Skip to main content

New Aspects of Fungal Starter Cultures for Fermented Foods

  • Chapter
Applied Microbiology

Part of the book series: Focus on Biotechnology ((FOBI,volume 2))

Abstract

The production of a variety of foods include a fermentation step by filamentous fungi. Nowadays these fermented foods are produced by selected fungal starter cultures instead of relying on the indigenous flora, which may contain spoilage or mycotoxinogenic strains. The most important fungal species for food fermentation are Penicillium nalgiovense for the production of mould fermented meat products, P. camemberti for the production of white cheeses and P. roqueforti for the production of blue veined cheeses. Before a fungal strain of these species can be used as a starter culture for human consumption it must fulfill several requirements. Not all strains isolated from the food environment and with characteristics suitable for starter cultures fit to these conditions. In addition also the currently used starter strains possess undesired properties. On the other hand the modem techniques of molecular biology or genetics offers various possibilities for screening, characterisation and for specific improvement of fungal strains. In this article examples for characterisation and improvement of fungal starter cultures by molecular techniques are described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andersen, S.J. and Frisvad, J.C. (1994) Penicillin production by Penicillium nalgiovense.. Lett. Appl. Microbiol. 19,486–488.

    CAS  Google Scholar 

  • Banke, S., Frisvad, J.C. and Rosendahl, S. (1997) Taxonomy of Penicillium chrysogenum and related xerophilic species, based on isozyme analysis. Mycol. Res. 101, 617–624.

    Article  CAS  Google Scholar 

  • Bester, H. B., and S. H. Lombard. 1990. Influence of lysozyme on selected bacteria associated with gouda cheese. J. Food Prot. 53, 306–

    CAS  Google Scholar 

  • Bidouchka, M.J., McDonald, M.A., St. Leger, R.J. and Roberts, D.W. (1994) Differentiation of species and strains of entomopathogenic fungi by random amplification of polymorphic DNA (RAPD). Curr. Genet. 25, 107–113

    Google Scholar 

  • Boysen, M., Skouboe, P., Frisvad, J.C., and Rossen, L. (1996) Reclassification of the Penicillium roqueforti group into three species on the basis of molecular genetic and biochemical profiles. Microbiology 146, 541–549.

    Google Scholar 

  • Chang, S.C., Wei, Y.H., Wei, D.L., Chen, Y.Y. and Jong, S.C. (1991) Factors affecting the production of eremofortin C and PR toxin in Penicillium roqueforti. Appl. Environ. Microbiol. 57, 2581–2585.

    CAS  Google Scholar 

  • Färber, P. and Geisen, R. (1994) Antagonistic activity of the food-related filamentous fungus P. nalgiovense by the production of penicillin. Appl. Environ. Microbiol. 60, 3401–3404.

    Google Scholar 

  • Färber, P. (1998) Biosynthese des β-Lactan Antibiotikums Penicillin durch den filamentösen Pilz Penicillium nalgiovense, einer Starterkultur zur Herstellung Schimmelpilz-gereifter Fleischwaren. Dissertation, Universität Hohenheim

    Google Scholar 

  • Fiero, F., GutiĂ©rrez, S., DiĂ©z, B. and Martin, J.F. (1993) Resolution of four large chromosomes in penicillin-producing filamentous fungi: the penicillin gene cluster is located on chromosome II (9.6 Mb) in Penicillium notatum and chromosome I (10.4 Mb) in Penicillium chrysogenum. Mol. Gen. Genet. 241, 573–578

    Google Scholar 

  • Fox, P. F. and Law, J. (1991) Enzymology of cheese ripening. Food Biotechnology 5, 239–262

    Article  CAS  Google Scholar 

  • Frisvad, J. (1988) Fungal species and their specific production of mycotoxins, in R. A. Samson and E.S. and Reenen-Hoekstra (eds.) Introduction to food borne fungi, Publishers: Centralbureau voor Schimmelcultures, Baarn, pp. 239–249.

    Google Scholar 

  • Geisen, R. and Leistner, L. (1989) Transformation of Penicillium nalgiovense with the amdS gene of Aspergillus nidulans. Curr. Genet., 15,307–309.

    Article  CAS  Google Scholar 

  • Geisen, R., Glenn, E. and Leistner, L. (1990) Two mutant strains of Penicillium camemberti affected in the production of cyclopiazonic acid. Appl. Environ. Microbiol. 56, 3587–3590.

    CAS  Google Scholar 

  • Geisen, R. (1992) Characterisation of a mutation in a strain of Penicillium camemberti affecting the production of cyclopiazonic acid. Fungal Genetics Newsletters 39, 20–22.

    Google Scholar 

  • Geisen, R. (1995) Expression of the Aspergillus niger glucose oxidase gene in Penicillium nalgiovense. World Journal of Biotechnology 11, 322–325.

    CAS  Google Scholar 

  • Gripon, J.C. and Hermier, J. (1972) Le systeme proteolytique de Penicillium roqueforti. 1. Conditions de production et nature du systeme proteolytique. Le lait 52, 497–514.

    Google Scholar 

  • Guthrie, P.A.I., Magill, C.W., Frederiksen, R.A. and Odvody, G.N. (1992) Random amplified polymorphic DNA Markers: A system for identifying and differentiating isolates of Colletotrichum graminicola. Phytopathology, 82,832–835.

    Google Scholar 

  • Häggblom, P. (1990) Isolation of roquefortin C from feed grain. Appl. Environ. Microbiol, 56, 2924–2926.

    Google Scholar 

  • Hamelin, R.C., Ouellete, G.B. and Bemier, L.: Identification of Gremmeniella abietina races with random amplified polymorphic DNA makers. (1993) Appl. Environ. Microbiol,, 59, 1752–1755.

    Google Scholar 

  • Harwig, J., Blanchfield, B.J. and Scott, P.M. (1978) Patulin production by Penicillium roqueforti Thom from grape. Canadian Institute of Food Science and Technology Journal 11, 149–151.

    CAS  Google Scholar 

  • Hesseltine, C.W. (1983) Microbiology of oriental fermented foods. Ann. Rev. Microbiol. 37, 575–601

    Article  CAS  Google Scholar 

  • Jacobsen, T. and Hinrichsen, L. (1997) Bioformation of flavour by Penicillium candidum, Penicillium nalgiovense and Geotrichum candidum on glucose, peptone, maize oil and meat extract. Food Chemistry 3, 409–416.

    Google Scholar 

  • Kriechbaum, M., H. J. Heilmann, F. J. Wientjes, M. Hahn, K. D. Jany, H. G. Gassen, F. Sharif and G. Alaeddinoglu. (1989) Cloning and DNA sequence analysis of the glucose oxidase gene from Aspergillus niger. FEBS Lett. 255, 63–66.

    Article  CAS  Google Scholar 

  • Lafont, P., Debeaupuis, J., Gaillardin, M. and Payen, J. (1979) Production of mycophenolic acid by Penicillium roqueforti strains. Appl. Environ. Microbiol. 37, 365–368.

    CAS  Google Scholar 

  • Laxa, O. (1932) Ăśberdie Reifung des Ellischauer Käses. Zentral.f. Bakt. 86, 160–165.

    Google Scholar 

  • Le Bars, J. (1979) Cyclopiazonic acid production by Penicillium camembert Thom and natural occurrence of this mycotoxin in cheese. Appl Environ Microbiol 38, 1052–1055.

    Google Scholar 

  • Leistner, L. (1986) Mould-ripened foods. Fleischwirtschaft 66, 1–4.

    Google Scholar 

  • Leistner, L., Geisen, R. and Fink-Gremmels, J. (1989) Mould-fermented foods of Europe: hazards and developments, in nteds: S. Natori, K. Hashimoto and Y. Ueno (eds.), Mycotoxins and Phycotoxins, Publishers, Elsevier Science Publishers, Amsterdam, pp. 145–154

    Google Scholar 

  • Lund, F., Filtenborg, O. and Frisvad, J.C. (1995) Associated mycoflora of cheese. Food Microbiol. 12: 173–180

    Google Scholar 

  • Marth et al (1987) Dairy Products, in L. R. Beuchat (eds.), Food and Beverage Mycology, Publishers, Van Nostrand Reinhold, New York, pp. 175–209.

    Google Scholar 

  • Proctor, R.H. and Hohn, T.M. (1993) aristolochene Synthase: Isolation, characterisation and bacterial expression of a sequiterpenoid biosynthetic gene (Ari1) from Penicillium roqueforti. J. Biol. Chem. 268, 4543–4548.

    CAS  Google Scholar 

  • Paquet, J. and Gripon, J.C. (1980) Intracellular peptide hydrolases of Penicillium roqueforti. Milchwissenschaft, 35, 169–177.

    Google Scholar 

  • Pitt, J.I., Cruickshank, R.H. and Leistner, L. (1986) Penicillium commune, P. camemberti, the origin of white cheese moulds and the production of cyclopiazonic acid. Food Microbiology 3, 363–371.

    Article  CAS  Google Scholar 

  • Raper, Raper, K. B. and Thorn, C. (1949) Manual of the Penicillia. Williams and Wilkins, Baltimore.

    Google Scholar 

  • Reed, G. & Underkofler, L.A. (1966) Enzymes in food processing, New York, Academic press.

    Google Scholar 

  • Scott, P.M., Kennedy, P.B.C., Harwig, J. and Blanchfield, B.J (1977) Studies for conditions for production of roquefortine and other metabolites of Penicillium roqueforti. Appl. Environ. Microbiol. 33, 249–253.

    CAS  Google Scholar 

  • Siemens, K. and Zawistowski, J. (1993) Occurrence of PR imine, a metabolite of Penicillium roqueforti, in blue cheese. J. Food. Prot. 56,317–319.

    CAS  Google Scholar 

  • Spicher, G. und Isfort, G. (1987) Die Erreger der Schimmelbildung bei Bachwaren. IX Die auf vorgebackenen Brötchen, Toast und Weichbrötchen auftretenden Schimmelpilze. Deutsche Lebensmittelrundschau 83, 246–249.

    Google Scholar 

  • Stepaniak, L., Kornacki, K., Grabska, J., Rymaszewski, J. and Cichozs, G. (1980) Lipolytic and proteolytic activity of Penicillium roqueforti, Penicillium candidum and Penicillium camemberti strains. Acta Alimentaria Polonica 6, 155–164.

    Google Scholar 

  • Stiles, M. E. 1994. Potential for biological control of agents of foodborne disease. Food Res. Int. 27,245–

    Google Scholar 

  • Tiina, M. and M. Sandholm (1989) Antibacterial effect of the glucose oxidase-glucose system on food-poisoning organisms. Int. J. Food Microbiol. 8, 165–174.

    Article  CAS  Google Scholar 

  • Thom, C. (1906) Fungi in cheese ripening: Camembert and Roquefort. US Dept. Agr. Bur. Anim. Und. Bul. 82, 1–39.

    Google Scholar 

  • Wei, R. and Liu G. (1978) PR Toxin production in different Penicillium roqueforti strains. Appl. Environ. Microbiol. 35, 797–799.

    CAS  Google Scholar 

  • Wendorf, W.L., Riha, W.E. and Muehlenkamp, E. (1993) Growth of moulds on cheese treated with heat or liquid smoke. J. Food. Prot. 56,963–966.

    Google Scholar 

  • Williams, J.K.G., Kubelik, A.R. Livak, K.J., Rafalski, J.A. and Tingey, S.V. (1990) DNA polymorphism amplified by arbitrary primers are useful as genetic markers. Nucleic Acid. Res. 18, 6531–6535.

    CAS  Google Scholar 

  • Zevaco, C., Hermier, J. and Gripon, J.C. (1973) Le systeme proteolytique de Penicillium roqueforti. II. Purification et proprietĂ©s de la protease acide. Biochemie 55, 1353–1360.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Kluwer Academic Publishers

About this chapter

Cite this chapter

Geisen, R., Färber, P. (2001). New Aspects of Fungal Starter Cultures for Fermented Foods. In: Durieux, A., Simon, J.P. (eds) Applied Microbiology. Focus on Biotechnology, vol 2. Springer, Dordrecht. https://doi.org/10.1007/0-306-46888-3_1

Download citation

  • DOI: https://doi.org/10.1007/0-306-46888-3_1

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-6858-8

  • Online ISBN: 978-0-306-46888-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics