Skip to main content

Pseudohyphal and Invasive Growth in Saccharomyces Cerevisiae

Signal Transduction During Nutrient Limitation

  • Chapter

Part of the book series: Focus on Biotechnology ((FOBI,volume 2))

Abstract

Cells of the yeast Saccharomyces cerevisiae can undergo profound molecular, physiological and morphological modifications in response to a limited supply of essential nutrients, in particular carbon or nitrogen sources. These include a shift in transcription patterns, the modification of the cell cycle, a change in budding pattern and strongly polarised growth. Cells having undergone these modifications do not separate after cell division is completed and form chains of elongated cells called pseudohyphae or filaments. Cells growing as filaments are able to invade agar plates and other substrates, a phenomenon referred to as invasive growth. A network of signal transduction pathways governs this switch from yeast-like growth to pseudohyphal and invasive growth. Important elements of this network have been identified, including nutrient signal-receptors, GTP-binding proteins, components of the pheromone-dependent MAP kinase cascade, cAMP, and several transcription factors. In this review, we summarise our current knowledge in this rapidly progressing field. We focus particularly on the interactions between several signal transduction modules and on the different transcription factors, which are regulated by these signalling modules.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andrews, B. and Measday, V. (1998) The cyclin family of budding yeast: abundant use of a good idea. Trends Genet. 14: 66–72.

    Article  CAS  Google Scholar 

  • Bardwell, L., Cook, J. G., Voora, D., Baggott, D. M., Martinez, A. R., and Thorner, J. (1998a) Repression of yeast Ste12 transcription factor by direct binding of unphosphorylated Kss1 MAPK and its regulation by the Ste7 MEK. Genes Dev. 12: 2887–2898.

    CAS  Google Scholar 

  • Bardwell, L., Cook, J. G., Zhu-Shimoni, J. X., Voora, D., and Thorner, J. (1998b) Differential regulation of transcription: repression by unactivated mitogen-activated protein kinase Kss1 requires the Dig1 and Dig2 proteins. Proc. Natl. Acad. Sci. USA 95: 15400–15405.

    Article  CAS  Google Scholar 

  • Baur, M., Esch, R. K., and Errede, B. (1997) Co-operative binding interactions required for function of the Ty1 sterile responsive element. Mol. Cell. Biol. 17: 4330–4337.

    CAS  Google Scholar 

  • Blacketer, M. J., Koehler, C. M., Coats, S. G., Myers, A. M, and Madaule, P. (1993) Genetic control of dimorphism in Saccharomyces cerevisiae: involvement of the novel protein kinase homologue Elm1p and protein phosphatase 2A. Mol. Cell. Biol. 13: 5567–5581.

    CAS  Google Scholar 

  • Blacketer, M. J., Madaule, P., and Myers, A. M. (1994) The Saccharomyces cerevisiae mutation elm4-1 facilitates pseudohyphal differentiation and interacts with a deficiency in phosphoribosylpyrophosphate synthase activity to cause constitutive pseudohyphal growth. Mol. Cell. Biol. 14: 4671–4681

    CAS  Google Scholar 

  • Blacketer, M. J., Madaule, P., and Myers, A. M. (1995) Mutational analysis of morphologic differentiation in Saccharomyces cerevisiae. Genetics 140: 1259–1275.

    CAS  Google Scholar 

  • Cannon, J. F. and Tatchell, K. (1987) Characterisation of Saccharomyces cerevisiae genes encoding subunits of cyclic AMP-dependent protein kinase. Mol. Cell. Biol. 7: 2653–2663.

    CAS  Google Scholar 

  • Carstens, E., Lambrechts, M. G., and Pretorius, I. S. (1998) Flocculation, pseudohyphal development and invasive growth in commercial wine yeast strains. S. Afr. J. Enol. Vitic. 19: 52–61.

    CAS  Google Scholar 

  • Chandarlapaty, S. and Errede, B. (1998) Ash1, a daughter cell specific protein, is required for pseudohyphal growth of Saccharomyces cerevisiae. Mol. Cell. Biol. 18: 2884–2891.

    CAS  Google Scholar 

  • Colombo, S., Ma, P., Cauwenberg, L., Winderickx, J., Crauwels, M., Teunissen, A., Nauwelaers, D., de Winde, J. H., Gorwa, M. F., Colavizza, D., and Thevelein, J. M. (1998) Involvement of distinct G-proteins, Gpa2 and Ras, in glucose-and intracellular acidification-induced CAMP signalling in the yeast Saccharomyces cerevisiae. EMBO J. 17: 3326–3341.

    Article  CAS  Google Scholar 

  • Cook, J. G., Bardwell, L., Kron, S. J., and Thorner, J. (1996) Two novel targets of the MAP kinase Kss1 are negative regulators of invasive growth in the yeast Saccharomyces cerevisiae. Genes Dev. 10: 2831–2848.

    CAS  Google Scholar 

  • Cook, J. G., Bardwell, L., and Thorner, J. (1997) Inhibitory and activating functions for MAPK Kss1 in the S. cerevisiae filamentous growth signalling pathway. Nature 390: 85–88.

    CAS  Google Scholar 

  • Dickinson, J. R. (1994) Irreversible formation of pseudohyphae by haploid Saccharomyces cerevisiae. FEMS Microbiol. Lett. 119: 99–104.

    Article  CAS  Google Scholar 

  • Dickinson, J. R. (1996) ‘Fusel’ alcohols induce hyphal-like extensions and pseudohyphal formation in yeasts. Microbiol. 142: 1391–1397.

    CAS  Google Scholar 

  • Dolan, J. W., Kirkman, C., and Fields, S. (1989) The yeast Ste12 protein binds to the DNA sequence mediating pheromone induction. Proc. Natl. Acad. Sci. USA 86: 5703–5707.

    CAS  Google Scholar 

  • Edgington, N. P., Blacketer, M. J., Bierwagen, T. A., and Myers, A. M. (1999) Control of Saccharomyces cerevisiae filamentous growth by cyclin-dependent kinase Cdc28. Mol. Cell. Biol. 19: 1369–1380.

    CAS  Google Scholar 

  • Eide, D. and Guarente, L. (1992) Increased dosage of a transcriptional activator gene enhances iron-limited growth of Saccharomyces cerevisiae. Mol. Cell. Biol. 138: 347–354.

    CAS  Google Scholar 

  • Elion, E. A. (1995) Ste5: a meeting place for MAP kinases and their associates. Trends Cell. Biol. 5: 322–327.

    Article  CAS  Google Scholar 

  • Errede, B. and Ammerer, G. (1989) Ste12, a protein involved in cell-type-specific transcription and signal transduction in yeast, is part of protein-DNA complexes. Genes Dev. 3: 1349–1361.

    CAS  Google Scholar 

  • Estruch, F. and Carlson, M. (1990) Increased dosage of the MSN1 gene restores invertase expression in yeast mutants defective in the SNF1 protein kinase. Nucleic Acids Res. 18: 6959–6964.

    CAS  Google Scholar 

  • Evangelista, M., Blundell, K., Longline, M., Chow, C. J., Adames, N., Pringle, J. R., Peter, M., and Boone, C. (1997) Bni1p, a yeast formin linking Cdc42p and the actin cytoskeleton during polarised morphogenesis. Science 276: 118–121.

    Article  CAS  Google Scholar 

  • Fields, S. and Herskowitz, I. (1985) The yeast STE12 product is required for expression of two sets of cell-type specific genes. Cell 42: 923–930.

    Article  CAS  Google Scholar 

  • Fujita, A., Kikuchi, Y., Kuhara, S., Misumi, Y., Matsumoto, S., and Kobayashi, H. (1989) Domains of the SFL1 protein of yeasts are homologous to Myconcoproteins or yeast heat-shock transcription factor. Gene 85: 321–328.

    CAS  Google Scholar 

  • Gagiano, M., van Dyk, D., Bauer, F. F., Lambrechts, M. G., and Pretorius, I. S. (1999) Msn1p/Mss10p, Mss1 1p and Muc1p/Flo1 1p are part of a signal transduction pathway downstream of Mep2p regulating invasive growth and pseudohyphal differentiation in Saccharomyces cerevisiae. Mol. Microbiol. 31: 103–116.

    Article  CAS  Google Scholar 

  • Gavrias, V., Andrianopoulos, A., Gimeno, C. J., and Timberlake, W. E. (1996) Saccharomyces cerevisiae TEC1 is required for pseudohyphal growth. Mol. Microbiol. 19: 1255–1263.

    CAS  Google Scholar 

  • Gimeno, C. G. and Fink, G. R. (1994) Induction of pseudohyphal growth by overexpression of PHD1, a Saccharomyces cerevisiae gene related to transcriptional regulators of fungal development. Mol. Cell. Biol. 14: 2100–2112.

    CAS  Google Scholar 

  • Gimeno, C. G., Ljungdahl, P. O., Styles, C. A., and Fink, G. R. (1992) Unipolar cell divisions in the yeast S. cerevisiae lead to filamentous growth: regulation by starvation and RAS. Cell 68: 1077–1090.

    Article  CAS  Google Scholar 

  • Hammond, J. R. (1995) Genetically-modified brewing yeasts for the 21st century: Progress to date. Yeast 11: 1613–1627.

    Article  CAS  Google Scholar 

  • Herskowitz, I. (1995) MAP kinase pathways in yeast: for mating and more. Cell 80: 187–197.

    Article  CAS  Google Scholar 

  • Hill, C. S. and Treisman, R. (1995) Trancriptional regulation by extracellular signals: Mechanisms and specificity. Cell 80: 199–211.

    Article  CAS  Google Scholar 

  • Kobayashi, O., Suda, H., Ohtani, T., and Sone, H. (1996) Molecular cloning of the dominant flocculation gene FLO8 from Saccharomyces cerevisiae. Mol. Gen. Genet. 251: 707–715.

    CAS  Google Scholar 

  • Kron, S. J. (1997) Filamentous growth in budding yeast. Trends Microbiol. 5: 450–454.

    Article  CAS  Google Scholar 

  • Kron, S. J., Styles, C. A., and Fink, G. R. (1994) Symmetric cell division in pseudohyphae of the yeast Saccharomyces cerevisiae. Mol. Biol. Cell. 5: 1003–1022.

    CAS  Google Scholar 

  • Kruckeberg, A. L., Walsh, M. C., and Van Dam, K. (1998) How do yeast cells sense glucose? Bioessays 20: 972–976.

    Article  CAS  Google Scholar 

  • Kübler, E., Mösch, H.-U,, Rupp, S., and Lisanti, M. P. (1997) Gpa2p, a G protein a-subunit, regulates growth and pseudohyphal development in Saccharomyces cerevisiae via a CAMP-dependent mechanism. J. Biol. Chem. 272: 20321–20323.

    Google Scholar 

  • Kurjan, J. (1992) Pheromone response in yeast. Annu. Rev. Biochem. 61: 1097–1129.

    Article  CAS  Google Scholar 

  • Laloux, I., Dubois, E., Dewerchin, M., and Jacobs, E. (1990) TEC1, a gene involved in the activation of Ty1 and Ty1-mediated gene expression in Saccharomyces cerevisiae: cloning and molecular analysis. Mol. Cell. Biol. 10: 3541–3550.

    CAS  Google Scholar 

  • Lambrechts, M. G.; Pretorius, I. S., Marmur, J., and Sollitti, P. (1995) The S1, S2 and SGA1 ancestral genes for the STA glucoamylase genes all map to chromosome IX in Saccharomyces cerevisiae. Yeast 11: 783–787.

    Article  CAS  Google Scholar 

  • Lambrechts, M. G., Bauer, F. F., Marmur, J., and Pretorius, I. S. (1996a) Muc1, a mucin-like protein that is regulated by Mss10, is critical for pseudohyphal differentiation in yeast. Proc. Natl. Acad. Sci. USA 93: 8419–8424.

    Article  CAS  Google Scholar 

  • Lambrechts, M. G., Sollitti, P., Marmur, J., and Pretorius, I. S. (1996b) A multi-copy suppressor gene, MSS10, restores STA2 expression in Saccharomyces cerevisiae strains containing the STA10 repressor gene. Curr. Genet. 29: 523–529.

    Article  CAS  Google Scholar 

  • Leberer, E., Dignard, D., Harcus, D., Thomas, D. Y., and Whiteway, M. (1992) The protein kinase homologue Ste20p is required to link the yeast pheromone response G-protein βγ-subunits to downstream signalling components. EMBO J. 11: 4815–4824.

    CAS  Google Scholar 

  • Leberer, E., Wu, C., Leeuw, T., Fourest-Lieuvin, A., Segall, J. E., and Thomas, D. Y. (1997) Functional characterisation of yeast Ste20p protein kinase. EMBO J. 16: 83–97.

    Article  CAS  Google Scholar 

  • Leeuw, T,, Fourest-Lieuvin, A,, Wu, C., Chenevert, J., Clark, K., Whiteway, M. Thomas, D. Y., and Leberer, E. (1995) Pheromone response in yeast: association of Bem1p with proteins of the MAP kinase cascade and actin. Science 270: 1210–1213.

    CAS  Google Scholar 

  • Leeuw, T., Wu, C., Schrag, J. D., Whiteway, M. Thomas, D. Y., and Leberer, E. (1998) Interaction of a G-protein β-subunit with a conserved sequence in Ste20/PAK family protein kinases. Nature 391: 191–195.

    CAS  Google Scholar 

  • Levin, D. E. and Errede, B. (1995) The proliferation of MAP kinase signalling pathways in yeast. Curr. Biol. 7: 197–202.

    CAS  Google Scholar 

  • Lim, L., Manser, E., Leung, T., and Hall, C. (1996) Regulation of phosphorylation pathways by p21 GTPases. The p21 Ras-related Rho subfamily and its role in phosphorylation signalling pathways. Eur. J. Biochem. 242: 171–185.

    Article  CAS  Google Scholar 

  • Liu, H., Styles, C. A., and Fink, G. R. (1993) Elements of the yeast pheromone response pathway required for filamentous growth of diploids. Science 262: 1741–1744.

    CAS  Google Scholar 

  • Liu, H., Styles, C. A., and Fink, G. R. (1996) Saccharomyces cerevisiae S288C has a mutation in FLO8, a gene required for filamentous growth. Genetics 144: 967–978.

    CAS  Google Scholar 

  • Lo, W.-S. and Dranginis, A. M. (1996) FLO11, a yeast gene related to the STA genes, encodes a novel cell surface flocculin. J. Bacteriol. 178: 7144–7151.

    CAS  Google Scholar 

  • Lo, W.-S. and Dranginis, A. M. (1998) The cell surface flocculin Flo11 is required for pseudohyphae formation and invasion by Saccharomyces cerevisiae. Mol. Biol. Cell. 9: 161–171.

    CAS  Google Scholar 

  • Long, R. M., Singer, R. H., Meng, X., Gonzalez, I., Nasmyth, K., and Jansen, R. P. (1997) Mating type switching in yeast controlled by asymmetric localisation of ASH1 mRNA. Science 277: 383–387.

    Article  CAS  Google Scholar 

  • Lorenz, M. C. and Heitman, J. (1998a) Regulators of pseudohyphal differentiation in Saccharomyces cerevisiae identified through multi-copy suppressor analysis in ammonium permease mutant strains. Genetics 150: 1443–1457.

    CAS  Google Scholar 

  • Lorenz, M. C. and Heitman, J. (1998b) The MEP2 ammonium permease regulates pseudohyphal differentiation in Saccharomyces cerevisiae. EMBO J. 17: 1236–1247.

    CAS  Google Scholar 

  • Lorenz, M. C. and Heitman, J. (1997) Yeast pseudohyphal growth is regulated by GPA2, a G-protein α homologue. EMBO J. 16: 7008–7018.

    Article  CAS  Google Scholar 

  • Madden, K. and Snyder, M. (1998) Cell polarity and morphogenesis in budding yeast. Annu. Rev. Microbiol. 52: 687–744.

    Article  CAS  Google Scholar 

  • Madhani, H. D. and Fink, G. R. (1998) The riddle of MAP kinase signalling specificity. Trends Genet. 14: 151–155.

    Article  CAS  Google Scholar 

  • Madhani, H. D., Styles, C. A., and Fink, G. R. (1997) MAP kinases with distinct inhibitory functions impart signalling specificity during yeast differentiation. Cell 91: 673–684.

    Article  CAS  Google Scholar 

  • Marini, A.-M., Soussi-Boudekou, S., Vissers, S. and Andre, B. (1997) A family of ammonium transporters in Saccharomyces cerevisiae. Mol. Cell. Biol. 17: 4282–4293.

    CAS  Google Scholar 

  • Matsumoto, K., Uno, I., Oshima, Y., and Ishikawa, T. (1982) Isolation and characterisation of yeast mutants deficient in adenylate cyclase and CAMP-dependent protein kinase. Proc. Natl. Acad. Sci. USA 79: 2355–2359.

    CAS  Google Scholar 

  • Mendenhall, M. D., and Hodge, A. E. (1998) Regulation of Cdc28 cyclin-dependent protein kinase activity during the cell cycle of the yeast Saccharomyces cerevisiae. Microbiol. Mol. Biol. Rev. 62: 1191–1243.

    CAS  Google Scholar 

  • Mösch, H.-U. and Fink, G. R. (1997) Dissection of filamentous growth by transposon mutagenesis in Saccharomyces cerevisiae. Genetics 145: 671–684.

    Google Scholar 

  • Mösch, H.-U., Roberts, R. L., and Fink, G. R. (1996) Ras2 signals via the Cdc42/Ste20/mitogen activated protein kinase module to induce filamentous growth in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 93: 5352–5356.

    Google Scholar 

  • Nakafuku, M., Obara, T., Kaibuchi, K., Miyajima, I., Miyajima, A., Itoh, H., Nakamura, S., Arai, K. Matsumoto, K., and Kaziro, Y. (1988) Isolation of a second yeast Saccharomyces cerevis gene (GPA2) coding for guanine nucleotide-binding regulatory protein: Studies of its structure and possible functions. Proc. Natl. Acad. Sci. USA 85: 1374–1378.

    CAS  Google Scholar 

  • Neer, E. J. (1995) Heterotrimeric G proteins: organisers of transmembrane signals. Cell 80: 249–257.

    Article  CAS  Google Scholar 

  • Oehlen, L. and Cross, F. R. (1998a) The mating factor response pathway regulates transcription of TEC1, a gene involved in pseudohyphal differentiation of Saccharomyces cerevisiae. FEBS Lett. 429: 83–88.

    Article  CAS  Google Scholar 

  • Oehlen, L. and Cross, F. R. (1998b) Potential regulation of Ste20 function by the Cln1-Cdc28 and Cln2-Cdc28 cyclin-dependent protein kinases. J. Biol. Chem. 273: 25089–25097.

    CAS  Google Scholar 

  • Ozcan, S., Dover, J., and Johnston, M. (1998) Glucose sensing and signalling by two glucose receptors in the yeast Saccharomyces cerevisiae. EMBO J. 17: 2566–2573.

    Article  CAS  Google Scholar 

  • Papasavvas, S., Arkinstall, S., Reid, J., and Payton, M. (1992) Yeast alpha-mating factor receptor and G-protein-linked adenylyl cyclase inhibition requires RAS2 and GPA2 activities. Biochem. Biophys. Res. Commun. 184: 1378–85.

    CAS  Google Scholar 

  • Pawson, T. (1995) Protein modules and signalling networks. Nature 373: 573–580.

    CAS  Google Scholar 

  • Peter, M., Neiman, A. M., Park, H. O., van Lohuizen, M., and Herskowitz, I. (1996) Functional analysis of the interaction between the small GTP binding protein Cdc42 and the Ste20 protein kinase in yeast. EMBO J. 15: 7046–7059.

    CAS  Google Scholar 

  • Pretorius, I. S., Chow, T., Modena, D., and Marmur, J. (1986) Molecular cloning and characterisation of the STA2 glucoamylase gene of Saccharomyces cerevisiae. Mol. Gen. Genet. 203: 29–35.

    CAS  Google Scholar 

  • Posas, F. and Saito, H. (1997) Osmotic activation of the HOG MAPK pathway via Ste11p MAPKKK: scaffold role of Pbs2p MAPKK. Science 276: 1702–1705.

    Article  CAS  Google Scholar 

  • Radcliffe, P. A., Binley, K. M., Trevethick, J., Hall, M., and Sudbery, P. E. (1997) Filamentous growth of the budding yeast Saccharomyces cerevisiae induced by overexpression of the WH12 gene. Microbiol. 143: 1867–1876.

    CAS  Google Scholar 

  • Ramezani, R. M., Jansen, G., Buhring, F., and Hollenberg, C. P. (1998) Ste50p is involved in regulating filamentous growth in the yeast Saccharomyces cerevisiae and associates with Ste1 1p. Mol. Gen. Genet. 259: 29–38.

    Google Scholar 

  • Roberts, R. L. and Fink, G. R. (1994) Elements of a single MAP kinase cascade in Saccharomyces cerevisiae mediate two developmental programs in the same cell type: mating and invasive growth. Genes Dev. 8: 2974–2985.

    CAS  Google Scholar 

  • Roberts, R. L., Mösch, H. U., and Fink, G. R. (1997) 14-3-3 proteins are essential for RAS/MAPK cascade signalling during pseudohyphal development in S. cerevisiae. Cell 89: 1055–1065.

    Article  CAS  Google Scholar 

  • Robertson, L. S. and Fink, G. R. (1998) The three yeast A kinases have specific signalling functions in pseudohyphal growth. Proc. Natl. Acad. Sci. USA 95: 13783–13787.

    CAS  Google Scholar 

  • Rupp, S., Summers, E., Lo, H. J., Madhani, H., and Fink, G. (1999) MAP kinase and cAMP filamentation signalling pathways converge on the unusually large promoter of the yeast FLO1 1 gene. EMBO J. 18: 1257–1269.

    Article  CAS  Google Scholar 

  • Song, D., Dolan, J. W., Yuan, Y. L., and Fields, S. (1991) Pheromone-dependent phosphorylation of the yeast Ste12 protein correlates with transcriptional activation. Genes Dev. 5: 741–750

    CAS  Google Scholar 

  • Song, W. and Carlson, M. (1998) Srb/mediator proteins interact functionally and physically with transcriptional repressor Sf11. EMBO J. 17: 5757–5765.

    Article  CAS  Google Scholar 

  • Stoldt, V. R., Sonnebom, A., Leuker, C. E., and Ernst, J. F. (1997) Efg1p, an essential regulator of morphogenesis of the human pathogen Candida albicans, is a member of a conserved class of bHLH proteins regulating morphogenetic processes in fungi. EMBO J. 16: 1982–1991.

    Article  CAS  Google Scholar 

  • Stratford, M. (1992) Yeast flocculation: a new perspective. Adv. Microb. Physiol. 33: 1–71.

    CAS  Google Scholar 

  • Takizawa, P. A., Sil, A., Swedlow, J. R., Herskowitz, I., and Vale, R. D. (1997) Actin-dependent localisation of an RNA encoding a cell-fate determinant in yeast. Nature 389: 90–93.

    CAS  Google Scholar 

  • Tedford, K., Kim, S., Sa, D., Stevens, K., and Tyers, M. (1997) Regulation of the mating pheromone and invasive growth responses in yeast by two MAP kinase substrates. Curr. Biol. 7: 228–238.

    Article  CAS  Google Scholar 

  • Thevelein, J.-M. (1992) The RAS-adenylate cyclase pathway and cell cycle control in Saccharomyces cerevisiae. Antonie Van Leeuwenhoek 62: 109–130.

    Article  CAS  Google Scholar 

  • Toda, T., Cameron, S., Sass, P., Zoller, M., and Wigler, M. (1987) Three different genes in S. cerevisiae encode the catalytic subunits of the CAMP-dependent protein kinase. Cell 50: 277–287.

    Article  CAS  Google Scholar 

  • Vivier, M. A., Lambrechts, M. G., and Pretorius, I. S. (1997) Co-regulation of starch degradation and dimorphism in the yeast Saccharomyces cerevisiae. Crit. Rev. Biochem. Mol. Biol. 32: 405–435.

    CAS  Google Scholar 

  • Ward, M. P. and Garrett, S. (1994) Suppression of a yeast cyclic AMP-dependent protein kinase defect by overexpression of SOK1, a yeast gene exhibiting sequence similarity to a developmentally regulated mouse gene. Mol. Cell. Biol. 14: 5619–5627.

    CAS  Google Scholar 

  • Ward, M. P., Gimeno, C. J., Fink, G. R., and Garrett, S. (1995) SOK2 may regulate cyclic AMP-dependent protein kinase-stimulated growth and pseudohyphal development by repressing transcription. Mol. Cell, Biol. 15: 6854–6863.

    CAS  Google Scholar 

  • Wassmann, K. and Ammerer, G. (1997) Overexpression of the G1-cyclin gene CLN2 represses the mating pathway in Saccharomyces cerevisiae at the level of MEKK Ste11. J. Biol. Chem. 272: 13180–13188.

    Article  CAS  Google Scholar 

  • Webber, A. L., Lambrechts, M. G., and Pretorius, I. S. (1997) MSS11, a novel yeast gene involved in the regulation of starch metabolism. Curr. Genet. 32: 260–266.

    Article  CAS  Google Scholar 

  • Widmann, C., Gibson, S., Jarpe, M. B., and Johnson G. L. (1999) Mitogen-activated protein kinase: conservation of a three-kinase module from yeast to human. Physiol. Rev. 79: 143–180.

    CAS  Google Scholar 

  • Wilkie, T. M. and Yokoyama, S. (1994) Evolution of the G protein alpha subunit multigene family. Soc. Gen. Physiol. Ser. 49: 249–270.

    CAS  Google Scholar 

  • Xue, Y., Batlle, M., and Hirsch, J. P. (1998) GPR1 encodes a putative G protein-coupled receptor that associates with the Gpa2p G-alpha subunit and functions in a Ras-independent pathway. EMBO J. 17: 1996–2007.

    Article  CAS  Google Scholar 

  • Yuan, Y. L. and Fields, S. (1991) Properties of the DNA-binding domain of the Saccharomyces cerevisiae Ste12 protein. Mol. Cell. Biol. 11: 5910–5918.

    CAS  Google Scholar 

  • Yun, C.W., Tamaki, H., Nakayama, R., Yamamoto, K., and Kumagai, H. (1998) Gpr1p, a putative G-protein coupled receptor, regulates glucose-dependent cellular CAMP level in yeast Saccharomyces cerevisiae. Biochem. Biophys. Res. Commun. 252: 29–33

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Kluwer Academic Publishers

About this chapter

Cite this chapter

Bauer, F., Pretorius, I. (2001). Pseudohyphal and Invasive Growth in Saccharomyces Cerevisiae. In: Durieux, A., Simon, J.P. (eds) Applied Microbiology. Focus on Biotechnology, vol 2. Springer, Dordrecht. https://doi.org/10.1007/0-306-46888-3_8

Download citation

  • DOI: https://doi.org/10.1007/0-306-46888-3_8

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-6858-8

  • Online ISBN: 978-0-306-46888-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics