Skip to main content

Eyeblink Classical Conditioning in Aging Animals

  • Chapter
Book cover Eyeblink Classical Conditioning: Volume 2

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bahro, M., Schreurs, B.G., Sunderland, T., & Molchan, S. E. (1995). The effects of scopolamine, lorazepam, and glycopyrrolate on classical conditioning of the human eyeblink response. Psychopharmacology, 122, 395–400.

    Article  PubMed  Google Scholar 

  • Barnes, C.A., Suster, M.S., Shen, J., & McNaughton, B.J. (1997). Multistability of cognitive maps in the hippocampus of old rats. Nature, 388, 272–275.

    Article  PubMed  Google Scholar 

  • Baxter, M.G., Holland, P.C., & Gallagher, M. (1997). Disruption of decrements in conditioned stimulus processing by selective removal of hippocampal cholinergic input. Journal of Neuroscience, 17, 5230–5236.

    PubMed  Google Scholar 

  • Berger, T.W., & Thompson, R.F. (1978a). Identification of pyramidal cells as the critical elements in hippocampal neuronal plasticity during learning. Proceedings of the National Academy of Science (USA), 75, 1572–157.

    Google Scholar 

  • Clark, G.A., McCormick, D.A., Lavond, D.G., & Thompson, R.F. (1984). Effects of lesions of cerebellar nuclei on conditioned behavioral and hippocampal neuronal responses. Brain Research, 291, 125–136.

    Article  PubMed  Google Scholar 

  • Coffin, J.M., & Woodruff-Pak, D.S. (1993). Delay classical conditioning in young and older rabbits: Initial acquisition and retention at 12 and 18 months. Behavioral Neuroscience, 107, 63–71.

    Article  PubMed  Google Scholar 

  • Cooper, J.R., Bloom, F.E., & Roth, R. H. (1996). The Biochemical Basis of Neuropharmacology (7th ed.). New York: Oxford University Press.

    Google Scholar 

  • Coulter, D.A., LoTurco, J.J., Kubota, M., Disterhoft, J.F., Moore, J.W., & Alkon, D. L. (1989). Classical conditioning reduces amplitude and duration of calcium-dependent afterhyperpolarization in rabbit hippocampal pyramidal cells. Journal of Neurophysiology, 61, 971–981.

    PubMed  Google Scholar 

  • de Jonge, M.C., Black, J., Deyo, R.A., & Disterhoft, J.F. (1990). Learning-induced afterhyperpolarization reductions in hippocampus are specific for cell type and potassium conductance. Experimental Brain Research, 80, 456–462.

    Article  Google Scholar 

  • Deyo, R.A., Straube, K.T., & Disterhoft, J.F. (1989). Nimodipine facilitates associative learning in aging rabbits. Science, 243, 809–811.

    PubMed  Google Scholar 

  • Disterhoft, J.F., Coulter, D.A., Alkon, D.L. (1986). Conditioning-specific membrane changes of rabbit hippocampal neurons measured in vitro. Proceedings of the National Academy of Sciences (USA), 83, 2733–2737.

    Google Scholar 

  • Disterhoft, J.F., Golden, D.T., Read, H.L., Coulter, D.A., & Alkon, D.L. (1988). AHP reductions in rabbit hippocampal neurons during conditioning correlate with acquisition of the learned response. Brain Research, 462, 118–125.

    Article  PubMed  Google Scholar 

  • Disterhoft, J.F., Thompson, L.T., Moyer, J.R., & Mogul, D.J. (1996). Calcium-dependent afterhyperpolarization and learning in young and aging hippocampus. Life Sciences, 59, 413–420.

    Article  PubMed  Google Scholar 

  • Downs, D., Cardozo, C., Schneiderman, N., Yehle, A. L., VanDercar, D.H., & Zwilling. G. (1972). Central effects of atropine upon aversive classical conditioning in rabbits. Psychopharmacologia, 23, 319–333.

    Article  PubMed  Google Scholar 

  • Durkin, M., Prescott, L., Furchtgott, E., Cantor, J., & Powell, D.A. (1993). Concomitant eyeblink and heart rate classical conditioning in young, middle-aged, and elderly human subjects. Psychology and Aging, 8, 571–581.

    Article  PubMed  Google Scholar 

  • Gallagher, M., & Rapp, P.R. (1997). The use of animal models to study the effects of aging on cognition. Annual Review of Psychology, 48, 339–370.

    Article  PubMed  Google Scholar 

  • Gibbs, C.M. (1992). Divergent effects of deep cerebellar lesions on two different conditioned somatomotor responses in rabbits. Brain Research, 585, 395–399.

    Article  PubMed  Google Scholar 

  • Graves, C.A., & Solomon, P.R. (1985). Age-related disruption of trace but not delay classical conditioning of the rabbit’s nictitating membrane response. Behavioral Neuroscience, 99, 88–96.

    Article  PubMed  Google Scholar 

  • Green, J.T., & Woodruff-Pak, D.S. (2000). Eyeblink classical conditioning: Hippocampal formation is for neutral stimulus associations as cerebellum is for association-response. Psychological Bulletin, 126, 138–158.

    Article  PubMed  Google Scholar 

  • Harvey, J.A., Gormezano, I., & Cool-Hauser, V.A. (1983). Effects of scopolamine and methylscopolamine on classical conditioning of the rabbit nictitating membrane response. Journal of Pharmacology and Experimental Therapeutics, 225, 42–49.

    PubMed  Google Scholar 

  • Hiramatsu, M., Shiotani, T., Kameyama, T., & Nabeshima, T. (1997). Effects of nefiracetam on amnesia animals models with neuronal dysfunctions. Behavioural Brain Research, 83, 107–115.

    Article  PubMed  Google Scholar 

  • Kaneko, T., & Thompson, R.F. (1997). Disruption of trace conditioning of the nictitating membrane response in rabbits by central cholinergic blockade. Psychopharmacology, 131, 161–166.

    Article  PubMed  Google Scholar 

  • Kem, W.R. (1997). Alzheimer’s drug design based upon an invertebrate toxin (anabaseine) which is a potent nicotinic receptor agonist. Invertebrate Neuroscience, 3, 251–259.

    PubMed  Google Scholar 

  • Kowalska, M., & Disterhoft, J.F. (1994). Relation of nimodipine dose and serum concentration to learning enhancement in aging rabbits. Experimental Neurology, 127. 159–166.

    Article  PubMed  Google Scholar 

  • Kronforst-Collins, M.A., Moriearty, P.L., Ralph, M., Becker, R.E., Schmidt, B., Thompson, L.T., & Disterhoft, J.F. (1997). Metrifonate treatment enhances acquisition of eyeblink conditioning in aging rabbits. Pharmacology, Biochemistry and Behavior, 56, 103–110.

    Google Scholar 

  • Kronforst-Collins, M.A., Moriearty, P.L., Schmidt, B., & Disterhoft, J.F. (1997). Metrifonate improves associative learning and retention in aging rabbits. Behavioral Neuroscience, 111, 1031–1040.

    Article  PubMed  Google Scholar 

  • LoTurco, J.J., Coulter, D.A., & Alkon, D.L. (1988). Enhancement of synaptic potentials in rabbit CA1 pyramidal neurons following classical conditioning. Proceedings of the National Academy of Sciences, (USA). 85, 1672–1676.

    Google Scholar 

  • Moore, J.W., Goodell, N.A., & Solomon, P.R. (1976). Central cholinergic blockade by scopolamine and habituation, classical conditioning, and latent inhibition of the rabbit’s nictitating membrane response. Physiological Psychology, 4, 395–399.

    Google Scholar 

  • Moyer, J.R., & Disterhoft, J.F. (1994). Nimodipine decreases calcium action potentials in rabbit hippocampal CA1 neurons in an age-dependent and concentration-dependent manner. Hippocampus, 4, 11–18.

    Article  PubMed  Google Scholar 

  • Moyer, J.R., Thompson, L.T., Black, J.P., & Disterhoft, J.F. (1992). Nimodipine increases excitability of rabbit CA1 pyramidal neurons in an age-and concentration-dependent manner. Journal of Neurophysiology, 68, 2100–2109.

    PubMed  Google Scholar 

  • Muir, J.L. (1997). Acetylcholine, aging, and Alzheimer’s disease. Pharmacology Biochemisrry and Behavior, 56, 687–696.

    Google Scholar 

  • Myers, C.E., Ermita, B.R., Hanis, K., Hasselmo, M., Solomon, P., & Gluck, M.A. (1996). A computational model of cholinergic disruption of septo-hippocampal activity in classical eyeblink conditioning. Neurobiology of Learning and Memory, 66, 51–66.

    Article  PubMed  Google Scholar 

  • Nishiraki, T., Matsouka, T., Nomura, T., Matsuyama, S., Watabe, S., Shiotani, T., & Yoshii, M. (1999). A ‘long-term-potentiation-like’ facilitation of hippocampal synaptic transmission induced by the nootropic nefiracetam. Brain Research, 826, 281–288.

    Google Scholar 

  • Oh, M.M., Power, J.M., Thompson, L.T., Moriearty, P.L., & Disterhoft, J.F. (1999). Metrifonate increases neuronal excitability in CA1 pyramidal neurons from both young and aging rabbit hippocampus. Journal of Neuroscience, 19, 1814–1823.

    PubMed  Google Scholar 

  • Powell, D.A., Buchanan, S.L., & Hernandez, L.L. (1981). Age-related changes in classical (Pavlovian) conditioning in the New Zealand albino rabbits. Experimental Aging Research, 7, 453–465.

    PubMed  Google Scholar 

  • Powell, D.A., Buchanan, S.L., & Hernandez, L.L. (1984). Age-related changes in Pavlovian conditioning: Central nervous system correlates. Physiology & Behavior, 32, 609–616.

    Article  Google Scholar 

  • Sanchez-Andres, J.V., & Alkon, D.L. (1991). Voltage-clamp analysis of the effects of classical conditioning on the hippocampus. Journal of Neurophysiology, 65, 796407.

    Google Scholar 

  • Salvatierra A.T., & Berry, S.D. (1989). Scopolamine disruption of septo-hippocampal activity and classical conditioning. Behavioral Neuroscience, 103, 715–721.

    Article  PubMed  Google Scholar 

  • Sasse, D.K., Coffin, J.M., & Woodruff-Pak, D.S. (1991). Age differences in rabbits in the delay classical conditioning paradigm using 400 and 750 msec CS-US intervals. Society for Neuroscience Abstracts, 17, 1140.

    Google Scholar 

  • Sasse, D.K., & Woodruff-Pak, D.S. (1990). Classical conditioning in young and older rabbits in delay and trace paradigms with a 750 msec CS-US interval. Society for Neuroscience Abstracts, 16, 841.

    Google Scholar 

  • Schneiderman, N. (1966). Interstimulus interval function of the nictitating membrane response of the rabbit under delay versus trace conditioning. Journal of Comparative and Physiological Psychology, 62, 397–402.

    Google Scholar 

  • Sager, M.A., Borgnis, R.L., & Berry, S.D. (1997). Delayed acquisition of behavioral and hippocampal responses during jaw movement conditioning in aging rabbits. Neurobiology of Aging, 18, 631–639.

    Google Scholar 

  • Sears, L.L., & Steinmetz, J.E. (1990). Acquisition of classically conditioned-related activity in the hippocampus is affected by lesions of the cerebellar interpositus nucleus. Behavioral Neuroscience, 104, 681–692.

    Article  PubMed  Google Scholar 

  • Solomon, P.R., Barth, C.L., Wood, M.S., Velazquez, E., Groccia-Ellison, M., & Yang, B.-Y. (1995). Age-related deficits in retention of the classically conditioned nictitating membrane response in rabbits. Behavioral Neuroscience, 109, 18–23.

    Article  PubMed  Google Scholar 

  • Solomon, P.R., Brett, M., Groccia-Ellison, M., Oyler, C., Tomasi, M., & Pendlebury, W.W. (1995). Classical conditioning in patients with Alzheimer’s disease: A multiday study. Psychology and Aging. 10, 248–254.

    Article  PubMed  Google Scholar 

  • Solomon, P.R., & Gottfried, K.E. (1981). The septo-hippocampal cholinergic system and classical conditioning of the rabbit’s nictitating membrane response. Journal of Comparative and Physiological Psychology, 95, 322–330.

    PubMed  Google Scholar 

  • Solomon, P.R., & Groccia-Ellison, M. (1996). Classic conditioning in aged rabbits: Delay, trace, and long-delay conditioning. Behavioral Neuroscience, 110,427–435.

    Article  PubMed  Google Scholar 

  • Solomon, P.R., Groccia-Ellison, M., Flynn, D., Mirak, J., Edwards, K.R., Dunehew, A., & Stanton, M.E. (1993). Disruption of human eyeblink conditioning after central cholinergic blockade with scopolamine. Behavioral Neuroscience, 107, 211–279.

    Article  Google Scholar 

  • Solomon, P.R., Levine, E., Bein, T., & Pendlebury, W.W. (1991). Disruption of classical conditioning in patients with Alzheimer’s disease. Neurobiology of Aging, 12, 283–287.

    Article  PubMed  Google Scholar 

  • Solomon, P.R., Pomerleau, D. Bennett, L., James, J., & Morse, D.L. (1989). Acquisition of the classically conditioned eyeblink response in humans over the lifespan. Psychology and Aging, 4, 34–41.

    Article  PubMed  Google Scholar 

  • Solomon, P.R., Wood, M.S., Groccia-Ellison, M.E., Yang, B.-Y., Fanelli, R.J., & Mervis, R.F. (1995). Nimodipine facilitates retention of the classically conditioned nictitating membrane response in aged rabbits over long retention intervals. Neurobiology of Aging, 16, 791–796.

    Article  PubMed  Google Scholar 

  • Steinmetz, J.E. (1996). The brain substrates of classical eyeblink conditioning in rabbits. In J.R. Bloedel, T.J. Ebner, & S.P. Wise (Eds.). The Acquisition of Motor Behaviorin Vertebrates, (pp. 89–114). MIT Press.

    Google Scholar 

  • Straube, K.T., Deyo, R.A., Moyer, J.R., & Disterhoft, J.F. (1990). Dietary nimodipine improves associative learning in aging rabbits. Neurobiology of Aging, 11, 659–661.

    Article  PubMed  Google Scholar 

  • Thompson, L.T., Deyo, R.A., & Disterhoft, J.F. (1990). Nimodipine enhances spontaneous activity of hippocampal pyramidal neurons in aging rabbits at a dose that facilitates associative learning. Brain Research, 535, 119–130.

    Article  PubMed  Google Scholar 

  • Thompson, L.T., & Disterhoft, J.F. (1997). Age-and dose-dependent facilitation of associative eyeblink conditioning by D-cycloserine in rabbits. Behavioral Neuroscience, 111, 1303–1312.

    Article  PubMed  Google Scholar 

  • Thompson, L.T., Moyer, J., James R., & Disterhoft, J.F. (1996). Trace eyeblink conditioning in rabbits demonstrates heterogeneity of learning ability both between and within age groups. Neurobiology of Aging, 17, 619–629.

    Article  PubMed  Google Scholar 

  • Thompson, R.F. (1988). Classical conditioning: The Rosetta stone for brain substrates of age-related deficits in learning and memory? Neurobiology of Aging, 9, 547–548.

    PubMed  Google Scholar 

  • Waite, J.J., Wardlow, M.L., & Power, A.E. (1999). Deficit in selective and divided attention associated with cholinergic basal forebrain immunotoxic lesionproducedby 192-saporin; Motoric/sensoxy deficit associated with Purkinje cell immunotoxiclesion produced by 0x7-saporin. Neurobiology of Learning and Memory, 71, 325–352.

    Article  PubMed  Google Scholar 

  • West, M.J. (1993). Regionally specific loss of neurons in the aging human hippocampus. Neurobiology of Aging, 14, 287–293.

    PubMed  Google Scholar 

  • West, M.J., Coleman, P.D., Flood, D.G., & Troncoso, J.C. (1994). Differences in the pattern of hippocampal neuronal loss in normal aging and Alzheimer’s disease. Lancet, 344, 769–772.

    Article  PubMed  Google Scholar 

  • Woodruff-Pak, D.S. (1988). Aging and classical conditioning: Parallel studies in rabbits and humans. Neurobiology of Aging, 9, 511–522.

    PubMed  Google Scholar 

  • Woodruff-Pak, D.S. (1995). Evaluation of cognition-enhancing drugs: Utility of the model system of eyeblink classical conditioning. CNS Drug Reviews, 1, 107–128.

    Google Scholar 

  • Woodruff-Pak, D.S. (1997). Evidence for the role of the cerebellum in classical conditioning in humans. International Review of Neurobiology, 41, 385–410.

    Google Scholar 

  • Woodruff-Pak, D.S., Coffin, J.M., & Papka, M. (1994). A substituted pyrrolidinone, BMY 21502, and classical conditioning of the nictitating membrane response in young and old rabbits. Psychobiology, 22, 312–319.

    Google Scholar 

  • Woodruff-Pak, D.S., Cronholm, J.F., & Sheffield, J.B. (1990). Purkinje cell number related to rate of classical conditioning. Neuroreport, 1, 165–168.

    PubMed  Google Scholar 

  • Woodruff-Pak, D.S., Finkbiner, R.G., & Sasse, D.K. (1990). Eyeblink conditioning discriminates Alzheimer’s patients from non-demented aged. Neuroreport, 1, 45–49.

    PubMed  Google Scholar 

  • Woodruff-Pak, D.S., & Hinchliffe, R.M. (1997). Mecamylamine-or scopolamine-induced learning impairment: Ameliorated by nefiracetam. Psychopharmacology, 131, 130–139.

    Article  PubMed  Google Scholar 

  • Woodruff-Pak, D.S., & Jaeger, M. (1998). Predictors of eyeblink classical conditioning over the adult age span. Psychology and Aging, 13, 193–205.

    Article  PubMed  Google Scholar 

  • Woodruff-Pak, D.S., Lavond, D.G., Logan, C.G., & Thompson, R.F. (1987). Classical conditioning in 3-, 30-and 45-month-old rabbits: behavioral learning and hippocampal unit activity. Neurobiology of Aging, 8, 101–108.

    Article  PubMed  Google Scholar 

  • Woodruff-Pak, D.S., & Li, Y.-T. (1994). Nefiracetam (DM-9384): effect on eyeblink classical conditioning in older rabbits. Psychopharmacology, 114, 200–208.

    Article  PubMed  Google Scholar 

  • Woodruff-Pak, D.S., Li, Y.-T., Hinchliffe, R.M., & Port, R.L. (1997). Hippocampus in delay eyeblink classical conditioning: essential for nefiracetam amelioration of learning in older rabbits. Brain Research, 747, 207–218.

    PubMed  Google Scholar 

  • Woodruff-Pak, D.S., Li, Y.-T., Kazmi, A., & Kern, W.R. (1994). Nicotinic cholinergic system involvement in eyeblink classical conditioning in rabbits. Behavioral Neuroscience, 108, 486–493.

    Article  PubMed  Google Scholar 

  • Woodruff-Pak, D.S., Li, Y.-T., & Kern, W.R. (1994). Anicotinic agonist (GTS-21), eyeblink conditioning, and nicotinic receptor binding in rabbit brain. Brain Research, 645, 309–317.

    Article  PubMed  Google Scholar 

  • Woodruff-Pak, D.S., & Papka, M. (1996). Alzheimer’s disease and eyeblink conditioning: 750 ms trace vs. 400 ms delay paradigm. Neurobiology of Aging, 17, 397–404.

    Article  PubMed  Google Scholar 

  • Woodruff-Pak, D.S., Romano, S.J., & Hinchliffe, R.M. (1996). Detection of Alzheimer’s disease with eyeblink classical conditioning and the pupil dilation response. Alzheimer’s Research. 2, 173–180.

    Google Scholar 

  • Woodruff-Pak, D.S., Romano, S., & Papka, M. (1996). Training to criterion in eyeblink classical conditioning in Alzheimer’s disease, Down’s syndrome with Alzheimer’s disease, and healthy elderly. Behavioral Neuroscience, 110, 22–29.

    Article  PubMed  Google Scholar 

  • Woodruff-Pak, & Trojanowski, J.Q. (1996). The older rabbit as an animal model: Implications for Alzheimer’s disease. Neurobiology of Aging. 17, 283–290.

    Article  PubMed  Google Scholar 

  • Yokel. R.A. (1989). Aluminum produces age related behavioral toxicity in the rabbit. Neurotoxicology and Teratology, II, 237–242.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

Green, J.T., Woodruff-Pak, D.S. (2002). Eyeblink Classical Conditioning in Aging Animals. In: Woodruff-Pak, D.S., Steinmetz, J.E. (eds) Eyeblink Classical Conditioning: Volume 2. Springer, Boston, MA. https://doi.org/10.1007/0-306-46897-2_7

Download citation

  • DOI: https://doi.org/10.1007/0-306-46897-2_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-7923-7863-1

  • Online ISBN: 978-0-306-46897-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics