Identifying the Mechanisms of Trypanotolerance in Cattle

Part of the World Class Parasites book series (WCPA, volume 1)


Some West African cattle breeds such as N’Dama have survived in tsetse-infected areas for thousands of years and are productive under trypanosome challenge, a trait known as trypanotolerance. Elucidation of the mechanisms of trypanotolerance could lead to new options for disease control. This review describes responses in trypanotolerant and trypanosusceptible breeds of cattle, and compares them with responses in mouse models. It focuses on the roles of haemopoietic tissue, T lymphocytes and antibodies in resistance to trpanosomiasis.

Key words

N’Dama trypanotolerance T. congolense T. vivax parasitemia anemia chimera T cell depletion 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andrianarivo, A.G., P. Muiya, M. Opollo, and L.L. Logan-Henfrey. 1995. Trypanosoma congolense: comparative effects of a primary infection on bone marrow progenitor cells from N’Dama and Boran cattle. Experimental Parasitology 80:407–418.PubMedCrossRefGoogle Scholar
  2. Assoku, R.K.G., and P.R. Gardiner. 1989. Detection of antibodies to platelets and erythrocytes during haemorrhagic Trypanosoma vivax infection of Ayrshire cattle. Veterinary Parasitology. 31:199–216.PubMedCrossRefGoogle Scholar
  3. Authié, E., and T. Pobel. 1990. Serum haemolytic complement activity and C3 levels in bovine trypanosomosis under natural conditions of challenge — early indications of individual susceptibility to disease. Veterinary Parasitology. 35:43–59.PubMedGoogle Scholar
  4. —, E., D.K. Muteti, Z.R. Mbawa, J.D. Lonsdale-Eccles, P. Webster, and C. W. Wells. 1992. Identification of a 33-kilodalton immunodominant antigen of Trypanosoma congolense as a cysteine protease. Molecular and Biochemical Parasitology. 56:103–116.PubMedGoogle Scholar
  5. —, G. Duvallet, C. Robertson, and D.J.L. Williams. 1993. Antibody responses to a 33 kDa cysteine protease of Trypanosoma congolense: relationship to ‘trypanotolerance’ in cattle. Parasite Immunology. 15:465–474.PubMedGoogle Scholar
  6. —, E., D.K. Muteti, and D.J.L. Williams. 1993. Antibody responses to invariant antigens of Trypanosoma congolense in cattle of differing susceptibility to trypanosomiasis. Parasite Immunology. 15:101–11PubMedGoogle Scholar
  7. Baker, R.L., D.M. Mwamachi, J.O. Audho, E.O. Aduda, and W. Thorpe. 1999. Genetic resistance to gastro-intestinal nematode parasites in Red Maasai, Dorper and Maasai × Dorper ewes in the sub-humid tropics. Animal Science 69:335–344Google Scholar
  8. Bakhiet, M., T. Olsson, P. Van der Meide, and K. Kristensson. 1990. Depletion of CD8+ T cells suppresses growth of Trypanosoma brucei brucei and interferon-gamma production in mice. Clinical Experimental Immunology, 81:195–199.Google Scholar
  9. Beschin, A., L. Brys, S. Magez, M. Radwanska, and P. De Baetselier. 1998. Trypanosoma brucei infection elicits nitric oxide-dependent and nitric oxide-independent suppressive mechanisms. Journal of Leukocyte Biology. 63:429–439.PubMedGoogle Scholar
  10. Buza, J.J., M. Sileghem, P. Gwakisa, and J. Naessens. 1997. CD5+ B lymphocytes are the main source of antibodies reactive with non-parasite antigens in Trypanosoma congolense-infected cattle. Immunology, 92:226–233.PubMedCrossRefGoogle Scholar
  11. —, and J. Naessens. 1999. Trypanosome non-specific IgM antibodies detected in serum of Trypanosoma congolense-infected cattle are polyreactive. Veterinary Immunology and Immunopathology, 69:1–9.PubMedCrossRefGoogle Scholar
  12. Crowe, J.S., A.G. Lamont, J.D. Barry, and K. Vickerman. 1984. Cytotoxicity of monoclonal antibodies to Trypanosoma brucei. Transactions of the Royal Society of Tropical Medicine and Hygiene. 78:508–513.PubMedCrossRefGoogle Scholar
  13. Dargie, J. D., P.K. Murray, M. Murray, W.R.I. Grimshaw, and W.I.M. McIntyre. 1979. Bovine trypanosomiasis: the red cell kinetics of N’Dama and Zebu cattle infected with Trypanosoma congolense. Parasitology 78:271–286.PubMedCrossRefGoogle Scholar
  14. Darji, A., A. Beschin, M. Sileghem, H. Heremans, L. Brys, and P. De Baetselier. 1996. In vitro simulation of immunosuppression caused by Trypanosoma brucei: active involvement of gamma interferon and tumor necrosis factor in the pathway of suppression. Infection and Immunity. 64:1937–1943.PubMedGoogle Scholar
  15. Ellis, J.A., J.R. Scott, N.D. Machugh, G. Gettingby, and W.C. Davis. 1986. Peripheral blood leucocytes subpopulation dynamics during Trypanosoma congolense infection in Boran and N’Dama cattle: an analysis using monoclonal antibodies and flow cytometry. Parasite Immunology. 9:363–378.Google Scholar
  16. Epstein, H., and I.L. Mason. 1983. Cattle. In Evolution of domesticated animals. I.L. Mason (ed.). Longman, London & New York, p. 6–27.Google Scholar
  17. Flynn, J.N., and M. Sileghem. 1993. Immunosuppression in trypanotolerant N’Dama cattle following Trypanosomacongolense infection. Parasite Immunology.15: 547–552.PubMedGoogle Scholar
  18. Goerdt, S., and C.E. Orfanos. 1999. Other functions, other genes: alternative activation of antigen-presenting cells. Immunity. 10:137–42.PubMedCrossRefGoogle Scholar
  19. Griffin, L., and E.W. Allonby 1979. Trypanotolerance in breeds of sheep and goat with an experimental infection of Trypanosoma congolense. Veterinary Parasitology. 5:975–.CrossRefGoogle Scholar
  20. Hanotte, O., C.L. Tawah, D.G. Bradley, M. Okomo, Y. Verjee, J. Ochieng, and J.E.O. Rege. 2000. Geographic distribution and frequency of a taurine Bos taurus and an indicine Bos indicus Y specific allele amongst sub-Saharan African cattle breeds. MolecularEcology. 9: 387–396.Google Scholar
  21. Kemp S.J., and A.J. Teale. 1998. Genetic basis oftrypanotolerance in cattle and mice. ParasitologyToday, 14: 450–454.Google Scholar
  22. Luckins, A.G. 1976. The immune response of zebu cattle to infection with Trypanosoma congolense and T. vivax. Annals of Tropical Medicine and Parasitology.70: 133–145.PubMedGoogle Scholar
  23. Magez, S., M. Geuskens, A. Beschin, H. del Favero, H. Verschueren, R. Lucas, E. Pays, and P. de Baetselier. 1997. Specific uptake of tumor necrosis factor-alpha is involved in growth control of Trypanosoma brucei. Journal Cellular Biology. 137: 715–727.Google Scholar
  24. —, B. Stijlemans, M. Radwanska, E. Pays, M.A.J. Ferguson and P. De Baetselier. 1998. The glycosyl-inositol-phosphateanddimyristoylglycerol moieties of the glycosylphosphatidylinositol anchor of the Trypanosome variant-specific surface glycoprotein are distinct macrophage-activating factors. Journal of Immunology,160: 1949–1956.Google Scholar
  25. Mbawa, Z.R., I.D. Gumm, E. Shaw, and J.D. Lonsdale-Eccles. 1992. Characterisation of a cysteine protease from bloodstream forms of Trypanosoma congolense. European Journal of Biochemistry. 204:371–379.PubMedCrossRefGoogle Scholar
  26. Mertens, B., K. Taylor, C. Muriuki, and M. Rocchi. 1999. Cytokine mRNA profiles in trypanotolerant and trypanosusceptible cattle infected with the protozoan parasite Trypanosoma congolense: protective role for interleukin-4? Journal of Interferon and Cytokine Research. 19: 59–65.PubMedGoogle Scholar
  27. Muranjan, M., Q. Wang, Y.L. Li, E. Hamilton, F.P. Otieno-Omondi, J. Wang, A. Van Praagh, J.G. Grootenhuis, and S.J. Black. 1997. The trypanocidal Cape buffalo serum protein is xanthine oxidase. Infection and Immunity 65: 3806–3814.PubMedGoogle Scholar
  28. Murray, M., W.I. Morrison, and D.D. Whitelaw. 1982. Host susceptibility to African trypanosomiasis: Trypanotolerance. Advances in Parasitology. 21:1–68.PubMedCrossRefGoogle Scholar
  29. —, and T.M. Dexter. 1988. Anaemia in bovine African trypanosomiasis. ActaTropica. 45: 389–432.Google Scholar
  30. Musoke, A.J., V.M. Nantulya, A.F. Barbet, F. Kironde, and T.C. McGuire. 1981. Bovine immune response to African trypanosomes, specific antibodies to variable surface glycoproteins of Trypanosoma brucei. Parasite Immunology. 3: 97–106.PubMedGoogle Scholar
  31. Mutayoba, B.M., S. Gombe, E.N. Waindi, and G.P. Kaaya. 1989. Comparative trypanotolerance ofthe small East African breed ofgoats from different localities to Trypanosomacongolense infection. Veterinary Parasitology. 31:95–.PubMedCrossRefGoogle Scholar
  32. Naessens, J., and D.J.L. Williams. 1992. Characterization and measurement of CD5+ B cells in normal and Trypanosoma congolense-infected cattle. European Journal of Immunology.22: 1713–1718.PubMedGoogle Scholar
  33. —, C.J. Howard, and J. Hopkins. 1997. Nomenclature and characterisation of leukocyte differentiation antigens in ruminants. Immunology Today. 18:365–368.PubMedCrossRefGoogle Scholar
  34. —, J., J.P. Scheerlinck, E.V. De Buysscher, D. Kennedy, and M. Sileghem. 1998. Total depletion of T cell subpopulations and loss of memory in cattle using mouse monoclonal antibodies. Veterinary Immunology and Immunopathology. 64: 219–234.PubMedCrossRefGoogle Scholar
  35. —, J., S.G.A. Leak, D.J. Kennedy, S.J. Kemp, and S.J. Teale. 2001. Responses of bovine chimaeras combining trypanosomiasis resistant and susceptible genotypes to experimental infection with Trypanosoma congolense. Submitted.Google Scholar
  36. Ngaira, J.M., V.M. Nantulya, A.J. Musoke, and K. Hirumi. 1983. Phagocytosis of antibody-sensitized trypanosoma brucei in vitro by bovine peripheral blood monocytes. Immunology.49: 393–400.PubMedGoogle Scholar
  37. Nielsen K., J. Sheppard, W. Holmes, and I. Tizard. 1978. Experimental bovine trypanosomiasis: changes in the catabolism of serum immunoglobulins and complement components in infected cattle. Immunology. 35: 817–826.PubMedGoogle Scholar
  38. Nilsson P., S. Kang’a, K. Rottengatter, U. Suebeck, F. Iraqi, J. Mwakaya, D. Mwangi, J.E. Womack, T. Goldammer, M. Schwerin, D. Bradley, M. Agaba, K. Sugimoto, A. Gelhaus, R. Horstmann, A. Teale, S. Kemp, and O. Hanotte. 1999. Radiation hybrid maps of candidate trypanotolerance regions in cattle. In Proceedings of the International Symposium Candidate Genes for Animal Health, 25–27 aout 1999. Arch. Tierz. Dummerstorf 42, Special Issue, Rostock/Germany, p. 123–125.Google Scholar
  39. Ochsenstein, A.F., and R.M. Zinkernagel. 2000. Natural antibodies and complement link innate and acquired immunity. Immunology Today. 21: 624–630Google Scholar
  40. Owen, R.D. 1945. Immunogenetic consequences of vascular anastomoses between bovine twins. Science. 102:400–401.PubMedGoogle Scholar
  41. Paling, R.W., S.K. Moloo, J.R. Scott, F.A. McOdimba, L.L. Logan-Henfrey, M. Murray, and D.J. Williams. 1991. Susceptibility of N’Dama and Boran cattle to tsetse-transmitted primary and rechallenge infections with ahomologous serodeme of Trypanosoma congolense. Parasite Immunology. 13: 413–425.PubMedGoogle Scholar
  42. —, S.K. Moloo, J.R. Scott, G. Gettinby, F.A. McOdimba, and M. Murray. 1991. Susceptibility of N’Dama and Boran cattle to sequential challenges with tsetse-transmitted clones of Trypanosoma congolense. Parasite Immunology. 13: 427–45.PubMedGoogle Scholar
  43. Pinder, M., F. Fumoux, A. van Melick, and G.E. Roelants. 1987. The role of antibody in natural resistance to African trypanosomiasis. Veterinary Immunology and Immunopathology. 17:325–32.PubMedCrossRefGoogle Scholar
  44. Portela, M., J. Raper, and S. Tomlinson. 2000. An investigation in the mechanism of trypanosome lysis by human serum factors. Molecular and Biochemical Parasitology. 110:273–282.Google Scholar
  45. Russo, D.C.W., D.J.L. Williams, and D.J. Grab. 1994. Mechanisms for the elimination of potentially lytic complement-fixing variable surface glycoprotein antibody-complexes in Trypansoma brucei. Parasitology Research. 80:487–492.PubMedCrossRefGoogle Scholar
  46. Sileghem, M., and J.N. Flynn. 1992. Suppression of interleukin 2 secretion and interleukin 2 receptor expression during tsetse-transmitted trypanosomiasis in cattle. European. Journal of Immunology. 22: 767–773.PubMedGoogle Scholar
  47. —, J.N. Flynn, R. Saya, and D.J.L. Williams. 1993. Secretion of costimulatory cytokines by monocytes and macrophages during infection with Trypanosoma (Nannomonas) congolense in susceptible and tolerant cattle. VeterinaryImmunologyand Immunopathology. 37: 123–134.Google Scholar
  48. —, A. Darji, P. De Baetselier, J.N. Flynn, and J. Naessens. 1994. African Trypanosomiasis. In Parasitic infections and the immune system. F. Kierszenbaum (ed.). Academic Press., San Diego, CA, p. 1–51Google Scholar
  49. —, J.N. Flynn, L.L. Logan-Henfrey, and J.A. Ellis. 1994. Tumor necrosis factor a production by monocytes from cattle infected with Trypanosoma (Duttonella) vivax and Trypanosoma (Nannomonas) congolense: Correlation with severity of anemia associated with the disease. Parasite Immunology. 16: 51–54.PubMedGoogle Scholar
  50. —, and J. Naessens. 1995. Are CD8 T cells involved in control of African trypanosomiasis in a natural host environment? European Journal of Immunology. 25: 1965–1971.PubMedGoogle Scholar
  51. —, R. Saya, D.J. Grab, and J. Naessens. 2001, An accessory role for the diacylglycerol moiety of variable surface glycoprotein of African trypanosomes in the stimulation of bovine monocytes. Veterinary Immunology and Immunopathology, 78,325–339.PubMedCrossRefGoogle Scholar
  52. Sternberg, J., and McGuigan F. 1992. Nitric oxide mediates suppression of T-cell responses in murine Trypanosoma brucei infection. European Journal of Immunology. 22:2741–2744.PubMedGoogle Scholar
  53. Tabel, H., G.J. Losos, and M.G. Maxie. 1980. Experimental bovine trypanosomiasis (Trypanosoma vivax and T. congolense). II. Serum levels of total protein, albumin, haemolytic complement, and complement component C3. Tropenmedizin und Parasitologie.32: 149–153.Google Scholar
  54. Taylor, K.A., V. Lutje, and B. Mertens. 1996. Nitric oxide synthesis is depressed in Bos indicus cattle infected with Trypanosoma congolense and T. vivax and does mediate T cell suppression. Infection and Immunity. 64: 4115–4122.PubMedGoogle Scholar
  55. —, V. Lutje, D. Kennedy, E. Authié, A. Boulange, L.L. Logan-Henfrey, B. Gichuki, and G. Gettinby. 1996. Trypanosoma congolense: B-lymphocyte responses differ between trypanotolerant and trypanosusceptible cattle. Experimental Parasitology.83: 106–116.PubMedCrossRefGoogle Scholar
  56. —, B. Mertens, V. Lutje, and R. Saya 1998. Trypanosoma congolense infection of trypanorolerant N’Dama (Bos taunus) cattle is associated with decreased secretion of nitric oxide by interferon-γ-activated monocytes and increased transcription of interleukin-10. Parasite Immunology. 20: 421–429.PubMedGoogle Scholar
  57. Teale A., M. Agaba, S.T. Clapcott, A. Gelhaus, C.H. Haley, 0. Hanotte, R. Horstmann, F. Iraqi, S.T. Kemp, P. Nilsson, M. Schwerin, K. Sekikawa, M. Soller, Y. Sugimoto, and J. Womack. 1999. Resistance to trypanosomosis: of markers, genes and mechanisms. In Proceedings of the International Symposium Candidate Genes for Animal Health, 25–27 aout 1999. Arch. Tierz. Dummerstorf 42, Special Issue, Rostock/Germany, p. 36–41.Google Scholar
  58. Toure, S.M., M. Seye, T. Dieye, and M. Mbengue 1983. Trypanotolerance-comparative pathological survey in Djallonke and Fulane sheep of the Sahel. In International Scientific Council for Trypanosomiasis Research and Control, 17th meeting, Arusha, Tanzania, 1981. Organization of African Unity OAU/STRC, publication nr 112. p326.Google Scholar
  59. Traore-Leroux, T., F. Fumoux, J. Chaize, and G.E. Roelants. 1987. Trypanosoma brucei: polyamine oxidase mediated trypanolytic activity in the serum of naturally resistant cattle. Experimental Parasitology. 64:401–409.PubMedCrossRefGoogle Scholar
  60. Trail J.C.M., G.D.M. ďIeteren, A. Feron, O. Kakiese, M. Mulungo, and M. Pelo. 1991. Effect of trypanosome infection, control of parasitaemia and control of anaemia development on productivity iof N’Dama cattle. Acta Tropica. 48: 37–45.CrossRefGoogle Scholar
  61. —, G.D.M. ďIeteren, J.C. Maille, and G. Yangari. 1991. Genetic aspects of control of anaemia development in trypanotolerant N’Damacattle. Acta Tropica. 48: 285–291.PubMedCrossRefGoogle Scholar
  62. Wei, G., L. Qualtiere, and H. Tabel. 1990. Trypanosoma congolense: complement-independent immobilization by a monoclonal antibody. Experimental Parasitology. 70:483–485.PubMedCrossRefGoogle Scholar
  63. Williams, D.J.L., J. Naessens, J.R. Scott and F.A. McOdimba. 1991. Analysis of peripheral leucocyte populations in N’Damaand Boran cattle following a rechallenge infectionwith Trypanosoma congolense. Parasite Immunology. 13:171–185.PubMedGoogle Scholar
  64. —, K. Taylor, J. Newson., B. Gichuki, and J. Naessens. 1996. The role of variable surface glycoprotein antibody responses in bovine trypanotolerance. Parasite Immunology. 18:209–218.PubMedCrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  1. 1.International Livestock Research InstituteNairobiKenya
  2. 2.Department of PediatricsJohns Hopkins University School of MedicineBaltimoreUSA
  3. 3.I.W.T.BrusselsBelgium

Personalised recommendations