Skip to main content

Tsetse Vector Based Strategies for Control of African Try Panosomiasis

  • Chapter

Part of the book series: World Class Parasites ((WCPA,volume 1))

Abstract

The application of recombinant DNA technologies for molecular genetic approaches promises to bring about new strategies for control of vector-borne-diseases. These approaches can also enhance the existing tools. Here, one application of this technology is presented where parasite refractory insects are engineered that can then be spread to replace their susceptible counterparts in the field to reduce disease transmission. The approach presented here utilizes the symbiotic bacteria that are naturally harbored in tsetse to express foreign genes. As these naturally harbored organisms reside in the same tissues as trypanosomes, the expression of anti-trypanosoma1 products in these bacterial symbionts can adversely effect parasite biology. The use of Wolbachia symbionts, which are known to induce phenomena such as cytoplasmic incompatibility, is discussed as a potential gene driving system.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aksoy, S. (1995). “Wigglesworthia gen. nov. and Wigglesworthia glossinidia sp. nov., taxa consisting of the mycetocyte-associated, primary endosymbionts of tsetse flies.” Int J Syst Bacteriol 45(4): 848–51.

    Article  PubMed  CAS  Google Scholar 

  • Aksoy, S. (2000). “Tsetse: a haven for microorganisms.” Parasitology Today 16(3): 114–119.

    Article  PubMed  CAS  Google Scholar 

  • Aksoy, S., X. Chen, et al. (1997). “Phylogeny and potential transmission routes of midgut-associated endosymbionts of tsetse (Diptera:Glossinidae).” Insect Mol Biol 6(2): 183–90.

    PubMed  CAS  Google Scholar 

  • Aksoy, S., I. Maudlin, et al. (2001). “Prospects for control of African trypanosomiasis by tsetse vector manipulation.” Trends in Parasitology 17(1): 29–35.

    Article  PubMed  CAS  Google Scholar 

  • Aksoy, S.. A. A. Pourhosseini, et al. (1995). “Mycetome endosymbionts of tsetse flies constitute a distinct lineage related to Enterobacteriaceae.” Insect Mol Biol 4(1): 15–22

    PubMed  CAS  Google Scholar 

  • Bandi C, A. Dunn, et al. (2000). “Inherited Microorganims, Sex-specific Virulence and Reproductive Parasitism.” Parasitology Today in press.

    Google Scholar 

  • Beard, C., P. Mason, etal. (1992). “Transformation of an insect symbiont and expression of a foreign gene in the Chagas’ disease vector Rhodnius prolixus.” Am J Trop Med Hyg 46(2): 195–200.

    PubMed  CAS  Google Scholar 

  • Beard, C., S. O’Neill, et al. (1993). “Modification of arthropod vector competence via symbiotic bacteria.” Parasitology Today 9(5): 179–183.

    Article  PubMed  CAS  Google Scholar 

  • Beard, C. B., S. L. O’Neill, et al. (1993). “Genetic transformation and phylogeny of bacterial symbionts from tsetse.” Insect Mol Biol 1(3): 123–31.

    PubMed  CAS  Google Scholar 

  • Buchner, P. (1965). Endosymbiosis of Animals with Plant Micro-organisms. New York, Interscience Publishers Inc.: 210–338.

    Google Scholar 

  • Catteruccia, F., T. Nolan, et al. (2000). “Stable germline transformation of the malaria mosquito Anopheles stephensi.” Nature 405 (6789): 959–62.

    Article  PubMed  CAS  Google Scholar 

  • Chen, X., L. Song, et al. (1999). “Concordant evolution of a symbiont with its host insect species: Molecular phylogeny of genus Glossina and its bacteriome-associated endosymbiont, Wigglesworthia glossinidia.” Journal of Molecular Evolution 48 (1): 49–58.

    PubMed  CAS  Google Scholar 

  • Cheng, Q. and S. Aksoy (1999). “Tissue tropism, transmission and expression of foreign genes in vivo in midgut symbionts of tsetse flies.” Insect Molecular Biology 8(1): 125–132.

    Article  PubMed  CAS  Google Scholar 

  • Cheng, Q., T. Ruel, et al. (2000). “Tissue distribution and prevalence of Wolbachia infections in tsetse flies, Glossina spp.” Medical and Veterinary Entomology 14(1): 51–55.

    Article  Google Scholar 

  • Dale, C. and I. Maudlin (1999). “Sodalisgen. nov. and Sodalis glossinidius sp. nov., a microaerophilic secondary endosymbiont of the tsetse fly Glossina morsitans morsitans.” Int J Sys Bacteriology 49 (1): 267–275.

    CAS  Google Scholar 

  • Durvasala, R., A. Gumbs, et al. (1997). “Prevention of insect borne disease: an approach using transgenic symbiotic bacteria.” Proceedings National Academy of Sciences USA 94: 3274–3278.

    Google Scholar 

  • Durvasula, R., A. Gumbs, et al. (1999). “Expression of a functional antibody fragment in the gut of Rhodnius prolixus via transgenic bacterial symbiont Rhodococcus rhodnii.” Med Vet Entomology 13 (2): 115–119.

    CAS  Google Scholar 

  • Ekwanzala, M., J. Pepin, et al. (1996). “In the heart of darkness:sleeping sickness in Zaire.” Lancet 348: 1427–1430.

    Article  PubMed  CAS  Google Scholar 

  • Gouteux, J. and D. Sinda (1990). “Community participation in the control of tsetse flies. Large scale trials using the pyramid trap in the Congo.” Trop Med Parasitology 41(1):49–55.

    CAS  Google Scholar 

  • Kokoza, V., A. Ahmed, et al. (2000). “Engineering blood meal-activated systemic immunity in the yellow fever mosquito, Aedes aegypti.” Proc Natl Acad Sci USA 97(16):9144–9.

    Article  PubMed  CAS  Google Scholar 

  • Ma, W.-C. and D. L. Denlinger (1974). “Secretorydischarge and microflora of milk gland in tsetse flies.” Nature 247: 301–303.

    Article  Google Scholar 

  • McNeil, D. (2000). Drug Companies and Third World: A case study in neglect. New York Times. NY: 1.

    Google Scholar 

  • Moore, A., M. Richer, et al. (1999). “Resurgence of sleeping sickness in Tambura County, Sudan.” Am J Trop Med Hyg 61(2): 315–8.

    PubMed  CAS  Google Scholar 

  • Nantulya, V. M. and S. K. Moloo (1988). “Suppression of cyclical development of Trypanosoma brucei brucei in Glossina morsitans centralis by an anti-procyclics monoclonal antibody.” Acta Trop 45 (2): 137–44.

    PubMed  CAS  Google Scholar 

  • Nogge, G. (1976). “Sterilityin tsetse flies (Glossina morsitans Westwood) caused by loss of symbionts.” Experientia 32 (8): 995–6.

    Article  PubMed  CAS  Google Scholar 

  • Nogge, G. (1981). “Significance of symbionts for the maintenance of an optional nutritional state for successful reproduction in hematophagous arthropods.” Parasitology 82: 101–104.

    Google Scholar 

  • O’Neill, S. L., R. H. Gooding, et al. (1993). “Phylogenetically distant symbiotic microorganisms reside in Glossina midgut and ovary tissues.” Med Vet Entomol 7(4):377–83.

    PubMed  Google Scholar 

  • Shahid, M. A. and C. F. Curtis (1987). “Radiation sterilization and cytoplasmic incompatibility in a “tropicalized” strain of the Culex pipiens complex (Diptera: Culicidae).” J Med Entomol 24 (2): 273–4.

    PubMed  CAS  Google Scholar 

  • Sinkins, S. P., H. R. Braig, et al. (1995). “Wolbachia superinfections and the expression of cytoplasmic incompatibility.” Proc R Soc Lond B Biol Sci 261 (1362): 325–30.

    Article  CAS  Google Scholar 

  • Sinkins, S.P., C.F. Curtis, et al. (1997). The potential application of inherited symbiont systems to pest control. Influential Passengers. S. L. O’Neill, A. A. Hoffmann and J. H. Werren. Oxford, Oxford University Press: 155–175.

    Google Scholar 

  • Turelli, M. and A. A. Hoffmann (1991). “Rapid spread of an inherited incompatibility factor in California Drosophila.” Nature 353 (6343):440–2.

    Article  PubMed  CAS  Google Scholar 

  • Vreysen, M. J., K. M. Saleh, et al. (2000). “Glossina austeni (Diptera: Glossinidae) eradicated on the Island of Unguga, Zanzibar, using the sterile insect technique.” J. Econ. Entomology 93:123–135.

    CAS  Google Scholar 

  • Welburn, S. and I. Maudlin (1999). “Tsetse-trypanosome interactions: Rites of Passage.” Parasitology Today 15(10): 399–403.

    Article  PubMed  CAS  Google Scholar 

  • Welburn, S. C., I. Maudlin, et al. (1987). “In vitro cultivation of rickettsia-like-organisms from Glossina spp.” Ann Trop Med Parasitol 81 (3): 331–5.

    PubMed  CAS  Google Scholar 

  • Zhou, W., F. Rousset, et al. (1998). “Phylogenyand PCR-based classification of Wolbachia strains using WSP gene sequences.” Proc Royal Society London Ser B Biological Sciences 265: 509–515.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

Aksoy, S. (2002). Tsetse Vector Based Strategies for Control of African Try Panosomiasis. In: The African Trypanosomes. World Class Parasites, vol 1. Springer, Boston, MA. https://doi.org/10.1007/0-306-46894-8_4

Download citation

  • DOI: https://doi.org/10.1007/0-306-46894-8_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-7923-7512-8

  • Online ISBN: 978-0-306-46894-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics