Article  Google Scholar 

  • Bloedel, J. R., & Bracha, V. (1995). On the cerebellum, cutaneomuscular reflexes, movement control and the elusive engrams of memory. Behavioural Brain Research, 68, 1–44.

    Article  PubMed  Google Scholar 

  • Cegavske, C. F., Thompson, R. F., Patterson, M. M., & Gormezano, I. (1976). Mechanisms of efferent neuronal control of the reflex nictitating membrane response in the rabbit. Journal of Comparative and Physiological Psychology, 90, 411–423.

    PubMed  Google Scholar 

  • Chan-Palay, V. (1977). Cerebellar dentate nucleus. Berlin: Springer-Verlag.

    Google Scholar 

  • Chen, C., & Thompson, R. F. (1995). Temporal specificity of long-term depression in parallel fiber-Purkinje synapses in rat cerebellar slices. Learning & Memory, 2, 185–198.

    Google Scholar 

  • Collin, C., Devan, W. A., Dahl, D, Lee, C. J., Axelrod, J., & Alkon, D. L. (1995). Long-term synaptic transformation of hippocampal CA1 gamma-aminobutyric acid synapses and the effect of anandamide. Proceedings of the National Acadamey of Science (USA), 92, 10167–10171.

    Google Scholar 

  • Coulter, D. A., Lo Turco, J., Kubato, M., Disterhoft, J. F., & Alkon, D. L. (1989). Classical conditioning alters the amplitude and time course of the calcium-dependent after hyperpolarization in rabbit hippocampal pyramidal cells. Journal of Neurophysiology, 61,971–981

    PubMed  Google Scholar 

  • Crepel, F., & Jaillard, D. (1991). Pairing of pre-and postsynaptic activities in cerebellar Purkinje cells induces long-term changes in synaptic efficacy in vitro. Journal of Physiology (London), 432, 123–141.

    Google Scholar 

  • Ekerot, C.-F., & Kano, M. (1989). Stimulation parameters influencing climbing fibre induced long-term depression of parallel fibre synapses. Neuroscience Research, 6, 264–268.

    Article  PubMed  Google Scholar 

  • Ito, M. (1984). The cerebellum and neural control. New York: Raven.

    Google Scholar 

  • Crepel, F., & Krupa, M. (1988). Activation of protein kinase C induces long-term depression of glutamate sensitivity of cerebellar Purkinje cells. An in vitro study. Brain Research, 458, 397–401.

    Article  PubMed  Google Scholar 

  • De Zeeuw, C. I., & Berrebi, A. S. (1995). Postsynaptic targets of Purkinje cell terminals in the cerebellar and vestibular nuclei of the rat. European Journal of Neuroscience, 7, 2322–2333.

    PubMed  Google Scholar 

  • Eccles, J. C., Ito, M., & Szentagothai, J. (1967). The cerebellxumas a neuronal machine. Berlin: Springer-Verlag

    Google Scholar 

  • Fiez, J. A. (1996). Cerebellar contribution to cognition. Neuron, 16, 3–15.

    Article  Google Scholar 

  • Freeman, J. H., Jr., Scharenberg, A. M., Olds J. L., & Schreurs, B. G. (1998). Classical conditioning increases membrane-bound protein kinase C in rabbit cerebellum. Neuro Report, 9, 2669–2673.

    Google Scholar 

  • Freeman, J. H., Jr., Shi, T., & Schreurs, B. G. (1998). Pairing-specific long-term depression prevented by blockade of PKC or intracellular Ca2+. Neuro Report, 9, 2237–2241.

    Google Scholar 

  • Golski, S., Olds, J. L., Mishkin, M., Olton, D., & Alkon, D. L. (1995). Protein kinase C in the hippocampus is altered by spatial but not cued discriminations: A component task analysis. Brain Research, 676, 53–62.

    Article  PubMed  Google Scholar 

  • Gormezano, I. (1966). Classical conditioning. In J. B. Sidowski (Ed.), Experimental Methods and Instrumentation in Psychology. (pp.385–420). New York: McGraw-Hill.

    Google Scholar 

  • Gormezano, I., & Kehoe, E.J. (1981). Classical conditioning and the law of contiguity. In P. Harzem and M. D. Zeiler (Ed.), Advances in Analysis of Behavior. Vol 2. Predictability, Correlation, and Contiguity. (pp.1–45). Sussex, England: Wiley and Sons.

    Google Scholar 

  • Gormezano, I., Kehoe, E. J., & Marshall, B. S. (1983). Twenty years of classical conditioning research with the rabbit. Progress in Psychobiology and Physiology Psychology, 10, 197–275.

    Google Scholar 

  • Gormezano, I., Schneiderman, N., Deaux, E. G., & Fuentes, I. (1962). Nictitating membrane: Classical conditioning and extinction in the albino rabbit. Science, 138, 33–34.

    PubMed  Google Scholar 

  • Gould, T. J., Sears, L. L., & Steinmetz, J. E. (1993). Possible CS and US pathways for rabbit classical eyelid conditioning: electrophysiological evidence for projections from the pontine nuclei and inferior olive to cerebellar cortex and nuclei. Behavioral and Neural Biology, 60, 172–185.

    Article  PubMed  Google Scholar 

  • Gould, T. J., & Steinmetz, J. E. (1996). Changes in rabbit cerebellar cortical and interpositus nucleus activity during acquisition, extinction, and backward classical eyelid conditioning. Neurobiology of Learning Memory, 65, 17–34.

    Google Scholar 

  • Gruart, A,, & Yeo, C. H. (1995). Cerebellar cortex and eyeblink conditioning — bilateral regulation of conditioned responses. Experimental Brain Research, 104, 431–438.

    Article  Google Scholar 

  • Harvey, J. A., Land, T., & McMaster, S. E. (1984). Anatomical study of the rabbit’s corneal-VIth nerve reflex: Connections between cornea, trigeminal sensory complex, and the abducens and accessory abducens nuclei. Brain Research, 301, 307–321.

    Article  PubMed  Google Scholar 

  • Hartell, N. A. (1994). cGMP acts within cerebellar Purkinje cells to produce long term depression via mechanisms involving PKC and PKG. Neuro Report, 5, 833–836.

    Google Scholar 

  • Hartell, N. A. (1996). Strong activation of parallel fibers produces localized calcium transients and a form of LTD that spreads to distant synapses. Neuron, 16, 601–610.

    Article  PubMed  Google Scholar 

  • Hemart, N., Daniel, H., Jaillard, D., & Crepel, F. (1994). Properties of glutamate receptors are modified during long-term depression in rat cerebellar Purkinje cells. Neuroscience Report, 19, 213–221.

    Google Scholar 

  • Hesslow, G. (1994a). Correspondence between climbing fibre input and motor output in eyeblink-related areas in cat cerebellar cortex. Journal of Physiology (London), 476, 229–244.

    Google Scholar 

  • Hesslow, G. (1994b). Inhibition of classically conditioned eyeblink responses by stimulation of the cerbellar cortex in the decerebrate cat. Journal of Physiology (London), 476, 245–256.

    Google Scholar 

  • Hesslow, G., & Ivarsson, M. (1994). Suppression of cerebellar Purkinje cells during conditioned responses in ferrets. Neuroreport, 4, 1127–1130.

    Google Scholar 

  • Huang, C., & Liu, G. (1990). Organization of the auditory area in the posterior cerebellar vermis of the cat. Experinmental Brain Research, 81, 377–383.

    Google Scholar 

  • Ito, M.(1989). Long-term depression. Annual Review of Neuroscience, 12, 85–102.

    Article  PubMed  Google Scholar 

  • Kano, M., & Kato, M. (1987). Quisqualate receptors are specifically involved in cerebellar synaptic plasticity. Nature, 325, 276–279.

    Article  PubMed  Google Scholar 

  • Katz, B., & Miledi, R. (1968). The role of calcium in neuromuscular facilitation. Journal of Physiology (London), 195, 481–492.

    Google Scholar 

  • Kleim, J. A., Ballard, D., Vij, K., & Greenough, W. T. 1997. Learning-dependent synaptic plasticity modifications in the cerebellar cortex persists for at least four weeks. Journal of Neuroscience, 17, 717–721.

    Google Scholar 

  • Kleim, J. A,, Swain, R. A., Armstrong, K. A., Napper, R. M. A., Jones, T. A., & Greenough, W. T. (1998). Selective synaptic plasticity within the cerebellar cortex following complex motor skill learning. Neurobiology of Learning and Memory, 69, 274–289.

    PubMed  Google Scholar 

  • Konnerth, A., Dreessen, J., & Augustine, G. J. (1992). Brief dendritic calcium signals initiate long-lasting synaptic depression in cerebellar Purkinje cells. Proceedings of the National Academy of Sciences (USA), 89, 7051–7055.

    Google Scholar 

  • Lavond, D. G., Steinmetz, J. E., Yokaitis, M. H., & Thompson, R. F. (1987). Reacquisition of classical conditioning after removal of cerebellar cortex. Experimental Brain Research, 67, 569–593.

    Article  Google Scholar 

  • Linden, D. J., & Connor, J. A. (1991). Participation of postsynaptic PKC in cerebellar long-term depression in culture. Science, 254, 1656–1659.

    PubMed  Google Scholar 

  • Linden, D. J., & Connor, J. A. (1995). Long-term depression. Annual Review of Neuroscience, 18, 319–357.

    Article  PubMed  Google Scholar 

  • Llinas, R. R., & Sugimori, M. (1980). Electrophysiological properties of in vitro Purkinje cell dendrites in mammalian cerebellar slices. Journal of Physiology (London), 305, 197–213,.

    Google Scholar 

  • Llinas, R. R., & Welsh, J. P. (1993). On the cerebellum and motor learning. Current Opinion in Neurobiology, 3, 958–965.

    Article  PubMed  Google Scholar 

  • Magleby, K. L. (1987). Short-termchanges in synaptic efficacy, In G. M. Edelman, W. E. Gall and W. M. Cowan (Ed.), Synaptic function. (pp. 21–56). New York: Wiley.

    Google Scholar 

  • McCormick, D. A., & Thompson, R. F. (1984). Cerebellum: essential involvement in the classically conditioned eyelid response. Science, 223, 296–299.

    PubMed  Google Scholar 

  • McEchron, M. D., & Disterhoft, J. F. (1997). Sequence of single neuron changes in CA1 hippocampus of rabbits during acquisition of trace eyeblink conditioned responses. Journal of Neurophysiology, 78, 1030–1044.

    PubMed  Google Scholar 

  • Midtgaard, J. (1994). Processing of information from different sources: spatial synaptic integration in the dendrites of vertebrate CNS neurons. Trends In Neuroscience, 17, 166–173.

    Article  Google Scholar 

  • Midtgaard, J. (1995). Spatial synaptic integration in Purkinje cell dendrites. Journal of Physiology (Paris), 89, 23–32.

    Article  Google Scholar 

  • Midtgaard, J., Lasser-Ross, N., & Ross, W. N. (1993). Spatial distribution of Ca2+ influx in turtle Purkinje cell dendrites in vitro: role of a transient outward current. Journal of Neurophysiology, 70, 2455–2469.

    PubMed  Google Scholar 

  • Moyer, J. R., Jr., Thompson, L. T., & Disterhoft, J. F. (1996). Trace eyeblink conditioning increases CA1 excitability in a transient and learning-specific manner. Journal of Neuroscience, 16, 5536–5546.

    PubMed  Google Scholar 

  • Nordholm, A. F., Lavond, D. G., & Thompson, R. F. (1991). Are eyeblink responses to tone in the decerebrate, decerebellate rabbit conditioned responses? Behavioural Brain Research, 44, 27–34.

    PubMed  Google Scholar 

  • Olds, J. L., Anderson, M., McPhie, D., Staten, L., & Alkon, D. L. (1989). Imaging memory-specific changes in the distribution of protein kinase C within the hippocampus. Science, 245, 866–869.

    PubMed  Google Scholar 

  • Patterson, M. M. (1970). Classical conditioning of the rabbit’s (Oryctolagus cuniculus)nictitating membrane response with fluctuating ISI and intracranial CS. Journal of Comparative and Physiological Psychology, 72, 193–202.

    PubMed  Google Scholar 

  • Perrett, S. P., Ruiz, B. P., & Mauk, M. D. (1993). Cerebellar cortex lesions disrupt learning-dependent timing of conditioned eyelid responses. Journal of Neuroscience, 13, 1708–1718.

    PubMed  Google Scholar 

  • Sakurai, M. (1987). Synaptic modification of parallel fibre-Purkinje cell transmission in in vitro guinea-pig cerebellar slices. Journal of Physiology (London), 394, 463–480.

    Google Scholar 

  • Sakurai, M. (1990). Calcium is an intracellular mediator of the climbing fiber in induction of cerebellar long-term depression. Proceedings of the National Academy of Science (USA), 87, 3383–3385.

    Google Scholar 

  • Sanchez-Andres, J. V., & Allcon, D. L. (1991). Voltage-clamp analysis of the effect of classical conditioning on the hippocampus. Journal of Neurophysiology, 65, 796–807.

    PubMed  Google Scholar 

  • Scharenberg, A. M., Olds, J. L., Schreurs, B. G., Craig, A. M., & Alkon, D. L. (1991). Protein kinase C redistribution within CA3 stratum oriens during acquisition of NM conditioning in the rabbit. Proceedings of the National Academy of Sciences (USA), 88, 6637–6641.

    Google Scholar 

  • Schreurs, B. G. (1993). Long-term memory and extinction of the classically conditioned rabbit nictitating membrane response. Learning & Motivation, 24, 93–302.

    Google Scholar 

  • Schreurs, B. G., & Alkon, D. L. (1992). Memory storage mechanisms, conservation across species. In G. Adelman and B.H. Smith (Ed.), Neuroscience year: Supplemnt 2 to the encyclopedia of neuroscience. (pp 99–101). Boston: Birkhauser.

    Google Scholar 

  • Schreurs; B. G., & Alkon, D. L. (1993). Rabbit cerebellar slice analysis of long-term depression and its role in classical conditioning. Brain Research, 631, 235–240.

    Article  PubMed  Google Scholar 

  • Schreurs, B.G., Oh, M. M., & Alkon, D.L. (1993). Pairing-specific long-term depression of Purkinje cell excitatory postsynaptic potentials results from a classical conditioning procedure in the rabbit cerebellar slice. Journal of Neurophysiology, 75, 1051–1060.

    Google Scholar 

  • Schreurs, B. G., Sanchez-Andres, J. V., & Alkon, D. L. (1991). Learning-specific differences in Purkinje-cell dendrites of lobule HVI (lobulus simplex): intracellular recording in a rabbit cerebellar slice. Brain Research, 548, 18–22.

    Article  PubMed  Google Scholar 

  • Schreurs, B. G., Sanchez-Andres, J. V., & Alkon, D. L. (1992). GABA-induced responses in Purkinje-cell dendrites of the rabbit cerebellar slice. Brain Research, 597, 79–87.

    Article  Google Scholar 

  • Schreurs, B. G., Tomsic, D., Gusev, P. A., & Alkon, D. L. (1997). Dendritic excitability microzones and occluded long-term depression after classical conditioning of the rabbit?s nictitating membrane response. Journal of Neurophysiology, 77, 86–92.

    PubMed  Google Scholar 

  • Schreurs, B. G., Gusev, P. A., Tomsic, D., Alkon, D. L, & Shi, T. (1998). Intracellular correlates of acquisition and long-term memory of classical conditioning in Purkinje cell dendrites in slices of rabbit cerebellar lobule HVI. Journal of Neuroscience, 18, 5498–5507.

    PubMed  Google Scholar 

  • Shibuki, K., Gomi, H., Chen, L., Bao, S., Kim, J. J., Wakatsuki, H., Fujisaki, T., Fujimoto, K., Katoh, A,, Ikeda, T., Chen, C., Thompson, R. F., & Itohara, S. (1996). Deficient cerebellar long-term depresssion, impaired eyeblink conditioning, and normal motor coordination in GFAP mutant mice. Neuron, 16, 587–599.

    Article  PubMed  Google Scholar 

  • Smith, M. C., Coleman, S. R., & Gormezano, I. (1968). Classical conditioning of the rabbit?s nictitating membrane response and backward, simultaneous, and forward CS-US intervals. Journal of Comparative and Physiological Psychology, 69, 226–231.

    Google Scholar 

  • Teune, T. M., Van Der Burg, J., De Zeeuw, C. I., Voogd, J., & Ruigrok, T. J. H. (1998). Single Purkinje cell can innervate multiple classes of projection neurons in cerebellar nuclei of the rat: a light microscopic and ultrastructural triple-tracer study in the rat. Journal of Comparative Neurology, 392, 164–178.

    Article  PubMed  Google Scholar 

  • Thach, W. T. (1970). Discharge of cerebellar neurons related to two maintained postures and two prompt movements. II. Purkinje cell output and input. Journal of Neurophysiology, 33, 537–547.

    PubMed  Google Scholar 

  • Thompson, L. T., Moyer, J. R., Jr., & Disterhoft, J. E. (1996). Transient changes in excitability of rabbit Journalof CA3 neurons with a time couirse appropriate to support memory consolidation. Neurophysiology, 76, 1836–1849.

    PubMed  Google Scholar 

  • Thompson, R. F. (1986). The neurobiology of learning and memory. Science, 233, 941–947.

    PubMed  Google Scholar 

  • Thompson, R. F. (1990). Neural mechanisms of classical conditioning in mammals. Philosophical Transactions of the Royal Sociery of London, 329, 161–170.

    Google Scholar 

  • Thompson, R. F., & Krupa, D. J. (1994). Organization of memory traces in the mammalian brain. Annual Review of Neuroscience, 17, 519–549.

    Article  PubMed  Google Scholar 

  • Van der Zee, E. A., Luiten, P. G. M., & Disterhoft, J. F. (1997). Learning-induced alterations in hippocampal PKC-immunoreactivity: a review and hypothesis of its functional significance. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 21, 531–572.

    PubMed  Google Scholar 

  • Van Ham, J. J., & Yeo, C. H. (1996). The central distribution of primary afferents from the external eyelids, conjuctiva, and cornea in the rabbit, studied using WGA-HRP and B-HRP as transganglionic tracers. Experimental Neurology, 142, 217–225.

    PubMed  Google Scholar 

  • Welsh, J. P., & Harvey, J. A. (1989). Cerebellar lesions and the nictitating membrane reflex: performance deficits of the conditioned and unconditioned response. Journal of Neuroscience, 9, 299–311.

    PubMed  Google Scholar 

  • Woody, C. D., Gruen, E., & Birt, D. (1991). Changes in membrane currents during Pavlovian conditioning of single cortical neurons. Brain Research, 539, 76–84.

    Article  PubMed  Google Scholar 

  • Yeo, C. H., Hardiman, M. J., & Glickstein, M. (1985a). Classical conditioning of the nictitating membrane response of the rabbit. I. Lesions of the cerebellar nuclei. Experimental Bruin Research, 60, 87–98.

    Google Scholar 

  • Yeo, C. H., Hardiman, M. J., & Glickstein, M. (1985b). Classical conditioning of the nictitating membrane responseof the rabbit. II. Lesions of the cerebellarcortex. Experimental Brain Research, 60, 99–113.

    Google Scholar 

  • Yeo, C. H., Hardiman, M. J., & Glickstein, M. (1985c). Classical conditioning of the nictitating membrane response of the rabbit. III. Connections of cerebellar lobule HVI. Experimental Brain Research, 60, 114–126.

    Google Scholar 

  • Zucker, R. S. (1989). Short-term synaptic plasticity. Annual Review of Neuroscience, 12, 13–31.

    Article  PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

Schreurs, B.G. (2002). Cellular Correlates of Eyeblink Classical Conditioning. In: Woodruff-Pak, D.S., Steinmetz, J.E. (eds) Eyeblink Classical Conditioning: Volume 2. Springer, Boston, MA. https://doi.org/10.1007/0-306-46897-2_8

Download citation

  • DOI: https://doi.org/10.1007/0-306-46897-2_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-7923-7863-1

  • Online ISBN: 978-0-306-46897-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics