Skip to main content

Motivational Issues in Aversive and Appetitive Conditioning Paradigms

  • Chapter
Eyeblink Classical Conditioning: Volume 2

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson, B.J., & Steinmetz, J.E. (1994). Cerebellar and brainstem circuits involved in classical eyeblink conditioning. Reviews in the Neurosciences, 5, 251–273.

    PubMed  Google Scholar 

  • Arai, A,, & Lynch, G. (1992). Factors regulating the magnitude of long-term potentiation induced by theta pattern stimulation. Brain Research, 598, 173–184.

    Article  PubMed  Google Scholar 

  • Bennett, T.L. (1975). The electrical activity of the hippocampus and processes of attention. In R.L. Isaacson & K.H. Pribram (Eds.), The Hippocampus (Vol. 2, pp. 71–99). New York: Plenum Press.

    Google Scholar 

  • Berger, T.W., Alger, B., & Thompson, R.F. (1976). Neuronal substrate of classical conditioning in the hippocampus. Science, 192, 483–485.

    PubMed  Google Scholar 

  • Berger, T.W., Berry, S.D., & Thompson, R.F. (1986). Role of the hippocampus in classical conditioning ofaversive and appetitive behaviors. InR.L. Isaacson & K.H. Pribram (Eds.), The Hippocampus (Vol. 4, pp. 203–239). New York: Plenum Press.

    Google Scholar 

  • Berger, T.W., & Orr, W.B. (1983). Hippocampectomy selectively disrupts discrimination reversal conditioning of the rabbit nictitating membrane response. Behavioural Brain Research, 8, 49–68.

    Article  PubMed  Google Scholar 

  • Berger, T.W., & Thompson, R.F. (1978). Neuronal plasticity in the limbic system during classical conditioning of the rabbit nictitating membrane response. I. The hippocampus. Brain Research, 145, 323–346.

    Article  PubMed  Google Scholar 

  • Berry, S.D. (1982). Septo-hippocampal activity and learning rate. In C.D. Woody (Ed.), Conditioning; Representation ofInvolved Neural Functions (pp, 417–431). New York: Plenum Press.

    Google Scholar 

  • Berry, S.D., Rinaldi, P.C., Thompson, R.F., & Verzeano, M. (1978). Analysis of temporal relations among units and slow waves in rabbit hippocampus. Brain Research Bulletin, 3, 509–518.

    Article  PubMed  Google Scholar 

  • Berry, S.D., Sim, D.G., & Snyder, C.W. (1969). Cortical polarization effects on consolidation of avoidance learning in rats. Psychonomic Science, 16(1), 20–21.

    Google Scholar 

  • Berry, S.D., & Snyder, C.W. (1978). Intensity effects of cortical polarization during consolidation. Physiological Psychology, 6(2), 223–225.

    Google Scholar 

  • Berry, S.D., & Swain, R.A. (1989). Water deprivation optimizes hippocampal activity and facilitates nictitating membrane conditioning. Behavioral Neuroscience, 103(l), 71–76.

    PubMed  Google Scholar 

  • Berry, S.D., & Thompson, R.F. (1978). Prediction of learning rate from the hippocampal electroencephalogram. Science, 200, 1298–1300.

    PubMed  Google Scholar 

  • Berry, S.D., & Thompson, R.F. (1979). Medial septal lesions retard Classical conditioning of the rabbit nictitating membrane response in rabbits. Science, 205, 209–211.

    PubMed  Google Scholar 

  • Berry, S.D., Weisz, D.J., & Mamounas, L.A. (1987). Neural correlates of acquisition rate. In I. Gormezano, W.F. Prokasy, & R.F. Thompson (Eds.), Classical Conditioning (3rd ed., pp. 255–274). Hillsdale, NJ: Lawrence Erlbaum.

    Google Scholar 

  • Best, M.R., & Best, P.J. (1976). The effects of state of consciousness and latent inhibition on hippocampal unit activity in the rat during conditioning. Experimental Neurology, 51, 564–573.

    Article  PubMed  Google Scholar 

  • Bindra, D. (1974). A motivational view of learning, performance, and behavior modification. Psychological Review, 81(3), 199–213.

    PubMed  Google Scholar 

  • Bland, B.H., Andersen, P., Ganes, T., & Sveen, 0. (1980). Automatedanalysis of rhythmicity of physiologically identified hippocampal formation neurons. Experimental Brain Research, 38(2), 205.

    Article  Google Scholar 

  • Blokland, A. (1996). Acetylcholine: A neurotransmitter for learning and memory? Brain Research Review, 21, 285–300.

    Google Scholar 

  • Bolles, R.C. (1970). Species-specific defense reactions and avoidance learning. Psychological Review, 77(1), 32–48.

    Google Scholar 

  • Borgnis, R.L. (1993). Latent inhibition of multiple unit activity and EEG in rabbit hippocampus. Unpublished master’s thesis, Miami University, Oxford, OH.

    Google Scholar 

  • Borgnis, R.L. (1997). Characterization of hippocampal single unit activity and unit/slow wave relations during classical conditioning in the rabbit. Dissertation Abstracts International, 58(8-B), 4071.

    Google Scholar 

  • Brown, J.H. (1990). Atropine, scopolamine, and related belladonna alkaloids. In A.G. Gilman, T.W. Rall, AS. Nies, & R. Taylor (Eds.), Goodman and Gilman’s thePpharmacological Basis of the Rapeutics (8th ed., pp. 150–165). New York: Pergamon Press.

    Google Scholar 

  • Buzsaki, G., Leung, L.-W.S., & Vanderwolf, C.H. (1983). Cellular bases of hippocampal EEG in the behaving rat. Brain Research Reviews, 6, 139–171.

    Article  Google Scholar 

  • Cegavske, C.F., Harrison, T.A., & Torigoe, Y. (1987). Identification of the substrates of the unconditioned response in the classically conditioned, rabbit, nictitating-membrane preparation. In I. Gormezano, W.F. Prokasy, & R.F. Thompson (Eds.), Classical Conditioning (3rd ed., pp. 65–91). Hillsdale, NJ: Lawrence Erlbaum.

    Google Scholar 

  • Clark, R.E., & Squire, L.R. (1998). Classical conditioning and brain systems: The role of awareness. Science, 280, 77–81.

    Article  PubMed  Google Scholar 

  • Cohen, N.J., & Eichenbaum, H. (1993). Memory, Amnesia, and the Hippocampal System. Cambridge, MA: MIT Press.

    Google Scholar 

  • Coffin, J.M., & Woodruff-Pak, D.S. (1993). Delay classical conditioning in young and older rabbits: Initial acquisition and retention at 12 and 18 months. Behavioral Neurosciances, 107(1), 63–71.

    Google Scholar 

  • Coleman, S.R., Patterson, M.M., & Gormezano, I. (1966). Conditioned jaw movement in the rabbit: Deprivation procedure and saccharin concentration. Psychonomic Science, 6(1), 39–40.

    Google Scholar 

  • Dearing, M.F., & Dickinson, A. (1979). Counterconditioning of shock by a water reinforcer in rabbits. Animal Learning & Behavior, 7(3), 360–366.

    Google Scholar 

  • Dellow, P.G., & Lund, J.P. (1971). Evidence for central timing of rhythmical mastication. Journal of Physiology, 215, 1–13.

    PubMed  Google Scholar 

  • Destrade, C. (1982). Two types of diencephalically-driven RSA (theta) as a means of studying memory formation in mice. Brain Research, 234, 486–493.

    Article  PubMed  Google Scholar 

  • Deupree, D., Coppock, W., & Willer, H. (1982). Pretraining septal driving of hippocampal rhythmic slow activity facilities acquisition of visual discrimination. Journal of Comparative and Physiological Psychology, 96, 557–562.

    PubMed  Google Scholar 

  • Deyo, R.A., Straube, K.T., & Disterhoft, J.F. (1989). Nimodipine facilitates associative learning in aging rabbits. Science, 243, 809–811.

    PubMed  Google Scholar 

  • Dickinson, A., & Pearce, J.M. (1977). Inhibitory interactions between appetitive and aversive stimuli. Psychological Bulletin, 84(4), 690–711.

    Google Scholar 

  • Di Prisco, G.V., & Freeman, W.J. (1985). Odor-related bulbar EEG spatial pattern analysis during appetitive conditioning in rabbits. Behavioral Neuroscience. 99(5), 964–78.

    PubMed  Google Scholar 

  • Donga, R., Dubuc, R., Kolta, A,, & Lund, J.P. (1992). Evidence that the masticatory muscles receive a direct innervation from cell group k in the rabbit. Neuroscience, 49(4), 951–961

    Article  PubMed  Google Scholar 

  • Everitt, B.J., & Robbins, T.W. (1997). Central cholinergic systems and cognition. Annual Review of Psychology, 48, 649–684.

    Article  PubMed  Google Scholar 

  • Fox, S.E., Wolfson, S., & Ranck, J.B., Jr. (1986). Hippocampal theta rhythm and the firing of neurons in walking and urethane anesthetized rats. Experimental Brain Research, 62, 495–508.

    Article  Google Scholar 

  • Galey, D., Jeantet, Y., Destrade, C., & Jaffard, R. (1983). Facilitation of memory consolidation by post-training electrical stimulation of the medial septal nucleus: Is it mediated by changes in rhythmic slow activity. Behavioral and Neural Biology, 38, 240–250.

    Article  PubMed  Google Scholar 

  • Gallagher, M., & Rapp, P.R. (1997). The use of animal models to study the effects of aging on cognition. Annual Review of Psychology, 48, 339–370.

    Article  PubMed  Google Scholar 

  • Garcia, J., & Koelling, R.A. (1966). Relation of cue to consequence in avoidance learning. Psychonomic Science, 4, 123–124.

    Google Scholar 

  • Gazzaniga, M.S., Ivry, R.B., & Mangun, G.R. (1998). Cognitive Neuroscience: The Biology of the Mind. New York: W.W. Norton.

    Google Scholar 

  • Gibbs, C.M. (1992). Divergent effects of deep cerebellar lesions on two different conditioned somatomotor responses in rabbits. Brain Research, 585, 395–399.

    Article  PubMed  Google Scholar 

  • Glazer, H. (1974). Instrumental response persistence following induction of hippocampal theta frequency during fixed-ratio responding in rats. Journal of Comparative and Physiological Psychology, 86(6), 1156–1162.

    PubMed  Google Scholar 

  • Goldberg, L.J., Chandler, S.H., & Tal, M. (1982). Relationship between jaw movements and trigeminal motoneuron membrane-potential fluctuations during cortically induced rhythmical jaw movements in the guinea pig. Journal of Neurophysiology, 48, 110–138.

    PubMed  Google Scholar 

  • Gormezano, I., Prokasy, W.F., & Thompson, R.F. (Eds.). (1987). Classical Conditioning. (3rd ed.). Hillsdale, NJ: Lawrence Erlbaum.

    Google Scholar 

  • Grastyan, E., Karmos, G., Vereczkey, L., & Kellenyi, L. (1966). The hippocampal electrical correlates of the homeostatic regulation of motivation. Electroencephalography and Clinical Neurophysiology, 21, 34–53.

    Article  PubMed  Google Scholar 

  • Graves, C.A., & Solomon, P.R. (1985). Age-related disruption of trace but not delay classical conditioning of the rabbit’s nictitating membrane response. Behavioral Neuroscience, 99(1), 88–96.

    Article  PubMed  Google Scholar 

  • Gray, J.A. (1972). Effects of septal driving of the hippocampal theta rhythm on resistance to extinction. Physiology & Behavior, 8, 481–490.

    Google Scholar 

  • Gray, J.A. (1986). The Neuropsychology of Anxiety: An Enquiry into the Functions of the Septo-Hippocampal System. Oxford: Clarendon Press.

    Google Scholar 

  • Green, J.D., & Arduini, A.A. (1954). Hippocampal electrical activity in arousal. Journal of Neurophysiology, 17, 533–557.

    PubMed  Google Scholar 

  • Grossberg, S. (1982). Processing of expected and unexpected events during conditioning and attention: A psychophysiological theory. Psychological Review, 89(5), 529–572.

    PubMed  Google Scholar 

  • Grossberg, S., & Schmajuk, N.A. (1987). Neural dynamics of attentionally modulated Pavlovian conditioning: Conditioned reinforcement, inhibition, and opponent processing. Psychobiology, I5(3), 195–240.

    Google Scholar 

  • Harvey, J.A., Gormezano, I., & Cool-Hauser, V.A. (1983). Effects of scopolamine and methylscopolamine on classical conditioning of the rabbit nictitating membrane response. Journal of Pharmacology and Experimental Therapeutics, 255, 42–49.

    Google Scholar 

  • Harvey, J.A., Gormezano, I., & Cool-Hauser, V.A. (1985). Relationship between heterosynaptic reflex facilitation and acquisition of the nictitating membrane response in control and scopolamine-injected rabbits. Journal of Neuroscience, 5, 596–602.

    PubMed  Google Scholar 

  • Hilgard, E.R., & Bower, G.H. (1966). Theories of Learning (3rd ed.). New York: Appleton-Century-Crofts.

    Google Scholar 

  • Hinde, R.A. (1970). Animal Behaviour; a Synthesis of Ethology and Comparative Psychology (2nd ed.). New York: McGraw-Hill.

    Google Scholar 

  • Hirsh, R. (1974). The hippocampus and contextual retrieval of information from memory: A theory. Behavioral Biology, 12, 421–444.

    Article  PubMed  Google Scholar 

  • Holscher, C., Anwyl, R., & Rowan, M.J.(1997). Stimulation on the positive phase of hippocampal theta rhythm induces long-term potentiation that can be depotentiated by stimulation on the negative phase in area CA1 in vivo. Journal of Neuroscience, 17(16), 6470–6477.

    PubMed  Google Scholar 

  • Honey, R.C., & Good, M. (1993). Selective hippocampal lesions abolish the contextual specificity of latent inhibition and conditioning. Behavioral Neuroscience, 107(1), 23–33.

    Article  PubMed  Google Scholar 

  • Isaacson, R.L. (1982). The Limbic System (2nd ed.). New York: Plenum Press.

    Google Scholar 

  • Isaacson, R.L., & Pribram, K.H. (Eds.). (1975). The Hippocampus (Vol. 1). New York: Plenum Press.

    Google Scholar 

  • Isaacson, R.L., & Pribram, K.H. (Eds.). (1975). The Hippocamprus (Vol. 2). New York: Plenum Press.

    Google Scholar 

  • Isaacson, R.L., & Pribram, K.H. (Eds.). (1986). The Hippocamprus (Vol. 3). New York: Plenum Press.

    Google Scholar 

  • Isaacson, R.L., & Pribram, K.H. (Eds.). (1986). The Hippocampus (Vol. 4). New York: Plenum Press.

    Google Scholar 

  • Jarrard, L.E. (1973). The hippocampus and motivation. Psychological Bulletin, 79(1), 1–12.

    PubMed  Google Scholar 

  • Kimble, G.A. (1961). Hilgard and Marquis’ Conditioning and Learning. New York: Appleton-Century-Crofts.

    Google Scholar 

  • Kimble, G.A. (1967). Pavlov and the experimental study of conditioned reflexes. In G.A. Kimble (Ed.), Foundations of Conditioning and Learning (pp. 22–43). New York: Appleton-Century-Crofts.

    Google Scholar 

  • Konorski, J. (1968). Conditioned Reflexes and Neuron Organization. New York: Hafner Publishing.

    Google Scholar 

  • Krupa, D.J., Thompson, J.K., & Thompson, R.F. (1993). Localization of a memory race in the mammalian brain. Science, 260(51 10), 989–991.

    PubMed  Google Scholar 

  • Landfield, P.W. (1977). Different effects of posttrial driving or blocking of the theta rhythm on avoidance learning in rats. Physiology & Behavior, 18, 439–445.

    Article  Google Scholar 

  • Larson, J., Wong, D.. & Lynch, G. (1986). Patterned stimulation at the theta frequency is optimal for the induction of hippocampal long-term potentiation. Brain Research, 368, 347–350.

    Article  PubMed  Google Scholar 

  • Ledoux, J.E. (1995). Emotion: Clues from the brain. Annual Review of Psycology, 46, 209–35.

    Google Scholar 

  • Lindsley, D.B., & Wilson, C.L. (1975). Brain stem-hypothalamic systems influencing hippocampal activity and behavior. In R.L. Isaacson & K.H. Pribram (Eds.), The Hippocampus (Vol. 2, pp. 247–278). New York Plenum Press.

    Google Scholar 

  • Lovibond, P.F., & Dickinson, A. (1982). Counterconditioning of appetitive and defensive CRs in rabbits. Quarterly Journal of Experimental Psychology, 348, 115–126.

    Google Scholar 

  • Lubow, R.E. (1989). Latent Inhibition and Conditioned Attention Theory. Cambridge, England: Cambridge University Press.

    Google Scholar 

  • Lund, J.P.(1991). Mastication and its control by the brain stem. Critical Reviews in Oral Biology and Medicine, 2(1), 33–64.

    PubMed  Google Scholar 

  • Lund, J.P., & Lamarre, Y. (1974). Activity of neurons in the lower precentral cortex during voluntary and rhythmical jaw movements in the monkey. Experimental Brain Research, 19, 282–299.

    Article  Google Scholar 

  • Lund, J.P., Sasamoto, K., Murakami, T., & Olsson, K.A. (1984). Analysis of rhythmical jaw movements produced by electrical stimulation of motor-sensory cortex in rabbits. Journal of Neurophysiology, 52(6), 1014–1029.

    PubMed  Google Scholar 

  • MacLean, P.D. (1955). The limbic system (“visceral brain”) and emotional behavior. Archives of Neurology and Psychiatry, 73, 130–134.

    Google Scholar 

  • Maren, S., DeCola, J.P., Swain, R.A., Fanselow, M.S., & Thompson, R.F. (1994). Parallel augmentation of hippocampal long-term potentiation, theta rhythm, and contextual fear conditioning in water-deprived rats. Behavioral Neuroscience, 108(1), 44–56.

    Article  PubMed  Google Scholar 

  • McCormick, D.A., Lavond, D.G., Clark, G.A.. Kettner, R.E., Rising, C.E., & Thompson, R.F. (1981). The engram found? Role of the cerebellum in classical conditioning of nictitating membrane and eyelid responses. Bulletin of the Psychonomic Society, 18(3), 103–105.

    Google Scholar 

  • McLaughLin, J., & Powell, D.A. (1999). Pavlovian heart rate and jaw movement conditioning in the rabbit: Effects of medial prefrontal lesions. Neurobiology of Learning and Memory, 71(2), 150–166.

    Article  PubMed  Google Scholar 

  • Miller, D.P., & Steinmetz, J.E. (1997). Hippocampal activity during classical discrimination-reversal eyeblink conditioning in rabbits. Behavioral Neuroscience, 111(1), 70–79.

    Article  PubMed  Google Scholar 

  • Mitchell, D.S., & Gormezano, I. (1970). Effects of water deprivation on classical appetitive conditioning of the rabbit’s jaw movement response. Learning and Motivation, 1(2), 199–206.

    Article  Google Scholar 

  • Mook, D.G. (1987). Motivation: The Organization of Action. New York: W.W. Norton.

    Google Scholar 

  • Moore, J.W., Goodell, N., & Solomon, P.R. (1976). Central cholinergic blockade by scopolamine and habituation, classical conditioning, and latent inhibition of the rabbit’s nictitating membrane response. Physiological Psychology. 4, 395–399.

    Google Scholar 

  • Nozaki, S., Iriki, A., & Nakamura, Y. (1993). Trigeminal premotor neurons in the bulbar parvocellular reticular formation participating in induction of rhythmical activity of trigeminal motoneurons by repetitive stimulation of the cerebral cortex in the guinea pig. Journal of Neurophysiology, 69(2), 595–608.

    PubMed  Google Scholar 

  • O’Keefe, J., & Recce, M.L. (1993). Phase relationship between hippocampal place units and the EEG theta rhythm. Hippocampus, 3(3), 317–330.

    Google Scholar 

  • Olds, J. (1975). Mapping the mind onto the brain. In F.G. Worden, J.P. Swazey, & G. Adelman (Eds.), The Neurosciences: Paths of Discovery (pp. 375–400). Cambridge, MA MlT Press.

    Google Scholar 

  • Oliver, C.G. (1991). Hippocampal and septal unit activity during appetitive-aversive discrimination and reversal. Dissertation Abstracrs International, 51(12-B, Pt. 1), 6145–6146

    Google Scholar 

  • Oliver, C.G., Swain, R.A., & Berry, S.D. (1993). Hippocampal plasticity during jaw movement conditioning in the rabbit. Brain Research, 608, 150–154.

    Article  PubMed  Google Scholar 

  • Otto, T., Eichenbaum, H., Wiener, S.I. & Wible, C.G. (1991). Learning-related patterns of CA1 spike trains parallel stimulation parameters optimal for inducing hippocampal long-term potentiation. Hippocampus, 1(2), 181–192.

    Article  PubMed  Google Scholar 

  • Papez, J.W. (1937). A proposed mechanism of emotion. Archives of Neurology and Psychiatry, 38, 725–743.

    Google Scholar 

  • Parasuraman, R. (1998). The Attentive Brain. Cambridge, MA: MIT Press.

    Google Scholar 

  • Pavlides, C., Greenstein, Y.J., Grudman, M., & Winson, J. (1988). Long-term potentiation in the dentate gyrus is induced preferentially on the positive phase of theta-rhythm. Brain Research, 439(1-2), 383–387.

    Article  PubMed  Google Scholar 

  • Petri, H.L. (1996). Motivation: Theory, Research, and Applications (4" ed.). Pacific Grove, CA: Brooks/Cole Publishing.

    Google Scholar 

  • Posner, M.I., & Petersen, S.E.(1990). The attention system of the human brain. Annual Review of Neuroscience, 13, 25–42.

    Article  PubMed  Google Scholar 

  • Powell, D.A. (1979). Peripheral and central muscarinic cholinergic blockade: Effects on Pavlovian conditioning. Bulletin of the Psychonomic Society, 14. 161–164.

    Google Scholar 

  • Powell, D.A., Buchanan, S.L., & Hernandez, L.L. (1981). Age-related changes in classical (Pavlovian) conditioning in the New Zealand albino rabbit. Experimental Aging Research, 7(4), 453–465.

    PubMed  Google Scholar 

  • Powell, D.A., Buchanan, S.L., & Hernandez, L.L. (1984). Age-related changes in Pavlovian conditioning: Central nervous system correlates. Physiology & Behavior, 32, 609–616.

    Article  Google Scholar 

  • Powell, D.A., Hernandez, L., & Buchanan, S.L. (1985). Intraseptal scopolamine has differential effects on Pavlovian eye blink and heart rate conditioning. Behavioral Neuroscience, 99(1), 75–87.

    Article  PubMed  Google Scholar 

  • Powell, D.A., Milligan, W.L., & Buchanan, S.L. (1976). Orienting and classical conditioning in the rabbit (Oryctolagus cuniculus): Effects of septal area lesions. Physiology & Behavior, 17, 955–962.

    Article  Google Scholar 

  • Rescorla, R.A., & Solomon, R.L. (1967). Two-process learning theory: Relationships between Pavlovian conditioning and instrumental learning. Psychological Review, 74(3), 151–182.

    PubMed  Google Scholar 

  • Rescorla, R.A., & Wagner, A.R. (1972). A theory of Pavlovian conditioning: Variations in the effectiveness of reinforcement and nonreinforcement. In A.H. Black & W.F. Prokasy (Eds.), Classical Conditioning II: Current Theory and Research (pp. 64–99). New York: Appleton-Century-Crofts.

    Google Scholar 

  • Salvatierra, A.T., & Berry, S.D. (1989). Scopolamine disruption of septo-hippocampal activity and classical conditioning. Behavioral Neuroscience, I03(4), 715–721.

    Google Scholar 

  • Scavio, M.J., Jr. (1974). Classical-classical transfer: Effects of prior aversive conditioning in the rabbit. Journal of Comparative and Physiological Psychology, 86, 107–115.

    PubMed  Google Scholar 

  • Scavio, M.J., Jr. (1987). Appetitive-aversive interactions in rabbit conditioning preparations. In I. Gormezano, W.F. Prokasy, & R.F. Thompson (Eds.), Classical Conditioning (3rd ed., pp. 319–338). Hillsdale, NJ: Lawrence Erlbaum.

    Google Scholar 

  • Scavio, M.J., Jr., & Gormezano, I. (1980). Classical-classical transfer: Effects of prior appetitive conditioning upon aversive conditioning in rabbits. Animal Learning & Behavior, 8, 218–224.

    Google Scholar 

  • Schmajuk, N.A, Lam, Y.-W., & Christiansen, B.A. (1994). Latent inhibition of the rat eyeblink response: Effect of hippocampal aspiration lesions. Physiology & Behavior, 55(3), 597–601

    Article  Google Scholar 

  • Schmaltz, L.W., & Theios, J. (1972). Acquisition and extinction of a classically conditioned response in hippocampectomized rabbits (Oryctolagus cuniculus). Journal of Comparative and Physiological Psychology, 79(2), 328–333.

    PubMed  Google Scholar 

  • Schwartzbaum, J.S. (1983). Electrophysiology of taste-mediated functions in parabrachial nuclei of behaving rabbit. Brain Research Bulletin, 11, 61–89.

    Article  PubMed  Google Scholar 

  • Scoville, W.B., & Milner, B. (1957). Loss of recent memory after bilateral hippocampal lesions. Journal of Neurology, Neurosurgery and Psychiatry, 20, 11–21.

    Article  Google Scholar 

  • Seager, M.A., Asaka, Y., & Berry, S.D. (1999). Scopolamine disruption of behavioral and hippocampal responses in appetitive trace classical conditioning. Behavioural Brain Research, 100(1-2), 143–151.

    Article  PubMed  Google Scholar 

  • Seager, M.A., Asaka, Y., Chabot, E.S., Johnson, L.D., & Berry, S.D. (1998). Hippocampal theta-triggered training trials in rabbit classical conditioning: Effect on learning. Society for Neuroscience Abstracrs, 24(2), 149–172.

    Google Scholar 

  • Seager, M.A., Borgnis, R.L., & Berry, S.D. (1997). Delayed acquisition of behavioral and hippocampal responses during jaw movement conditioning in aging rabbits. Neurobiology of Aging, 18(6), 631–639.

    Article  PubMed  Google Scholar 

  • Seager, M.A., Borgnis, R.L., & Berry, S.D. (1998). Hippocampal age differences reoccur after modification of stimulus configurations in rabbit jaw movement conditioning. Neurobiology of Aging, 19(3), 277–281.

    Article  PubMed  Google Scholar 

  • Segal M., Disterhoft, J.F., & Olds, J. (1972). Hippocampal unit activity during classical aversive and appetitive conditioning. Science, 175, 792–794.

    PubMed  Google Scholar 

  • Sheafor, P.J., & Gormezano, I. (1972). Conditioning the rabbit’ (Oryctolagus cuniculus) jaw movement response:US magnitude effects on URs, CRs, and pseudo-CRs. Journal of Comparative and Physiological Psychology, 81(3). 449–456.

    PubMed  Google Scholar 

  • Shrrington, C.S. (1906). iThe Integrative Action of the Nervous System. New York: C. Scribner’s Sons.

    Google Scholar 

  • Shettleworth, S.J. (1979). Constraints on conditioning in the writings of Konorski. In A. Dickinson & R.A. Boakes (Eds.), Mechanism of Learning andMotivation: A Memorial Volume to Jerzy Konorski (pp. 399–416). Hillsdale, NJ: Lawrence Erlbaum.

    Google Scholar 

  • Sinclair, B.R., Seto, M.G., & Bland, B.H. (1982). Theta-cells in CAI and dentate layers of hippocampal formation: Relations to slow-wave activity and motor behavior in the freely moving rabbit. Journal of Neurophysiology, 48(5), 1214–1225.

    PubMed  Google Scholar 

  • Skaggs, W.E., McNaughton, B.L., Wilson, M.A., & Barnes, C.A. (1996). Theta phase precession in hippocampal neuronal populations and the compression of temporal sequences. Hippocampus, 6, 149–172.

    Article  PubMed  Google Scholar 

  • Smith, M.C., DiLollo, V., & Gormezano, I. (1966). Conditioned jaw movement in the rabbit. Journal of Compararive and Physiological Psychology, 62(3), 419–483.

    Google Scholar 

  • Solomon, P.R. (1980). A time and a place for everything? Temporal processing views of hippocampal function with special reference to attention. Physiological Psychology, 8(2), 254–261.

    Google Scholar 

  • Solomon, P.R., & Corbit, J.D. (1974). An opponent process theory of motivation. I. The temporal dynamics of affect. Psychological Review, 81, 119–145.

    PubMed  Google Scholar 

  • Solomon, P.R., & Gottfried, K.E. (1981). The septohippocampal cholinergic system and classical conditioning of the rabbit’s nictitating membrane response. Journal of Compararive and Physiological Psychology, 95, 322–330.

    Google Scholar 

  • Solomon, P.R., & Groccia-Ellison, M. (1996). Classic conditioning in aged rabbits: Delay, trace, and long-delay conditioning. Behavioral Neuroscience, 110(3), 427–435.

    Article  PubMed  Google Scholar 

  • Solomon, P.R., & Moore, J.W. (1975). Latent inhibition and stimulus generalization of the classically conditioned nictitating membrane response in rabbits (Orycrolagus cuniculus) following dorsal hippocampal ablation. Journal of Compararive and Physiological Psychology, 89(10), 1192–1203.

    Google Scholar 

  • Solomon, P.R., Solomon, S.E., Vander Schaaf, E., & Perry, H.E. (1983). Altered activity in the hippocampus is more detrimental to classical conditioning than removing the structure. Science, 220, 329–331.

    PubMed  Google Scholar 

  • Squire, L.R. (1992). Memory and the hippocampus: A synthesis from findings with rats, monkeys, and humans. Psychological Review, 99(2), 195–231.

    Article  PubMed  Google Scholar 

  • Staubli, U., & Lynch, G. (1987). Stable hippocampal long-term potentiation elicited by ‘theta’ pattern stimulation. Brain Research, 435, 227–234.

    Article  PubMed  Google Scholar 

  • Steinmetz, J.E. (1996). The brain substrates of classical eyeblink conditioning in rabbits. In J.R. Bloedel, T.J. Teyler, & S.P. Wise (Eds.), The Acquisition of Motor Behavior in Vertebrates (pp. 89–114). Cambridge, MA: MIT Press.

    Google Scholar 

  • Tait, R.W., Quesnel, L.J., & Ten Have, W.N. (1986). Classical-classical transfer: Excitatory associations between “competing” motivational stimuli during classical conditioning of the rabbit. Animal Learning & Behavior, 14(2) 138–143.

    Google Scholar 

  • Thomas, M.J., Watabe, A.M., Moody, T.D., Makhinson, M., & O’Dell, T.J. (1998). Postsynaptic complex spike bursting enables the induction of LTP by theta frequency synaptic stimulation. Journal of Neuroscience, 18(18), 7118–7126.

    PubMed  Google Scholar 

  • Thompson, L.T., Moyer, J.R., Jr., & Disterhoft, J.F. (1996). Trace eyeblink conditioning in rabbits demonstrates heterogeneity of learning ability both between and within age groups. Neurobiology of Aging, 17(4), 619–629.

    Article  PubMed  Google Scholar 

  • Thompson, R. F., & Berry, S. D. (1988). Learning and motivation, an historical overview. In G.C. Galbraith, M.L. Kietzman, & E. Donchin, (Eds.), Neurophysiology and Psychophysiology: Experimental and Clinical Applications (pp. 270–297). Hillsdale, New Jersey: Lawrence Erlbaum.

    Google Scholar 

  • Vanderwolf, C.H. (1971). Limbic-diencephalic mechanisms of voluntary movement. Psychological Review, 78, 83–113.

    PubMed  Google Scholar 

  • Vanderwolf, C.H., Kramis, R., Gillespie, L.A., & Bland, B.H. (1975). Hippocampal rhythmic slow activity and neocortical low-voltage fast activity: Relations to learning. In R.L. Isaacson & K.H. Pribram (Eds.), The Hippocampus (Vol. 2, pp. 101–128). New York: Plenum Press.

    Google Scholar 

  • Wasserman, E.A., & Miller, R.R. (1997). What’s elementary about associative learning? Annual Review of Psychology, 48, 573–607.

    Article  PubMed  Google Scholar 

  • Weikart, C.L., & Berger, T.W. (1986). Hippocampal lesions disrupt classical conditioning of cross-modality reversal learning of the rabbit nictitating membrane response. Behavioural Brain Research, 22, 85–89.

    Article  PubMed  Google Scholar 

  • Wetzel, W., Ott, T., & Matthies, H. (1977). Post-training hippocampal rhythmic slow activity (“theta”) elicite by septal stimulation improves memory consolidation in rats. Behavioral Biology, 21, 3240.

    Google Scholar 

  • Woodruff-Pak, D.S., Lavond, D.G., Logan, C.G., & Thompson, R.F. (1987). Classical conditioning in 3-, 30-, and 45-month-old rabbits: Behavioral learning and hippocampal unit activity. Neurobiology of Aging, 8, 101–108.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

Berry, S.D., Seager, M.A., Asaka, Y., Borgnis, R.L. (2002). Motivational Issues in Aversive and Appetitive Conditioning Paradigms. In: Woodruff-Pak, D.S., Steinmetz, J.E. (eds) Eyeblink Classical Conditioning: Volume 2. Springer, Boston, MA. https://doi.org/10.1007/0-306-46897-2_12

Download citation

  • DOI: https://doi.org/10.1007/0-306-46897-2_12

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-7923-7863-1

  • Online ISBN: 978-0-306-46897-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics