Skip to main content

Neural Network Approaches to Eyeblink Classical Conditioning

  • Chapter
Eyeblink Classical Conditioning: Volume 2

Conclusions

We have described our efforts to further the understanding of the neural substrates of rabbit eyeblink conditioning (in particular the cerebellum and hippocampus) through the use of neural networks. Over the years, the initial theoretical assumptions of the computational models have been maintained while more anatomically and physiologically detailed instantiations of these models have been developed. These neural networks have increased our understanding of how classical conditioning occurs in the cerebellum and hippocampus while making novel predictions which are guiding ongoing and future empirical studies. Neural networks result in simulations of various lesion conditions which offer subtle distinctions which may not be evident in a purely qualitative theory.

Neural networks also provide a ‘tool kit’ which can be applied to various data-sets outside of the realm of basic lesion studies which were the basis for the original models. A case in point is the application of the basic Gluck and Myers (1993) hippocampal model to the septo-hippocampal literature in which a manipulation of a basic component (hippocampal learning rate) can account for a variety of cholinergic drug effects (Myers et al., 1996; Myers et al., 1998). In this way, neural networks can be a tool that can be applied to exploring many different aspects of classical eyeblink conditioning in particular and learning and memory in general.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allen, M.T., Chelius, L., & Gluck, M.A. (1998). Selective entorhinal ibotenic lesions disrupt the learned irrelevance pre-exposure effect in the classical conditioned rabbit eyeblink response paradigm conditioning. Society for Neuroscience Abstracts, 24, 442.

    Google Scholar 

  • Ambros-Ingerson, J., Granger, R., & Lynch, G. (1990). Simulation of paleocortex performs hierarchical clustering. Science, 247, 1344–1348.

    PubMed  Google Scholar 

  • Anderson, B.J., & Steinmetz, J.E. (1994). Cerebellar and brainstem circuits involved in classical eyeblink conditioning. Reviews in neuroscience, 5, 1–23.

    Google Scholar 

  • Anderson, G., Garwicz, M., & Hesslow, G. (1988). Evidence for GABA-mediated cerebellar inhibition of the inferior olive in the cat. Brain Research, 472, 450–456.

    Google Scholar 

  • Angaut, P., & Sotelo, C. (1989). Synaptology of the cerebello-olivary pathway: Double labeling with anterograde axonal tracing and GABA iinmunocytochemistry in the rat. Brain Research, 479, 361–365.

    Article  PubMed  Google Scholar 

  • Antelman, S., & Brown, T. (1972). Hippocampal lesions and shuttlebox avoidance behavior: A fear hypothesis. Physiology and Behavior, 9, 15–20.

    Article  PubMed  Google Scholar 

  • Bartha, G.T., Thompson R.F., & Gluck, M.A. (1991). Sensorimotor learning and the cerebellum. In M. Arbib & J. Ewert (Eds.), Visual Structures and Integrated Functions, (pp. 1–16). Berlin: Springer-Verlag.

    Google Scholar 

  • Bellingham, W.P., Gillette-Bellingham, K., & Kehoe, E.J. (1985). Summation and configuration in patterning schedules with the rat and rabbit. Animal Learning and Behavior, 13, 152–164.

    Google Scholar 

  • Berger, T.W., Alger, B., & Thompson, R.F. (1976). Neuronal substrate of classical conditioning in the hippocampus. Science, 192, 483–485.

    PubMed  Google Scholar 

  • Berger, T., & Orr, W. (1983). Hippocampectomy selectively disrupts discrimination reversal learning of the rabbit nictitating membrane response. Behavioral Brain Research, 8, 49–68.

    Article  Google Scholar 

  • Berry, S., & Thompson, R. (1979). Medial septal lesions retard classical conditioning of the nictitating membrane response in rabbits. Science, 205, 209–211.

    PubMed  Google Scholar 

  • Berthier, N.E., & Moore, J.W. (1986). Cerebellar Purkinje cell activity related to the classically conditioned nictitating membrane response. Experimental Brain Research, 63, 341–350.

    Article  Google Scholar 

  • Bouton, M., & Brooks, D. (1993). Time and context effects on performance in a Pavlovian discrimination reversal. Journal of Experimental Psychology: Animal Behavior Processes, 19, 1–15.

    Article  Google Scholar 

  • Donegan, N.H., Gluck, M.A., & Thompson, R.F. (1989). Integrating behavioral and biological models of conditioning. In R.D. Hawkins, & S.G.H. Bower (Eds.), Psychology of Learning and Motivation, (pp 109–156). New York: Academic Press.

    Google Scholar 

  • Gibson, A.R., Robinson, F.R., Alam, J., & Houk, J.C. (1987). Somatotopic alignment between climbing fiber input and nuclear output in the cat intermediate cerebellum. Journal of Comparative Neurology, 260, 362–377.

    Article  PubMed  Google Scholar 

  • Gluck, M.A., Allen, M.T., Myers, C.E., & Thompson, R.F. (in press). Cerebellar substrates for error-correction in motor-reflex conditioning. Journal of Cognitive Neuroscience.

    Google Scholar 

  • Gluck, M.A., & Myers, C.E. (1993). Adaptive stimulus representations: A computational theory of hippocampal-region function. In S. Hanson, J. Cowan & C. Giles (Eds.), Advances in Neural Information Processing Systems 5, (pp. 937–944). San Mateo, CA: Morgan Kaufmann

    Google Scholar 

  • Gluck, M.A., Myers, C.E., & Goebel, J. (1994). A computational perspective on dissociating hippocampal and entorhinal function (Response to Eichenbaum et al.). Behavioral and Brain Sciences, 17, 478–479.

    Google Scholar 

  • Gluck, M.A., Reifsnider, E.S., & Thompson, R.F. (1990). Adaptive signal processing and the cerebellum: Models of classical conditioning and VOR adaptation. In M.A. Gluck & D.D. Rumelhart (Eds.), Neuroscience and Connectionist Theory, (pp. 131–185). Hillsdale, NJ: Lawrence Erlbaum.

    Google Scholar 

  • Good, M., & Honey, R.C. (1991). Conditioning and contextual retrieval in hippocampal rats. Behavioral Neuroscience, 105(4), 499–509.

    Article  PubMed  Google Scholar 

  • Gormezano, I., Kehoe, E.J., & Marshall, B.S. (1983). Twenty years of classical conditioning research with the rabbit. Progress in Psychobiology and Physiological Psychology, 10, 197–275.

    Google Scholar 

  • Grossberg, S. (1976). Adaptive pattern classification and recoding: Part I. Biological Cybernetics, 23, 121–134.

    Article  PubMed  Google Scholar 

  • Hall, G., & Honey, R. (1990). Context-specific conditioning in the conditioned-emotional response procedure. Journal of Experimental Psychology: Animal Behavior Processes, 16(3), 271–278.

    Article  Google Scholar 

  • Hasselmo, M. (1995). Neuromodulation and cortical function: Modeling the physiological basis of behavior. Behavioural Brain Research, 67, 1–27.

    Article  PubMed  Google Scholar 

  • Hasselmo, M., & Schnell, E. (1994). Laminar selectivity of the cholinergic suppression of synaptic transmission in rat hippocampal region CA1: Computational modeling and brain slice physiology. Journal of Neuroscience, 14(6), 3909–3014.

    Google Scholar 

  • Honey, R., & Good, M. (1993). Selective hippocampal lesions abolish the contextual specificity of latent inhibition and conditioning. Behavioral Neuroscience, 107(1), 23–33.

    Article  PubMed  Google Scholar 

  • Houk, J. (1989). Cooperative control of limb movements by the motor cortex, brainstem and cerebellum In R. Cotterill (Ed.), Models of Brain Function, (pp. 309–325). New York: Cambridge University Press.

    Google Scholar 

  • Ito, M. (1984). The Cerebellum and Neural Control. New York: Raven Press.

    Google Scholar 

  • Jarrard, L.E. (1989). On the use of ibotenic acid to lesion selectively different components of the hippocampal formation. Journal of Neuroscience Methods, 29, 251–259.

    Article  PubMed  Google Scholar 

  • Kamin, L. (1969). Predictability, surprise, attention and conditioning. In B. Campbell & R. Church (Eds.) Punishment and Aversive Behavior, (pp. 279–296). New York: Appleton Century-Crofts.

    Google Scholar 

  • Kehoe, E.J. (1981). Stimulus selection and combination in classical conditioning with the rabbit. In I. Gormezano, W. Prokasy & R. Thompson (Eds.), Classical Conditioning. Hillsdale, NJ: Erlbaum.

    Google Scholar 

  • Kehoe, E.J. (1988). A layered network model of associative learning. Psychological Review, 95(4), 411–433.

    Article  PubMed  Google Scholar 

  • Kehoe, E.J., & Schreurs, B.G. (1986). Compound conditioning of the rabbit’s nictitating membrane response: Test trial manipulations. Bulletin of the Psychonomic Society, 24, 79–81.

    Google Scholar 

  • Kim, J.J., Krupa, D., & Thompson, R.F. (1998). Inhibitory cerebello-olivary projections and blocking effect in classical conditioning. Science, 279, 570–573.

    PubMed  Google Scholar 

  • Kim, J.J., & Thompson, R.F. (1997). Cerebellar circuits and synaptic mechanisms involved in classical eyeblink conditioning. Trends in Neuroscience, 20, 177–181.

    Article  Google Scholar 

  • Kohonen, T. (1984). Self-organization and Associative Memory. New York: Springer-Verlag.

    Google Scholar 

  • Kremer, E.F. (1978). The Rescorla-Wagnermodel: Losses in associative strength in compound conditioned stimuli. Journal of Experimental Psychology: Animal Behavior Processes, 4, 22–36.

    Google Scholar 

  • Lawrence, D.H. (1952). The transfer of a discrimination along a continuum. Journal of Comparative and Physiological Psychology, 45, 511–516.

    PubMed  Google Scholar 

  • Lubow, R.E. (1973). Latent inhibition. Psychological Bulletin, 79, 398–407.

    PubMed  Google Scholar 

  • Lubow, R.E., Rifkin, B., & Alek, M. (1976). The context effect: The relationship between stimulus preexposure and environmental preexposure determines subsequent learning. Journal of Experimental Psychology: Animal Behavior Processes, 2(1), 38–47.

    Google Scholar 

  • Mahoney, W.J., Kwaterski, S.E., & Moore, J.W. (1975). Conditioned inhibition of the rabbit nictitating membrane response as a function of CS-UCS interval. Bulletin of the Psychonomic Society, 5(2), 177–179.

    Google Scholar 

  • Marchant III, H.G., Mis, F.W., & Moore, J.W. (1972). Conditioned inhibition of the rabbit’s nictitating membrane response. Journal of Experimental Psychology, 95(2), 408–411.

    PubMed  Google Scholar 

  • Martin, I., & Levey, A.B. (1991). Blocking observed in human eyelid conditioning. The Quarterly Journal of Experimental Psychology, 43B(3), 233–256.

    Google Scholar 

  • Myers, C.D., Ermita, B.E., Hanis, K., Hasselmo, M., Solomon, P., & Gluck, M.A. (1996). A computational model of classification conditioning after septo-hippocampal disruption. Neurobiology of Learning and Memory, 66, 51–66.

    Article  PubMed  Google Scholar 

  • Myers, C.D., Ermita, B.E., Hasselmo, M., & Gluck, M.A. (1998). Further implications of a computational model of septo-hippocampal cholinergic modulation in eyeblink conditioning. Psychobiology, 26(1), 1–20.

    Google Scholar 

  • Myers, C.E., & Gluck, M.A. (1994). Context, conditioning and hippocampal representation. Behavioral Neuroscience, 108(5), 835–847.

    Article  PubMed  Google Scholar 

  • Myers, C.E., Gluck, M.A., & Granger, R. (1995). Dissociation of hippocampal and entorhinal function in associative learning: A computational approach. Psychobiology, 23(2), 116–138.

    Google Scholar 

  • O’Keefe, J., 7 Nadel, L. (1978). The Hippocampus as a Cognitive Map. Oxford: Clarendon University Press.

    Google Scholar 

  • Parker, D. (1985). Learning Logic. Center for Computational Research in Economics and Management Science, MIT Press.

    Google Scholar 

  • Penick, W., & Solomon, P. (1991). Hippocampus, context, and conditioning. Behavioral Neuroscience, 105(5), 611–617.

    Article  PubMed  Google Scholar 

  • Port, R., & Patterson, M. (1984). Fimbrial lesions and sensory preconditioning. Behavioral Neuroscience, 98, 584–589.

    PubMed  Google Scholar 

  • Rescorla, R.A., & Holland, P.C. (1977). Associations in Pavlovian conditioned inhibition. Learning & Motivation, 8, 429–447.

    Google Scholar 

  • Rescorla, R.A., & Wagner, A. (1972). A theory of Pavlovian conditioning: Variations in the effectiveness of reinforcement and non-reinforcement. In A. Black & W. Prokasy (Eds.), Classical Conditioning II: Current Research and Theory, (pp. 64–99). New York: Appleton-Century-Crofts.

    Google Scholar 

  • Reilly, S., Harley, C., & Revusky, S. (1993). Ibotenate lesions of the hippocampus enhance latent inhibition in conditioned taste aversion and increase resistance to extinction in conditioned taste preference. Behavioral Neuroscience, 107(6), 996–1004.

    PubMed  Google Scholar 

  • Rudy, J., & Sutherland, R. (1989). The hippocampal formation is necessary for rats to learn and remember configural discriminations. Behavioral Brain Research, 34, 97–109.

    Google Scholar 

  • Rumelhart, D., Hinton, G., & Williams, R. (1986). Learning internal representations by error propagation. In D. Rumelhart & J. McClelland (Eds.), Parallel Distributed Processing: Explorarions in the Microstructure Cognition, (pp. 318–362). Cambridge, MA: MIT Press.

    Google Scholar 

  • Salafia, W.R., Romano, A.G., Tynan, T., & Host, K.C. (1977). Disruption of rabbit (oryctolagus cuniculus) nictitating membrane conditioning by post trial electrical stimulation of hippocampus. Physiology & Behavior, 18, 207–212.

    Article  Google Scholar 

  • Salafia, W.R., Chiaia, N.L., & Ramirez, J.J. (1979). Retardation of rabbit nictitating membrane conditioning by subseizureelectrical simulation of hippocampus. Physiology & Behavior, 22, 451–455.

    Google Scholar 

  • Schmaltz, L.W., & Theios, J. (1972). Acquisition and extinction of a classically conditioned response in hippocampectomized rabbits (oryctolagus cuniculus). Journal of Comparative and Physiological Psychology, 79(2), 328–333.

    PubMed  Google Scholar 

  • Schousbce, A,, Bachevalier, J., Braak, H., Heinemann, U., Nitsch, R., Schroder, H., & Wetmore, C. (1993). Structural correlates and cellular mechanisms in entorhinal-hippocampal dysfunction. Hippocampus, 3, 293–302.

    Google Scholar 

  • Sears, L.L., & Steinmetz, J.E. (1991). Dorsal accessory inferior olive activity diminishes during acquisition of the rabbit classically conditioned eyelid response. Brain Research, 545, 144–122.

    Article  Google Scholar 

  • Solomon, P. (1977). Role of the hippocampus in blocking and conditioned inhibition of the rabbit’s nictitating membrane. Journal of Comparative and Physiological Psychology, 91(2), 407–417.

    PubMed  Google Scholar 

  • Solomon, P., & Moore, J.W. (1975). Latent inhibition and stimulus generalization of the classically conditioned nictitating membrane response in rabbits (oryctolagus cuniculus) following dorsal hippocampal ablation. Journal of comparative and Physiological Psychology, 89, 1192–1203.

    PubMed  Google Scholar 

  • Solomon, P., & Gottfried, K. (1981). The septohippocampal cholinergic system and classical conditioning of the rabbit’s nictitating membrane response. Journal of Comparative and Physiological Psychology, 95(2), 322–330.

    PubMed  Google Scholar 

  • Solomon, P., Solomon, S., Van der Schaaf, E., & Perry, H. (1983). Altered activity in the hippocampus is more detrimental to classical conditioning than removing the structure. Science, 220, 329–331.

    PubMed  Google Scholar 

  • Steinmetz, J.E., & Sengelaub, D.R. (1992). Possible conditioned stimulus pathway for classical eyelid conditioning in rabbits: I. Anatomical evidence for direct projections from the pontine nuclei to the cerebellar interpositus nucleus. Behavioral & Neural Biology, 57, 103–115.

    Google Scholar 

  • Thompson, R.F. (1972). Sensory preconditioning. In R. Thompson & J. Voss (Eds.), Topics in Learning and Performance, (pp. 105–129). New York: Academic Press.

    Google Scholar 

  • Thompson, R.F. (1986). The neurobiology of learning and memory. Science, 233, 941–947.

    PubMed  Google Scholar 

  • van Hoesen, G., & Pandya, D. (1975). Some connections of the entorhinal (area 28) and perirhinal (area 35) cortices of the rhesus monkey. I. Temporal lobe afferents. Brain Research, 95, 1–24.

    PubMed  Google Scholar 

  • von der Malsburg, C. (1973). Self-organizating of orientation sensitive cells in the striate cortex. Kybernetik, 14, 85–100.

    Article  PubMed  Google Scholar 

  • Walkenbach, J., Haddad, N.F. (1980). The Rescorla-Wagner theory of conditioning. A review of the literature. Psychological Record, 30, 497–509.

    Google Scholar 

  • Werbos, P. (1974). Beyond Regression: New Tools for Prediction and Analysis in the Behavioral Science. Unpublished Ph.D. dissertation: Harvard University.

    Google Scholar 

  • Widrow, B., & Hoff, M. (1960). Adaptive switching circuits. Institute of Radio Engineers, Western Electronic Show and Convention Record, 4, 96–104.

    Google Scholar 

  • Zackheim, J., Myers, C.E., Gluck, M.A. (1998). A temporally sensitive recurrent network model of occasion setting. In N.A. Schmajuk & P.C. Holland (Eds.), Occasion Setting: Associative Learning and Cognition in Animals, (pp. 319–342). Washington, D.C.: American Psychological Association.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

Allen, M.T., Myers, C.E., Gluck, M. (2002). Neural Network Approaches to Eyeblink Classical Conditioning. In: Woodruff-Pak, D.S., Steinmetz, J.E. (eds) Eyeblink Classical Conditioning: Volume 2. Springer, Boston, MA. https://doi.org/10.1007/0-306-46897-2_10

Download citation

  • DOI: https://doi.org/10.1007/0-306-46897-2_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-7923-7863-1

  • Online ISBN: 978-0-306-46897-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics