Skip to main content

T-Lymphocytes: Mature Polyclonal and Antigen-Specific Cell Culture

  • Chapter
Human Cell Culture

Part of the book series: Human Cell Culture ((HUCC,volume 4))

  • 316 Accesses

Summary

Methods for T-cell culture, manipulation and functional evaluation continue to evolve at an astonishing rate. The discovery of IL-2 and other cytokines as well as the surface receptors and coreceptors important in T-cell activation has led to the design of reagents that have improved T-cell culture. Because lymphoid cells are composed of a heterogeneous mixture of cell lineages, it is most important to work with a well-defined and phenotyped population of T-cells. The development of techniques such as membrane cell tracking dyes and intracellular cytokine staining now allow the characterization of individual T-cells and T-cell subsets. Previously, cells had to be separated and cultured as individual subsets or clones to acquire the information now available through these techniques. Because of the interdependence of T-cell subsets such as helper and cytotoxic cells, separate culture does not permit physiologic interaction among cells. In vitro culture itself is only a rough approximation of the interactions in vivo. As more is learned about the cytokines and surface receptors important to T-cell interactions with other cells in the body, in vitro models will likely evolve to emulate the structure of a lymph node, an evolutionarily optimized T-cell culture vessel.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bretscher, PA and Cohn, M (1970) A theory of self discrimination. Science 169:1042–1049.

    PubMed  CAS  Google Scholar 

  2. Lafferty, KJ and Cunningham, AJ (1975) A new analysis of allogeneic interactions. Australian Journal of Experimental Biology and Medical Science 53:27–42.

    PubMed  CAS  Google Scholar 

  3. Carter, LL and Dutton, RW (1996) Type 1 and type 2: a fundamental dichotomy for all T-cell subsets. Current Opinion in Immunology 8:336–342.

    Article  PubMed  CAS  Google Scholar 

  4. Abbas, AK, Murphy, KM, Sher, A (1996) Functional diversity of helper T-lymphocytes. Nature 383:787–793.

    Article  PubMed  CAS  Google Scholar 

  5. Halverson, DC, Schwartz, GN, Carter, C, Gress, RE, Fowler, DH (1997) In vitro generation of allospecific human CD8+ T-cells of Tc1 and Tc2 phenotype. Blood 90:2089–2096.

    PubMed  CAS  Google Scholar 

  6. Poppema, S, Lai, R, Visser, L, Yan, XJ (1996) CD45 (leucocyte common antigen) expression in T and B lymphocyte subsets. Leukemia and Lymphoma. 20:217–222.

    PubMed  CAS  Google Scholar 

  7. Picker, LJ, Treer, JR, Ferguson-Darnell, B, Collins, PA, Buck, D, Terstappen, LW (1993) Control of lymphocyte recirculation in man. I. Differential regulation of the peripheral lymph node homing receptor L-selection on T-cells during the virgin to memory cell transition. Journal of Immunology 150: 1105–1121.

    CAS  Google Scholar 

  8. Baars, PA, Maurice, MM, Rep, M, Hooibrink, B, van, LR (1995) Heterogeneity of the circulating human CD4+ T-cell population. Further evidence that the CD4+CD45RA-CD27-T-cell subset contains specialized primed T-cells. Journal of Immunology 154: 17–25.

    CAS  Google Scholar 

  9. Xu, X, Beckman, I, Ahern, M, Bradley, J (1993) A comprehensive analysis of peripheral blood lymphocytes in healthy aged humans by flow cytometry. Immunology and Cell Biology 71:549–557.

    PubMed  Google Scholar 

  10. Fauci, AS (1996) Host factors and the pathogenesis of HIV-induced diseases. Nature 384:529–534.

    Article  PubMed  CAS  Google Scholar 

  11. Roederer, M (1995) T-cell dynamics of immunodeficiency. Nature Medicine 1:621–627.

    Article  PubMed  CAS  Google Scholar 

  12. Cantrell, D (1996) T-cell antigen receptor signal transduction pathways. Annual Review of Immunology 14:259–74: 259-274.

    Article  PubMed  CAS  Google Scholar 

  13. Robey, E and Allison, JP (1995) T-cell activation: integration of signals from the antigen receptor and co-stimulatory molecules. Immunology Today 16:306–310.

    Article  PubMed  CAS  Google Scholar 

  14. June, CH, Bluestone, JA, Nadler, LM, Thompson, CB (1994) The B7 and CD28 receptor families. Immunology Today 15:321–331.

    Article  PubMed  CAS  Google Scholar 

  15. Altman, A, Coggeshall, KM, Mustelin, T (1990) Molecular events mediating T-cell activation. Advances in Immunology 48:227–360:227–360.

    Article  PubMed  CAS  Google Scholar 

  16. Siegel, JN and June, CH (1995) Signal transduction and T-lymphocyte activation, in RR Rich (ed.), Principles of Clinical Immunology, Mosby Year Book, Inc., St. Louis, pp. 192–216

    Google Scholar 

  17. Nishizuka, Y (1995) Protein kinase C and lipid signaling for sustained cellular responses. FASEBJourna l9:484–496.

    Google Scholar 

  18. Weiss, A (1993) T-cell antigen receptor signal transduction: a tale of tails and cytoplasmic protein-tyrosine kinases. Cell 73:209–212.

    Article  PubMed  CAS  Google Scholar 

  19. June, CH, Ledbetter, JA, Linsley, PS, Thompson, CB (1990) Role of the CD28 receptor in T-ceII activation. Immunology Today 11:211–216.

    Article  PubMed  CAS  Google Scholar 

  20. Thompson. CB, Lindsten, T, Ledbetter, JA, Kunkel, SL, Young, HA, Emerson, SG, Leiden, JM, June, CH (1989) CD28 activation pathway regulates the production of multiple T-cell-derived lymphokines/cytokines. Proceedings of the National Academy of Sciences USA 86:1333–1337.

    Google Scholar 

  21. Lindsten, T, Lee, KP, Harris, ES, Petryniak, B, Craighead, N, Reynolds, PJ, Lombard, DB, Freeman, GJ, Nadler, LM, Gray, GS, Thompson, CB, June, CH (1993) Characterization of CTLA-4 structure and expression on human T-cells. Journal of Immunology 151:3489–3499.

    CAS  Google Scholar 

  22. Thompson, CB and Allison, JP (1997) The emerging role of CTLA-4 as an immune attenuator. Immunity 7:445–450.

    Article  PubMed  CAS  Google Scholar 

  23. Larsen. CP and Pearson, TC (1997) The CD40 pathway in allograft rejection, acceptance, and tolerance. Current Opinion in Immunology 9:641–647.

    Article  PubMed  CAS  Google Scholar 

  24. DeBenedette, MA, Chu, NR, Pollok, KE, Hurtado, J, Wade, WF, Kwon, BS, Watts, TH (1995) Role of 4-1BB ligand in co-stimulation of T-lymphocyte growth and its upregulation on M 12 B lymphomas by cAMP. Journal of Experimental Medicine 181:985–992.

    Article  PubMed  CAS  Google Scholar 

  25. Shuford, WW, Klussman, K, Tritchler, DD, Loo, DT, Chalupny, J, Siadak, AW, Brown, TJ, Emswiler, J, Raecho, H, Larsen, CP, Pearson, TC, Ledbetter, JA, Aruffo, A, Mittler, RS (1997) 4-1 BB co-stimulatory signals preferentially induce CD8+ T-cell proliferation and lead to the amplification in vivo of cytotoxic T-cell responses. Journal of Experimental Medicine 186:47–55.

    Article  PubMed  CAS  Google Scholar 

  26. Paul, WE, ed. (1993) Fundamental Immunology, Raven Press, New York

    Google Scholar 

  27. Levine, BL, Ueda. Y, Craighead, N, Huang, ML, June, CH (1995) CD28 ligands CD80 (B7-I) and CD86 (B7-2) induce long-term autocrine growth of CD4+ T-cells and induce similar patterns of cytokine secretion in vitro. International lmmunology 7:891–904.

    CAS  Google Scholar 

  28. Riley, JL, Carroll, RG, Levine, BL, Bernstein, W, St.Louis, DC, Weislow, OS, June, CH (1997) Intrinsic resistance to T-cell infection with HIV type 1 induced by CD28 costimulation. Journal of Immunology 158:5545–5553.

    CAS  Google Scholar 

  29. Levine, BL, Bernstein, WB, Connors, M, Craighead, N, Lindsten, T, Thompson, CB, June, CH (1997) Effects of CD28 co-stimulation on long-term proliferation of CD4+ T-cells in the absence of exogenous feeder cells. Journal of lmmunology 159:5921–5930.

    CAS  Google Scholar 

  30. Nowell, PC (1960) Phytohemagglutinin: An Initiator of Mitosis in Cultures of Normal Human Leukocytes. Cancer Research 20:462–466.

    PubMed  CAS  Google Scholar 

  31. Stobo, JD and Paul. WE (1973) Functional heterogeneity ofmurine lymphoid cells. 3. Differential responsiveness of T-cells to phytohemagglutinin and concanavalin A as a probe for T-cell subsets. Journal of Immunology I 10:362–375.

    Google Scholar 

  32. Weksler. ME and Kuntz, MM (1 976) Synergy between human T and B lymphocytes in their response to phythaemagglutinin and pokeweed mitogen. Immunology 31:273–281.

    Google Scholar 

  33. Svedmyr, E (1 975) Long-term maintenance in vitro of human T-cells by repeated exposure to the same stimulator cells. Differences when using repeated stimulation in allogeneic mixed leukocyte culture and when using stimulation with autologous lymphoblastoid cells. Scandinavian Journal of Immunology 4:421–427.

    Google Scholar 

  34. Morgan, DA. Ruscetti, FW, Gallo, R (1976) Selective in vitro growth of T-lymphocytes from normal human BMs. Science 193:1007–1008.

    PubMed  CAS  Google Scholar 

  35. Ruscetti, FW, Morgan, DA, Gallo, RC (1977) Functional and morphologic characterization of human T-cells continuously grown in vitro. Journal of Immunology 119:131–138.

    CAS  Google Scholar 

  36. Gillis, S, Baker, PE, Ruscetti, FW, Smith, KA (1978) Long-term culture of human antigen-specific cytotoxic T-cell lines. Journal of Experimental Medicine 148:1093–1098.

    PubMed  CAS  Google Scholar 

  37. Gillis, S, Ferm, MM, Ou, W, Smith, KA (1978) T-cell growth factor: parameters of production and a quantitative microassay for activity. Journal of Immunology 120:2027–2032.

    CAS  Google Scholar 

  38. Kohler, G and Milstein, C (1975) Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 256:495–497.

    PubMed  CAS  Google Scholar 

  39. Bauer, JD (1982) Collection and preparation of the specimen, in D Ladig (ed.), Clinical Laboratory Methods, C. V. Mosby Company, St. Louis, pp. 27–32

    Google Scholar 

  40. Hannet, I, Erkeller-Yuksel, F, Lydyard, P, Deneys, V, DeBruyere, M (1992) Developmental and maturational changes in human blood lymphocyte subpopulations. Immunology Today 13:215, 218.

    Article  PubMed  CAS  Google Scholar 

  41. Rubinstein, P, Dobrila, L, Rosenfield, RE, Adamson. JW, Migliaccio. G. Migliaccio, AR, Taylor, PE, Stevens, CE (1995) Processing and cryopreservation of placental/umbilical CB for unrelated BM reconstitution. Proceedings of the National Academy of Sciences USA 92:10119–10122.

    CAS  Google Scholar 

  42. Areman, EM, Cullis, H, Sacher, RA, Cottler-Fox, M, Deeg, HJ (1990) Automated isolation of MNC using the Fenwal CS3000 blood cell separator. Progress in Clinical and Biological Research 333:379–85:379–385.

    PubMed  CAS  Google Scholar 

  43. Keilholz, U, Klein, HG, Korbling, M, Brado, B, Carter, CS, Cullis, H, Galm, F, Hunstein, W (1991) Peripheral blood mononuclear cell collection from patients undergoing adoptive immunotherapy or peripheral blood-derived stem cell transplantation and from healthy donors. Journal of Clinical Apheresis 6:131–136.

    PubMed  CAS  Google Scholar 

  44. Bambi. F, Faulkner, LB, Azzari, C, Gelli, AM, Tamburini, A. Tintori, V, Lippi, AA, Tucci. F, Bernini, G, Genovese, F (1998) Pediatric peripheral blood progenitor cell collection: haemonetics MCS 3P versus COBE Spectra versus Fresenius AS 104. Transfusion 38:70–74.

    Article  PubMed  CAS  Google Scholar 

  45. Almici, C, Carlo-Stella, C, Donnenberg, AD, Rizzoli, V (1993) Counterflow centrifugal elutriation: present and future. BM Transplant. 12: 105–108.

    CAS  Google Scholar 

  46. Abi-ahamsen, TG, Carter, CS, Read, EJ, Rubin, M, Goetzman, HG, Lizzio, EF, Lee, YL, Hanson, M, Pizzo, PA, Hoffman, T (1991) Stimulatory effect of counterflow centrifugal elutriation in large-scale separation of peripheral blood monocytes can be reversed by storing the cells at 37 degrees C. Journal of Clinical Apheresis 6:48–53.

    Google Scholar 

  47. Quinones, RR, Gutierrez, RH, Dinndorf, PA, Gress, RE, Ney, AB, Taylor, B, Karandish, S, Carter, CS, Luban, NL, Reaman, GH (1993) Extended-cycle elutriation to adjust T-cell content in HLA-disparate BM transplantation. Blood 82:307–317.

    PubMed  CAS  Google Scholar 

  48. Kay, HD, Petrie, HT, Burge, JJ, Klassen, LW (1986) Rapid recovery of non-hemolyzed serum and untraumatized cells by using a new method of blood defibrination in vitro. Journal of Immunological Methods 92:251–260.

    PubMed  CAS  Google Scholar 

  49. Boyum, A (1968) Isolation of MNC and granulocytes from human blood. Isolation of monuclear cells by one centrifugation, and of granulocytes by combining centrifugation and sedimentation at 1 g. Scandinavian Journal of Clinical Laboratory Investigation Supplement 97:77–89.

    Google Scholar 

  50. Thiele, DL and Lipsky, PE (1985) Regulation of cellular function by products of lysosomal enzyme activity: elimination of human natural killer cells by a dipeptide methyl eater generated from L-leucine methyl ester by monocytes or polymorphonuclear leukocytes. Proceedings of the National Academy of Sciences USA 82:2468–2472.

    CAS  Google Scholar 

  51. Thiele, DL and Lipsky, PE (1986) The immunosuppressive activity of L-leucyl-L-leucine methyl ester: selective ablation of cytotoxic lymphocytes and monocytes. Journal of Immunology 136:1038–1048.

    CAS  Google Scholar 

  52. Townsend, RM and Simon, P (1992) The preferential expansion of functional CD4+ lymphocyte populations in vitro. Journal of Immunotherapy. 12:256–264.

    PubMed  CAS  Google Scholar 

  53. StreIkauskas, AJ, Teodorescu, M, Dray, S (1975) Enumeration and isolation of human T and B lymphocytes by rosette formation with antibody-coated erythrocytes. Clinical and Experitmental Immunology 22:62–71.

    Google Scholar 

  54. Linscott, WD (1998) Linscott’sdirectory of Immunological and biological reagents, William D. Linscott, Santa Rosa, CA

    Google Scholar 

  55. Stanciu, LA, Shute, J, Holgate, ST, Djukanovic, R (1996) Production of IL-8 and IL-4 by positively and negatively selected CD4+ and CD8+ human T-cells following a four-step cell separation method including magnetic cell sorting (MACS). Journal of Immunological Methods 189:107–115.

    Article  PubMed  CAS  Google Scholar 

  56. Payne, SM, Sharrow, SO, Shearer. GM, Biddison, WE (1981) Preparative separation of human T-cells reactive with the OKT4 monoclonal antibody. lnternational Journal of Immunopharmacology 3:227–232.

    CAS  Google Scholar 

  57. Thomas, TE, Abraham, SJ, Otter, AJ, Blackmore, EW, Lansdorp, PM (1992) High agradient magnetic separation of cells on the basis of expression levels of cell surface antigens. Journal of lmmunological Methods 154:245–252.

    CAS  Google Scholar 

  58. Miltenyi. S, Muller, W, Weichel, W, Radbruch, A (1990) High gradient magnetic cell separation with MACS. Cytometry 11:231–238.

    Article  PubMed  CAS  Google Scholar 

  59. Geretti, AM, Van Els, CA, Van Baalen, CA, Poelen, MC, Osterhaus, AD (1993) Preservation of phenotype and function of positively selected virus-specific CD8+ T-lymphocytes following anti-Fab detachment from immunomagnetic beads. Journal of Immunological Methods 161:129–133.

    Article  PubMed  CAS  Google Scholar 

  60. June, CH, Ledbetter, JA, Gillespie, MM, Lindsten, T, Thompson, CB (1987) T-cell proliferation involving the CD28 pathway is associated with cyclosporine-resistant interleukin 2 gene expression. Molecular and Cellular Biology 7:4472–4481.

    PubMed  CAS  Google Scholar 

  61. Zwerner. RK, Schmittling. RJ, Russell, TR (1996) A simple and rapid method for removal of specific cell populations from whole blood. Journal of Immunological Methods 198:199–202.

    Article  PubMed  CAS  Google Scholar 

  62. Patel D, Rubbi, CP, Rickwood, D (1995) Separation of T and B lymphocytes from human peripheral blood MNC using density perturbation methods. Clinica Chimica Acta 240:187–193.

    Article  CAS  Google Scholar 

  63. Glassman, AB and Bennett, CE (1979) Cryopreservation of human lymphocytes: a brief review and evaluation of an automated liquid nitrogen freezer. Transfusion 19:178–181

    Article  PubMed  CAS  Google Scholar 

  64. Rowley, SD (1992) Hematopoietic stem cell cryopreservation: a review of current techniques. Journalof Hematotherapy 1:233–250.

    CAS  Google Scholar 

  65. Glassman, AB and Christopher, JB (1984) Effect of cryopreservation on lymphocyte markers evaluated by monoclonal antibodies. Transfusion 24:538–539

    Article  PubMed  CAS  Google Scholar 

  66. Preece, G, Murphy, G, Ager, A (1996) Metalloproteinase-mediated regulation of L-selectin levels on leucocytes. Journal of Biological Chemistry 271:11634–11640.

    PubMed  CAS  Google Scholar 

  67. Qian, D and Weiss, A (1997) T-cell antigen receptor signal transduction. Current Opinion in Cell Biology 9:205–212.

    Article  PubMed  CAS  Google Scholar 

  68. Lanier, LL (1993) Distribution and function of lymphocyte surface antigens. Molecules costimulating T-lymphocyte activation and effector function. Annals of the New York Academy of Sciences 677:86–93:86–93.

    PubMed  CAS  Google Scholar 

  69. Levine, BL, Mond, JJ. June, CH (1998) Lymphocyte Proliferation, in IM Roitt, PJ Delves (eds.). Encyclopeidia of Immunology, Academic Press, London, pp. 2017–2023

    Google Scholar 

  70. Freshney, RI (1994) Culture ofAnimal Cells, Wiley-Liss, Inc., New York

    Google Scholar 

  71. Rutzky, LP and Pumper, RW (1974) Supplement to a survey of commercially available tissue culture media (1970). In vitro 9:408–409.

    PubMed  CAS  Google Scholar 

  72. Morton, HJ (1970) A survey of commercially available tissue culture media. In vitro 6:89–108

    PubMed  CAS  Google Scholar 

  73. Moore, GE, Gerner, RE, Franklin, HA (1967) Culture of normal human leukocytes. Journal Of The American Medical Association l99:519–524.

    Google Scholar 

  74. Wang, RJ (1976) Effect of room fluorescent light on the deterioration of tissue culture medium. In vitro 12:19–22.

    PubMed  CAS  Google Scholar 

  75. Herzberg, VL and Smith, KA (1987) T-cell growth without serum. Journal of Immunology 139:998–1004

    CAS  Google Scholar 

  76. Tanaka, M, Suda, T, Haze, K, Nakamura, N, Sato, K, Kimura, F, Motoyoshi, K, Mizuki, M, Tagawa, S, Ohga, S, Hatake, K, Drummond, AH, Nagata, S (1996) Fas ligand in human serum. Nature Medicine 2:317–322.

    Article  PubMed  CAS  Google Scholar 

  77. Selvaggi, TA, Walker, RE, Fleisher, TA (1997) Development of antibodies to fetal calf serum with arthus-like reactions in human immunodeficiency virus-infected patients given syngeneic lymphocyte infusions. Blood 89:776–779.

    PubMed  CAS  Google Scholar 

  78. Macy, E, Bulpitt, K. Champlin. RE, Saxon, A (1989) Anaphylaxis to infusion of autologous BM: an apparent reaction to self, mediated by IgE antibody to bovine serum albumin. Journal of Allergy arid Clinical Immunology 83:871–875.

    CAS  Google Scholar 

  79. Trimble, LA, Perales, M-A, Knazek, RA, Lieberman, J (1996) Serum Enhances the En vivo Generation of HIV-Specitic Cytotoxic T Cells. Biotechnology and Bioengineering 50:521–528.

    Article  CAS  PubMed  Google Scholar 

  80. Knazek, RA, Wu, YW, Aebersold, PM, Rosenberg, SA (1990) Culture of human tumor infiltrating lymphocytes in hollow fiber bioreactors. Journal of Immunological Methods 127:29–37.

    Article  PubMed  CAS  Google Scholar 

  81. Freedman. RS, Edwards, CL. Kavanagh, JJ, Kudelka. AP, Katz, RL, Carrasco, CH, Atkinson, EN, Scott, W, Tomasovic, B, Templin, S (1994) Intraperitoneal adoptive immunotherapy of ovarian carcinoma with tumor-infiltrating lymphocytes and low-dose recombinant interleukin-2: a pilot trial. Journal of Immunotherapy Emphasis on Tumor-Immunology 16:198–210.

    CAS  Google Scholar 

  82. Hatton, JP, Lewis, ML, Roquefeuil, SB, Chaput, D, Cazenave, JP, Schmitt, DA (1998) Use of an adaptable cell culture kit for performing lymphocyte and monocyte cell cultures in microgravity. Journal of Cellular Biochemistry 70:252–267.

    Article  PubMed  CAS  Google Scholar 

  83. Muul, LM, Nason-Burchenal, K, Carter, CS, Cullis, H, Slavin, D, Hyatt, C. Director, EP, Leitman, SF, Klein, HG, Rosenberg, SA (1987) Development of an autoinated closed system for generation of human lymphokine-activated killer (LAK) cells for use in adoptive immunotherapy. Journul of Immunological Methods 101:171–181.

    CAS  Google Scholar 

  84. Levine, BL, Cotte, J, Small, CC, Carroll, RG, Riley, JL, Bernstein, WB, Van Epps, D, Hardwick, RA, June, CH (1998) Large scale production of CD4+ T-cells from HIV-1 infected donors following CD3lCD28co-stimulation. Journul of Hematotherapy (in press).

    Google Scholar 

  85. Nakamura, Y, Tokuda, Y, Iwasawa, M, Tsukamoto, H, Kidokoro, M, Kobayashi, N, Kato, S, Mitoini, T, Habu, S, Nishimura, T (1992) Large-scale culture system of human CD4+ helperlkiller T-cells for the application to adoptive tumour immunotherapy. British Journal of Cancer 66:20–26.

    PubMed  CAS  Google Scholar 

  86. Carter, CS, Leitman, SF, Cullis, H, Muul, LM, Nason-Burchenal, K, Rosenberg, SA, Klein, HG (1988) Technical aspects of lymphokine-activated killer cell production. Journal of Clinical Apheresis. 4:113–117.

    PubMed  CAS  Google Scholar 

  87. Sekine, T, Shiraiwa, H, Yamazaki, T, Tobisu, K, Kakizoe, T (1993) A feasible method for expansion of peripheral blood lymphocytes by culture with immobilized anti-CD3 monoclonal antibody and interleukin-2 for use in adoptive immunotherapy ol cancer paticnts. Biomedical Pharmancotherapeutics 47:73–78.

    CAS  Google Scholar 

  88. Walker, RE, Carter. CS, Muul, L, Natarajan, V, Herpin, BR, Leitman, SF, Klein, HG, Mullen, CA, Metcalf, JA, Baseler, M, Falloon, J, Davey, RTJ, Kovacs, JA, Polis, MA, Masur, H, Blaese, RM. Lane, HC (1998) Peripheral expansion of pre-existing mature T-cells is an important means of CD4+ T-cell regeneration HIV-infected adults. Nature Medicine 4:852–856.

    Article  PubMed  CAS  Google Scholar 

  89. Robinet, E, Certoux, JM, Ferrand, C, Maples, P, Hardwick, A, Cahn, JY, Reynolds, CW, Jacob, W, Herve, P, Tiberghien, P (1998) A closed culture system for the ex vivo transduction and expansion of human T-lymphocytes. Journal of Hematotherapy 7:205–215.

    PubMed  CAS  Google Scholar 

  90. de Waal, M, Yssel, H, de Vries, JE (1993) Direct effects of IL-10 on subsets of human CD4+ T-cell clones and resting T-cells. Specific inhibition of IL-2 production and proliferation. Journal of Immunology 150:4754–4765.

    Google Scholar 

  91. Groux, H, Bigler, M, de Vries, JE, Roncarolo, MG (1998) Inhibitory and stimulatory effects of IL-10 on human CD8+ T-cells. Journal of Immunology 160:3188–3193.

    CAS  Google Scholar 

  92. Licastro, F, Davis, LJ, Morini, MC (1993) Lectins and superantigens: membrane interactions of these compounds with T-lymphocytes affect immune responses. International Journal of Biochemistry 25:845–852.

    PubMed  CAS  Google Scholar 

  93. Hadden, JW (1988) Transmembrane signals in the activation of T-lymphocytes by lectin mitogens. Molecular Immunology 25:1105–1112.

    Article  PubMed  CAS  Google Scholar 

  94. Ahmann, CB, Sachs, DH, Hodes, RJ (1978) Requirement for an Ia-bearing accessory cell in Con A-induced T-cell proliferation. Journal of Immunology 121:1981–1989.

    CAS  Google Scholar 

  95. Perillo. NL, Walford, RL, Newman, MA, Effros, RB (1989) Human T-lymphocytes possess a limited in vitro life span. Experimental Gerontology 24:177–187.

    Article  PubMed  CAS  Google Scholar 

  96. Truneh, A, Albert, F, Golstein, P, Schmitt-Verhulst, AM (1985) Early steps of lymphocyte activation bypassed by synergy between calcium ionophores and phorbol ester. Nature 313:318–320.

    Article  PubMed  CAS  Google Scholar 

  97. Niede1, JE, Kuhn, LJ, Vandenbark, GR (1983) Phorbol diester receptor copurifies with protein kinase C. Proceedings of the National Academy of Sciences USA 80:36–40.

    Google Scholar 

  98. Blumberg, PM (1988) Protein kinase C as the receptor for the phorbol ester tumor promoters: sixth Rhoads memorial award lecture. Cancer Research 48:1–8.

    PubMed  CAS  Google Scholar 

  99. Berkow, RL and Kraft, AS (1985) Bryostatin, a non-phorbol macrocyclic lactone, activates intact human polymorphonuclear leukocytes and binds to the phorbol ester receptor. Biochemical and Biophysical Research Communications 131: 1109–1116.

    Article  PubMed  CAS  Google Scholar 

  100. Weiss, A and Littman, DR (1994) Signal transduction by lymphocyte antigen receptors. Cell 76:263–274.

    Article  PubMed  CAS  Google Scholar 

  101. Abb, J, Bayliss, GJ, Deinhardt, F (1979) Lymphocyte activation by the tumor-promoting agent 12-0-tetradecanoylphorbol-13-acetate (TPA). Journal of Immunology 122: 1639–1642.

    CAS  Google Scholar 

  102. Hess, AD, Silanskis, MK, Esa, AH, Pettit, GR, May, WS (1988) Activation of human T-lymphocytes by bryostatin. Journal of Immunology 141:3263–3269.

    CAS  Google Scholar 

  103. Schuchter, LM, Esa, AH, May, S, Laulis, MK, Pettit, GR, Hess, AD (1991) Successful treatment of murine melanoma with bryostatin 1. Cancer Research 51:682–687.

    PubMed  CAS  Google Scholar 

  104. van der Hem, KG, Schuurhuis, GJ, Drager, AM, Odding, JH, Huijgens, PC (1996) Heterogenous effects of bryostatin on human myeloid leukemia clonogenicity: dose and time scheduling dependency. Leukemia Research 20:743–750.

    PubMed  Google Scholar 

  105. Chatila, T, Silverman, L, Miller, R, Geha, R (1989) Mechanisms of T-cell activation by the calcium ionophore ionomycin. Journal of Immunology 143: 1283–1289.

    CAS  Google Scholar 

  106. Weiss, A and Imboden, JB (1987) Cell surface molecules and early events involved in human T-lymphocyte activation. Advances in Immunology 41: 1–38.

    Article  PubMed  CAS  Google Scholar 

  107. Topalian, SL, Muul, LM, Solomon, D, Rosenberg, SA (1987) Expansion of human tumor infiltrating lymphocytes for use in immunotherapy trials. Journal of Immunological Methods 102:127–141.

    Article  PubMed  CAS  Google Scholar 

  108. Bich-Thuy, LT, Lane, HC, Fauci, AS (1986) Recombinant interleukin-2-induced polyclonal proliferation of in vitro unstimulated human peripheral blood lymphocytes. Cellular Immunology 98:396–410.

    PubMed  CAS  Google Scholar 

  109. Wu, CY, Demeure, CE, Gately, M, Podlaski, F, Yssel, H, Kiniwa, M, Delespesse, G (1994) In vitro maturation of human neonatal CD4 T-lymphocytes. I. Induction of IL-4-producing cells after long-term culture in the presence of IL-4 plus either IL-2 or IL-12. Journal of Immunology 152:1141–1153.

    CAS  Google Scholar 

  110. Liu, SQ, Shiba, R, Kim, BS, Saijo, K, Ohno, T (1994) Long-term serum/plasma-free culture of human cytotoxic T-lymphocytes induced from peripheral blood MNC. Cancer Immunology and Immunotherapy 39:279–285.

    PubMed  CAS  Google Scholar 

  111. Tsujitani, S, Nakashima, M, Watanabe, T, Kaibara, N, Koprowski, H, Sfeplewski, Z (1995) Cytokine combinations for induction of antigen-specific cytolytic T-lymphocytes from peripheral blood lymphocytes. Anticancer Research 15:655–660.

    PubMed  CAS  Google Scholar 

  112. Unutmaz, D, Baldoni, F, Abrignani, S (1995) Human naive T-cells activated by cytokines differentiate into a split phenotype with functional features intermediate between naive and memory T-cells. International Immunology 7: 1417–1424.

    PubMed  CAS  Google Scholar 

  113. Fukui, T, Katamura, K, Abe, N, Kiyomasu, T, Iio, J, Ueno, H, Mayumi, M, Furusho, K (1997) IL-7 induces proliferation, variable cytokine-producing ability and IL-2 responsiveness in naive CD4+ T-cells from human CB. Immunology Letters 59:21–28.

    Article  PubMed  CAS  Google Scholar 

  114. Webb, LM, Foxwell, BM, Feldmann, M (1997) Interleukin-7 activates human naive CD4+ cells and primes for interleukin-4 production. European Journal of Immunology 27:633–640.

    PubMed  CAS  Google Scholar 

  115. Lalvani, A, Dong, T, Ogg, G, Patham, AA, Newell, H, Hill, AV, McMichael, AJ, Rowland-Jones, S (1997) Optimization of a peptide-based protocol employing IL-7 for in vitro restimulation of human cytotoxic T-lymphocyte precursors. Journal of Immunological Methods 210: 65–77.

    Article  PubMed  CAS  Google Scholar 

  116. Trinchieri, G (1998) Immunobiology of interleukin-12. Immunologic Research 17:269–278.

    PubMed  CAS  Google Scholar 

  117. Mehrotra, PT, Grant, AJ, Siegel, JP (1995) Synergistic effects of IL-7 and IL-1 2 on human T-cell activation. Journal of Immunology 154:5093–5102.

    CAS  Google Scholar 

  118. Kubin, M, Kamoun, M, Trinchieri, G (1994) Interleukin 12 synergizes with B7/CD28 interaction in inducing efficient proliferation and cytokine production of human T-cells. Journal of Experimental Medicine 180:211–222.

    Article  PubMed  CAS  Google Scholar 

  119. Parada, NA, Center, DM, Kornfeld, H, Rodriguez, WL, Cook, J, Vallen, M, Cruikshank, WW (1998) Synergistic activation of CD4+ T-cells by IL-16 and IL-2. Journal of Immunology 160:2115–2120.

    CAS  Google Scholar 

  120. Gullberg, M and Smith, KA (1986) Regulation of T-cell autocrine growth. T4+ cells become refractory to interleukin 2. Journal of Experimental Medicine 163:270–284.

    Article  PubMed  CAS  Google Scholar 

  121. Uberti, JP, Joshi, I, Ueda, M, Martilotti, F, Sensenbrenner, LL, Lum, LG (1994) Preclinical studies using immobilized OKT3 to activate human T-cells for adoptive immunotherapy: optimal conditions for the proliferation and induction of non-MHC-restricted cytotoxicity. Clinical Immunology and Immunopathology 70:234–240.

    Article  PubMed  CAS  Google Scholar 

  122. Blaese, RM, Culver, KW, Miller, AD, Carter, CS, Fleisher, T, Clerici, M, Shearer, G, Chang, L, Chiang, Y, Tolstoshev, P (1995) T-lymphocyte-directed gene therapy for ADA-SCID: initial trial results after 4 years. Science 270:475–480.

    PubMed  CAS  Google Scholar 

  123. Liu. Y and Janeway, CA, Jr. (1992) Cells that present both specific ligand and co-stimulatory activity are the most efficient inducers of clonal expansion of normal CD4 T-cells. Proceedings of the National Academy of Sciences USA 89:3845–3849.

    CAS  Google Scholar 

  124. Levine, BL, Mosca, JD, Riley, JL, Carroll, RG, Vahey, MT, Jagodzinski, LL, Wagner, KF, Mayers, DL, Burke, DS, Weislow, OS, St.Louis, DC, June, CH (1996) Antiviral effect andex vivo CD4+ proliferation in HIV-positive patients as a result of CD28 co-stimulation. Science 272:1939–1943.

    PubMed  CAS  Google Scholar 

  125. Carroll, RG, Riley, JL, Levine, BL, Feng, Y, Kaushal, S, Ritchey, DW, Bernstein. W, Weislow, OS, Brown, CR, Berger, EA, June, CH, St.Louis, DC (1997) Differential regulation of HIV-1 fusion cofactor expression by CD28 co-stimulation of CD4+ T-cells. Science 216:273–276.

    Google Scholar 

  126. Rowland-Jones. S and Tan, R (1997) Control of HIV co-receptor expression: implications for pathogenesis and treatment. Trends in Microbiology 5:300–2; discussion 302-3.

    PubMed  CAS  Google Scholar 

  127. Pohl, C, Denfeld, R. Renner, C, Jung, W, Bohlen, H, Sahin, U, Hombach, A, van Lier, R, Schwonzen, M, Diehl, V (1993) CD30-antigen-specific targeting and activation of T-cells via murine bispecific monoclonal antibodies against CD3 and CD28: potential use for the treatment of Hodgkin’slymphoma. International Journal of Cancer 54:820–827.

    CAS  Google Scholar 

  128. Lamers, CH, van de Griend RJ. Braakman, E, Ronteltap, CP, Benard, J, Stoter, G, Gratama, JW, Bolhuis, RL (1992) Optimization of culture conditions for activation and large-scale expansion of human T-lymphocytes for bispecific antibody-directed cellular immunotherapy. International Journal of Cancer 51:973–979.

    CAS  Google Scholar 

  129. Costello, R, Cerdan, C, Pavon, C, Brailly, H, Hurpin, C, Mawas, C, Olive, D (1993) The CD2 and CD28 adhesion molecules induce long-term autocrine proliferation of CD4+ T-cells. European Journal of Immunology 23:608–613.

    PubMed  CAS  Google Scholar 

  130. Hurtado, JC, Kim, YJ, Kwon, BS (1997) Signals through 4-1BB are co-stimulatory to previously activated splenic T-cells and inhibit activation-induced cell death. Journal of Immunology 158:2600–2609.

    CAS  Google Scholar 

  131. Kim, YJ, Kim, SH. Mantel, P, Kwon, BS (1998) Human 4-1 BB regulates CD28 co-stimulation to promote Thl cell responses. European Journal of Immunology 28:881–890.

    PubMed  CAS  Google Scholar 

  132. Carrera. AC, Rincön, M, Sänchez-Madrid. F, Löpez-Botet, M, de Landazuri, MO (1988) Triggering of co-mitogenic signals in T-cell proliferation by anti-LFA-1 (CD18, CD1 la), LFA-3, and CD7 monoclonal antibodies. Journal of Immunology 141:1919–1924.

    CAS  Google Scholar 

  133. Waclavicek, M, Majdic, O, Stulnig, T, Berger, M, Baumruker, T, Knapp, W, Pickl, WF (1997) T-cell stimulation via CD47: agonistic and antagonistic effects of CD47 monoclonal antibody 1/1A4. Journal of Immunology 159:5345–5354.

    CAS  Google Scholar 

  134. Hintzen, RQ, Lens, SM, Lammers, K, Kuiper, H, Beckmann, MP, van, LR (1995) Engagement of CD27 with its ligand CD70 provides a second signal for T-cell activation. Journal of Immunology 154:2612–2623.

    CAS  Google Scholar 

  135. Kappler, J, Kotzin, B, Herron, L, Gelfand, EW, Bigler, RD, Boylston, A, Carrel, S, Posnett, DN, Choi, Y, Marrack, P (1989) V beta-specific stimulation of human T-cells by staphylococcal toxins. Science 244:811–813.

    PubMed  CAS  Google Scholar 

  136. Chatila, T and Geha, RS (1993) Signal transduction by microbial superantigens via MHC class 11 molecules. Immunological Reviews 131:43–59:43-59.

    PubMed  CAS  Google Scholar 

  137. Kotzin, BL, Leung, DY, Kappler, J, Marrack, P (1993) Superantigens and their potential role in human disease. Advances in Immunology 54:99–166:99–166.

    Article  PubMed  CAS  Google Scholar 

  138. Heeg, K and Wagner, H (1995) Induction of responsiveness in superantigen-induced anergic T-cells. Role of ligand density and co-stimulatory signals. Journal of Immunology 155:83–92.

    CAS  Google Scholar 

  139. Harding, CV (1996) Class II antigen processing: analysis of compartments and functions. Critical Reviews in Immunology 16: 13–29.

    PubMed  CAS  Google Scholar 

  140. Koopmann, JO, Hammerling, GJ, Momburg, F (1997) Generation, intracellular transport and loading of peptides associated with MHC class I molecules. Current Opinion in Immunology 9:80–88.

    Article  PubMed  CAS  Google Scholar 

  141. Ahmed, R and Gray, D (1996) Immunological memory and protective immunity: understanding their relation. Science 272:54–60.

    PubMed  CAS  Google Scholar 

  142. Steinman, RM (1991) The dendritic cell system and its role in immunogenicity. Annual Review of Immunology 9:271–96:271-296.

    Article  PubMed  CAS  Google Scholar 

  143. Hockett, RD, Cook, JR, Findlay, K, Harding, CV (1996) Interferon-gamma differentially regulates antigen-processing functions in distinct endocytic compartments of macrophages with constitutive expression of class II major histocompatibility complex molecules. Immunology 88:68–75.

    Article  PubMed  CAS  Google Scholar 

  144. Sugden, B and Mark, W (1977) Clonal transformation of adult human leukocytes by Epstein-Barr virus. Journal of Virology 23:503–508.

    PubMed  CAS  Google Scholar 

  145. Grewal, IS and Flavell, RA (1996) The role of CD40 ligand in co-stimulation and T-cell activation. Immunological Reviews 153:85–106:85–106.

    PubMed  CAS  Google Scholar 

  146. Schultze, JL. Michalak, S. Seamon, MJ, Dranoff, G, Jung, K, Daley, J, Delgado, JC, Gribben, JG, Nadler, LM (1997) CD40-activated human B-cells: an alternative source of highly efficient APC to generate autologous antigen-specific T-cells for adoptive immunotherapy. Journal of Clinical Investigation 100:2757–2765.

    PubMed  CAS  Google Scholar 

  147. Zhou, LJ and Tedder, TF (1995) Human blood dendritic cells selectively express CD83. a member of the immunoglobulin superfamily. Journal of Immunology 154:3821–3835.

    CAS  Google Scholar 

  148. Mehta-Damani, A, Markowicz, S, Engleman, EG (1995) Generation of antigen-specific CD4+ T-cell lines from naive precursors. European Journal of Immunology 25: 1206–1211.

    PubMed  CAS  Google Scholar 

  149. Thomas, R, Davis, LS, Lipsky, PE (1993) Isolation and characterization of human peripheral blood dendritic cells. Journal of Immunology 150:821–834.

    CAS  Google Scholar 

  150. O’Doherty, U, Steinman, RM, Peng. M, Cameron, PU, Gezelter, S, Kopeloff, I, Swiggard, WJ, Pope, M, Bhardwaj, N (1993) Dendritic cells freshly isolated from human blood express CD4 and mature into typical immunostimulatory dendritic cells after culture in monocyte-conditioned medium. Journal of Experimental Medicine 178:1067–1076.

    Google Scholar 

  151. Romani, N, Reider, D, Heuer, M, Ebner, S, Kampgen, E, Eibl, B, Niederwieser, D, Schuler, G (1996) Generation of mature dendritic cells from human blood. An improved method with special regard to clinical applicability. Journal of Immunological Methods 196:137–151.

    Article  PubMed  CAS  Google Scholar 

  152. Sallusto, F and Lanzavecchia, A (1994) Efficient presentation of soluble antigen by cultured human dendritic cells is maintained by granulocyte/macrophage colony-stimulating factor plus interleukin 4 and downregulated by tumor necrosis factor alpha. Journal of Experimental Medcine 179:1109–1118.

    CAS  Google Scholar 

  153. Zhou, LJ and Tedder, TF (1996) CD14+ blood monocytes can differentiate into functionally mature CD83+ dendritic cells. Proceedings of the National Academy of Sciences USA 93:2588–2592.

    CAS  Google Scholar 

  154. Caux, C, Massacrier, C, Vanbervliet, B, Dubois, B, van Kooten, C, Durand, I, Banchereau, J (1994) Activation of human dendritic cells through CD40 cross-linking. Journal of Experimental Medcine 180: 1263–1272.

    CAS  Google Scholar 

  155. Cella, M, Scheidegger, D, Palmer-Lehmann, K, Lane, P. Lanzavecchia, A, Alber, G (1996) Ligation of CD40 on dendritic cells triggers production of high levels of interleukin-12 and enhances T-cell stimulatory capacity: T-T help via APC activation. Journal of Experimental Medcine 184:747–752.

    CAS  Google Scholar 

  156. Caux, C, Dezutter-Dambuyant, C, Schmitt, D, Banchereau, J (1992) GM-CSF and TNF-alpha cooperate in the generation of dendritic Langerhans cells. Nature 360:258–261.

    Article  PubMed  CAS  Google Scholar 

  157. de Saint-Vis, B, Fugier-Vivier. I, Massacrier, C, Gaillard, C, Vanbervliet, B, Ait-Yahia, S, Banchereau, J, Liu, YJ, Lebecque, S, Caux, C (1998) The cytokine profile expressed by human dendritic cells is dependent on cell subtype and mode of activation. Journal of Immunology 160: 1666–1676.

    Google Scholar 

  158. Greten, TF, Slansky, JE, Kubota, R, Soldan, SS, Jaffee, EM, Leist, TP, Pardoll, DM, Jacobson, S, Schneck, JP (1998) Direct visualization of antigen-specific T-cells: HTLV-1 Tax11-19-specific CD8(+) T-cells are activated in peripheral blood and accumulate in cerebrospinal fluid from HAM/TSP patients. Proceedings of the National Academy of Sciences USA 95:7568–7573.

    Article  CAS  Google Scholar 

  159. Kozono, H, White, J, Clements, J, Marrack, P, Kappler, J (1994) Production of soluble MHC class II proteins with covalently bound single peptides. Nature 369: 151–154.

    Article  PubMed  CAS  Google Scholar 

  160. Zhu, X, Bavari, S, Ulrich, R, Sadegh-Nasseri, S, Ferrone, S, McHugh, L, Mage, M (1997) A recombinant single-chain human class II MHC molecule (HLA-DR1) as a covalently linked heterotrimer of alpha chain, beta chain, and antigenic peptide, with immunogenicity in vitro and reduced aftinity for bacterial superantigens. European Journal of Immunology 27: 1933–1941.

    PubMed  CAS  Google Scholar 

  161. Bousso, P, Michel, F, Pardigon, N, Bercovici, N, Liblau, R, Kourilsky, P, Abastado, JP (1997) Enrichment of antigen-specific T-lymphocytes by panning on immobilized MHC-peptide complexes. Immunology Letters 59:85–91.

    Article  PubMed  CAS  Google Scholar 

  162. Riddell, SR and Greenberg, PD (1990) The use of anti-CD3 and anti-CD28 monoclonal antibodies to clone and expand human anligen-specific T-cells. Journal of lmmunological Methods 128: 189–201.

    CAS  Google Scholar 

  163. MacDonald, HR, Cerottini, JC, Ryser, JE, Maryanski, JL, Taswell, C, Widmer, MB, Brunner, KT (1980) Quantitation and cloning of cytolytic T-lymphocytes and their precursors. Immunological Reviews 51:93–123.

    PubMed  CAS  Google Scholar 

  164. Modlin, RL, Kato, H, Mehra, V, Nelson, EE, Fan, XD, Rea, TH, Pattengale, PK, Bloom, BR (1986) Genetically restricted suppressor T-cell clones derived from lepromatous leprosy lesions. Nature 322:459–461.

    Article  PubMed  CAS  Google Scholar 

  165. Yee, C, Gilbert, MJ, Riddell, SR, Brichard, VG, Fefer, A, Thompson, JA, Boon, T, Greenberg, PD (1996) Isolation of tyrosinase-specific CD8+ and CD4+ T-cell clones from the peripheral blood of melanoma patients following in vitro stimulation with recombinant vaccinia virus. Journal of Immunology 157:4079–4086.

    CAS  Google Scholar 

  166. Gong, J, Chen, L, Chen, D, Kashiwaba, M, Manome, Y, Tanaka, T, Kufe, D (1997) Induction of antigen-specific antitumor immunity with adenovirus-transduced dendritic cells. Gene Therapy 4: 1023–1028.

    Article  PubMed  CAS  Google Scholar 

  167. Boczkowski, D, Nair, SK, Snyder, D, Gilboa, E (1996) Dendritic cells pulsed with RNA are potent antigen-presenting cells in vitro and in vivo. Journal of Experimental Medicine 184:465–472.

    Article  PubMed  CAS  Google Scholar 

  168. Yang, NS and Sun, WH (1995) Gene gun and other non-viral approaches for cancer gene therapy. Nature Medicine 1:481–483.

    PubMed  CAS  Google Scholar 

  169. Gong, J, Chen, D, Kashiwaba, M, Kufe, D (1997) Induction of antitumor activity by immunization with fusions of dendritic and carcinoma cells. Nature Medicine 3:558–561.

    Article  PubMed  CAS  Google Scholar 

  170. Wentworth, PA, Celis, E, Crimi, C, Stitely, S, Hale, L, Tsai, V, Serra, HM, Del Guercio, MF, Livingston, B, Alazard, D (1995) In vitro induction of primary, antigen-specific CTL from human peripheral blood MNC stimulated with synthetic peptides. Molecular Immunology 32:603–612.

    Article  PubMed  CAS  Google Scholar 

  171. Peshwa, MV, Page L.A., Qian, L, Yang, D, van Schooten W.C.A. (1996) Generation and Ex vivo Expansion of HTLV-1 Specific CD8+ T-Lymphocytes for Adoptive Immunotherapy. Biotechnology and Bioengineering 50: 529–540.

    Article  CAS  PubMed  Google Scholar 

  172. Lieberman, J, Skolnik, PR, Parkerson, GR3, Fabry, JA, Landry, B, Bethel, J, Kagan, J (1997) Safety of autologous, ex vivo-expanded human immunodeficiency virus (HIV)-specific cytotoxic T-lymphocyte infusion in HIV-infected patients. Blood 90:2196–2206.

    PubMed  CAS  Google Scholar 

  173. Bach, FH, Inouye, H, Hank, JA, Alter, BJ (1979) Human T-lymphocyte clones reactive in primed lymphocyte typing and cytotoxicity. Nature 281:307–309.

    Article  PubMed  CAS  Google Scholar 

  174. Lefkovits, I and Waldman, H (1979) Limiting dilution analysis of cells in the immune system, Cambridge University Press, Cambridge

    Google Scholar 

  175. Glasebrook, AL and Fitch, FW (1984) Derivation of T-cell clones, in RH Kennet, KB Bechtol, TJ McKearn (eds.), Monoclonal antibodies and functional cell lines, Plenum, New York, pp. 413–417

    Google Scholar 

  176. Altman, JD, Moss, PH, Goulder, PR, Barouch, DH, McHeyzer-Williams, MG, Bell, JI, McMichael, AJ, Davis, MM (1996) Phenotypic analysis of antigen-specific T-lymphocytes. Science 274:94–96.

    Article  PubMed  CAS  Google Scholar 

  177. Dunbar, PR, Ogg, GS, Chen, J, Rust, N, van der Bruggen, P, Cerundolo, V (1998) Direct isolation, phenotyping and cloning of low-frequency antigen-specific cytotoxic T-lymphocytes from peripheral blood. Current Biology 8:413–416.

    Article  PubMed  CAS  Google Scholar 

  178. De Libero, G (1997) Sentinel function of broadly reactive human gamma delta T-cells. Immunology Today 18:22–26.

    PubMed  Google Scholar 

  179. Morita, CT, Beckman, EM, Bukowski, JF, Tanaka, Y, Band, H, Bloom, BR, Golan, DE, Brenner, MB (1995) Direct presentation of nonpeptide prenyl pyrophosphate antigens to human gamma delta T-cells. Immunity 3:495–507.

    Article  PubMed  CAS  Google Scholar 

  180. Garcia, VE, Sieling, PA, Gong, J, Barnes, PF, Uyemura, K, Tanaka, Y, Bloom, BR, Morita, CT, Modlin, RL (1997) Single-cell cytokine analysis of gamma delta T-cell responses to nonpeptide mycobacterial antigens. Journal of Immunology 159: 1328–1335.

    CAS  Google Scholar 

  181. Porcelli, S, Morita, CT, Brenner, MB (1992) CD1b restricts the response of human CD4-8-T-lymphocytes to a microbial antigen. Nature 360:593–597.

    Article  PubMed  CAS  Google Scholar 

  182. Beckman, EM, Porcelli, SA, Morita, CT, Behar, SM, Furlong, ST, Brenner, MB (1994) Recognition of a lipid antigen by CD1-restricted alpha beta+ T-cells. Nature 372:691–694.

    Article  PubMed  CAS  Google Scholar 

  183. Sieling, PA, Chatterjee, D, Porcelli, SA, Prigozy, TI, Mazzaccaro, RJ, Soriano, T, Bloom, BR, Brenner, MB, Kronenberg, M, Brennan, PJ (1995) CD1-restricted T-cell recognition of microbial lipoglycan antigens. Science 269:227–230.

    PubMed  CAS  Google Scholar 

  184. Stenger, S, Mazzaccaro, RJ, Uyemura, K, Cho, S, Barnes, PF, Rosat, JP, Sette, A, Brenner, MB, Porcelli, SA, Bloom, BR, Modlin, RL (1997) Differential effects of cytolytic T-cell subsets on intracellular infection. Science 276: 1684–1687.

    Article  PubMed  CAS  Google Scholar 

  185. Kachel, V (1990) Electrical Resistance Pulse Sizing: Coulter Sizing, in MR Melamed, T Lindmo, ML Mendelsohn (eds.), Flow Cytometry and Sorting, Wiley-Liss, New York, pp. 45–80

    Google Scholar 

  186. Kubbies, M, Schindler, D, Hoehn, H, Rabinovitch, PS (1985) Cell cycle kinetics by BrdU-Hoechst flow cytometry: an alternative to the differential metaphase labelling technique. Cell and Tissue Kinetics 18:551–562.

    PubMed  CAS  Google Scholar 

  187. Shapiro, HM (1981) Flow cytometric estimation of DNA and RNA content in intact cells stained with Hoechst 33342 and pyronin Y. Cyrometry 2: 143–150.

    CAS  Google Scholar 

  188. Darzynkiewicz, Z, Li, X, Gong, J (1994) Assays of cell viability. Discrimination of cells dying by apoptosis, in Z Darzynkiewicz, HA Crissman, JP Robinson (eds.), Methods in Cell Biology: Flow Cytometry, Academic Press

    Google Scholar 

  189. Riedy, MC, Muirhead, KA, Jensen, CP, Stewart, CC (1991) Use ofa photolabeling technique to identify nonviable cells in fixed homologous or heterologous cell populations. Cytometry 12:133–139.

    Article  PubMed  CAS  Google Scholar 

  190. Gorczyca, W. Gong, J. Darzynkiewicz, Z (1993) Detection of DNA strand breaks in individual apoptotic cells by the in situ terminal deoxynucleotidyl transferase and nick translation assays. Cancer Research 53: 1945–1951.

    PubMed  CAS  Google Scholar 

  191. Horan, PK, Melnicoff, MJ, Jensen, BD, Slezak, SE (1990) Fluorescent cell labeling for in vivo and in vitro cell tracking. Methods in Cell Biology 33:469–90:469–490.

    PubMed  CAS  Google Scholar 

  192. Yamamura, Y, Rodriguez, N, Schwartz, A, Eylar, E. Bagwell, B, Yano, N (1995) A new flow cytometricmethod for quantitative assessment of lymphocyte mitogenic potentials. Cellular and Molecular Biology (Noisy-le-grand) 41 Suppl 1:S 121–32

    Google Scholar 

  193. Lyons, AB and Parish, CR (1993) Determination of lymphocyte division by flow cytometry. Journal of Immunological Methods 171: 131–137.

    Google Scholar 

  194. Wells, AD, Gudmundsdottii-, H, Turka, LA (1997) Following the fate of individual T-cells throughout activation and clonal expansion. Signals from T-cell receptor and CD28 differentially regulate the induction and duration of a proliferative response. Journal of Clinical Investigation 100:3173–3183.

    Article  PubMed  CAS  Google Scholar 

  195. Gett, AV and Hodgkin, PD (1998) Cell division regulates the T-cell cytokine repertoire, revealing a mechanism underlying immune class regulation. Proceedings of the National Academy of Sciences USA 95:9488–9493.

    Article  CAS  Google Scholar 

  196. Pannetier, C, Even, J, Kourilsky, P (1995) T-cell repertoire diversity and clonal expansions in normal and clinical samples. Immunology Today 16: 176–181.

    Article  PubMed  CAS  Google Scholar 

  197. Cochet, M, Pannetier, C, Regnault, A, Darche, S, Leclerc, C, Kourilsky, P (1992) Molecular detection and in vivo analysis of the specific T-cell response to a protein antigen. European Journal of Immunology 22:2639–2647.

    PubMed  CAS  Google Scholar 

  198. Pannetier, C, Cochet, M, Darche. S, Casrouge, A, Zoller, M, Kourilsky, P (1993) The sizes of theCDR3 hypervariable regions of the murine T-cell receptor beta chains vary as a function of the recombined germ-line segments. Proceedings of the National Academy of Sciences USA 90:4319–4323.

    CAS  Google Scholar 

  199. Gorski, J, Yassai, M, Zhu, X, Kissella, B, Keever, C, Flomenberg, N (1994) Circulating T-cell repertoirecomplexity in not-mal individuals and BM recipients analyzed by CDR3 size spectratyping. Correlation with immune status. Journal of Immunology 152:5109–5119.

    CAS  Google Scholar 

  200. Arenz, M, Herzog-Hauff, S, Meyer, zum Buschenfelde KH, Lohr, HF (1997) Antigen-independent in vitro expansion of T-cells does not affect the T-cell receptor V beta repertoire. Journal of Molecular Medicine 75:678–686.

    Article  PubMed  CAS  Google Scholar 

  201. Caignard, A, Guillard, M, Gaudin, C, Escudier, B, Triebel, F, Dietrich, PY (1996) In situ demonstration of renal-cell-carcinoma-specific T-cell clones. International Journal of Cancer 66:564–570

    Article  CAS  Google Scholar 

  202. Dietrich, PY, Walker, PR, Schnuriger, V, Saas, P, Perrin, G, Guillard, M, Gaudin, C, Caignard, A (1997) TCR analysis reveals significant repertoire selection during in vitro lymphocyte culture. International Immunology 9: 1073–1083.

    Article  PubMed  CAS  Google Scholar 

  203. Roederer, M, De Rosa, S, Gerstein, R, Anderson, M, Bigos, M, Stovel, R, Nozaki, T, Parks, D, Herzenberg, L (1997) 8 color, 10-parameter flow cytometry to elucidate complex leukocyte heterogeneity. Cytometry 29:328–339.

    Article  PubMed  CAS  Google Scholar 

  204. Shevach, EV, Sharrow, SO, Holmes, KL, Fowlkes, BJ, Schmid, I, Giorgi, JV, Otten, G, Yokoyama, WM, June, CH, Abe, R, Rabinaovitch, PS, Segal, DM, Noguchi, PD (1995) Immunofluorescence and Cell Sorting, in JE Coligan, AM Kruisbeek, DH Margulies, EM Shevach, W Strober (eds.), Current Protocols in Immunology,John Wiley & Sons, Inc., pp. 5.0.1–5.8.8

    Google Scholar 

  205. Ault, KA (1990) Applications in Immunology and Lymphocyte Analysis, in MR Melamed, T Lindmo, ML Mendelsohn (eds.), Flow Cytometry and Sorting, John Wiley & Sons, Inc., New York, pp. 685–696

    Google Scholar 

  206. Darzynkiewicz, Z, Robinson, JP, Crissman, HA (1994) Flow Cytometry, Second Edition, Part A. Methods in Cell Biology 41.

    Google Scholar 

  207. Darzynkiewicz, Z, Robinson, JP, Crissman, HA (1994) Flow Cytometry, Second Edition, Part B. Methods in Cell Biology 42.

    Google Scholar 

  208. Kuroda, MJ, Schmitz, JE, Barouch, DH, Craiu, A, Allen, TM, Sette, A, Watkins, DI, Forman, MA, Letvin, NL (1998) Analysis of Gag-specific cytotoxic T-lymphocytes in simian immunodeficiency virus-infected rhesus monkeys by cell staining with a tetrameric major histocompatibility complex class I-peptide complex. Journal of Experimental Medcine 187:1373–1381.

    CAS  Google Scholar 

  209. Mire-Sluis, AR, Page, L, Thorpe, R (1995) Quantitative cell line based bioassays for human cytokines. Journal of Immunological Methods 187:191–199.

    Article  PubMed  CAS  Google Scholar 

  210. Prussin, C (1997) Cytokine flow cytometry: understanding cytokine biology at the single-cell level. Journal of Clinical Immunology 17: 195–204.

    Article  PubMed  CAS  Google Scholar 

  211. Waldrop, SL, Pitcher, CJ, Peterson, DM, Maino, VC, Picker, LJ (1997) Determination of antigen-specific memory/effector CD4+ T-cell frequencies by flow cytometry: evidence for a novel, antigen-specific homeostatic mechanism in HIV-associated immunodeficiency. Journal of Clinical Investigation 99: 1739–1750.

    Article  PubMed  CAS  Google Scholar 

  212. Suni, MA, Picker, LJ, Maino, VC (1998) Detection of antigen-specific T-cell cytokine expression in whole blood by flow cytometry. Journal of Immunological Methods 212:89–98.

    Article  PubMed  CAS  Google Scholar 

  213. Mentzer, SJ, Barbosa, JA, Burakoff, SJ (1985) T3 monoclonal antibody activation of nonspecific cytolysis: a mechanism of CTL inhibition. Journal of Immunology 135:34–38.

    CAS  Google Scholar 

  214. Brunner, KT, Mauel, J, Cerottini, JC, Chapuis, B (1968) Quantitative assay of the lytic action of immune lymphoid cells on 5 1-Cr-labelled allogeneic target cells in vitro; inhibition by isoantibody and by drugs. Immunology 14:181–196.

    PubMed  CAS  Google Scholar 

  215. Shearer, GM, Salahuddin, SZ, Markham, PD, Joseph, LJ, Payne, SM, Kriebel, P, Bernstein, DC, Biddison, WE, Samgadharan, MG, Gallo, RC (1985) Prospective study of cytotoxic T-lymphocyte responses to influenza and antibodies to human T-lymphotropic virus-I11 in homosexual men. Selective loss of an influenza-specific, human leukocyte antigen-restricted cytotoxic T-lymphocyte response in human T-lymphotropic virus-111 positive individuals with symptoms of acquired immunodeficiency syndrome and in a patient with acquired immunodeficiency syndrome. Journal of Clinical Investigation 76:1699–1704.

    PubMed  CAS  Google Scholar 

  216. Riviere, Y, Tanneau-Salvadori, F, Regnault, A, Lopez, O, Sansonetti, P, Guy, B, Kieny, MP, Fournel, JJ, Montagnier, L (1989) Human immunodeficiency virus-specific cytotoxic responses of seropositive individuals: distinct types of effector cells mediate killing of targets expressing gag and env proteins. Journal of Virology 63:2270–2277.

    PubMed  CAS  Google Scholar 

  217. Lichtenfels, R, Biddison, WE, Schulz, H, Vogt, AB, Martin, R (1994) CARE-LASS (calcein-release-assay), an improved fluorescence-based test system to measure cytotoxic T-lymphocyte activity. Journal of Immunological Methods 172:227–239.

    Article  PubMed  CAS  Google Scholar 

  218. Mattis, AE, Bernhardt, G, Lipp, M, Forster, R (1997) Analyzing cytotoxic T-lymphocyte activity: a simple and reliable flow cytometry-based assay. Journal of Immunological Methods 204: 135–142.

    Article  PubMed  CAS  Google Scholar 

  219. Hayflick L. and Moorliead P.S. (1961) The serial cultivation of human diploid cell strains. Experimental Cell Research 25:585.

    Article  Google Scholar 

  220. Efrros, RB and Walford, RL (1984) T-cell cultures and the Nayflick limit. Human Immunology 9:49–65.

    Google Scholar 

  221. Adibzadeh, M, Pohla, H, Rehbein, A, Pawelec, G (1995) Long-term culture of monoclonal human T-lymphocytes: models for immunosenescence? Mechanisms in Ageing and Development 83: 171–183.

    CAS  Google Scholar 

  222. Harley. CB and Villeponteau, B (1995) Telomeres and telomerase in aging and cancer. Current Opinion in Genetics and Development 5:249–255.

    Article  PubMed  CAS  Google Scholar 

  223. Harley. CB. Futcher, AH, Greider, CW (1990) Telomeres shorten during ageing of human fibroblasts. Nature 345:458–460.

    Article  PubMed  CAS  Google Scholar 

  224. Vaziri, H, Schachter, F. Uchida, I, Wei, L, Zhu, X, Effros, R, Cohen, D, Harley, CB (1993) Loss of telomeric DNA during aging of normal and trisomy 21 human lymphocytes. American Journal of Human Genetics 52:661–667.

    PubMed  CAS  Google Scholar 

  225. Bodnar, AG. Ouellette, M, Frolkis, M, Holt, SE, Chiu, CP, Morin, CB, Harley, CB, Shay, JW. Lichtsteiner, S, Wright, WE (1998) Extension of life-span by introduction of telomerase into normal human cells. Science 279:349–352.

    Article  PubMed  CAS  Google Scholar 

  226. Weng, NP, Levine, BL, June, CH, Hodes, RJ (1995) Human naive and memory T-lymphocytes differ in telomeric length and replicative potential, Proceedings of the National Academy of Sciences USA 92: 11091–11094.

    CAS  Google Scholar 

  227. Weng, NP, Levine, BL, June, CH, Hodes, RJ (1996) Regulated expression of telomerase activity in human T-lymphocyte development and activation. Journal of Experimental Medicine 183:2471–2479.

    Article  PubMed  CAS  Google Scholar 

  228. Weng, NP, Palmer, LD. Levine, BL, Lane. HC, June, CH, Hodes, RJ (1997) Tales of tails: regulation of telomere Iength and telomerase activity during lymphocyte development, differentiation, activation, and aging. Immunological Reviews 160:43–54.

    PubMed  CAS  Google Scholar 

  229. Rosenberg, SA. Lotze, MT, Muul, LM. Leitman, S. Chang, AE, Ettinghausen, SE. Matory, YL. Skibber, JM, Shiloni, E, Vetto, JT (1985) Observations on the systemic administration of autologous lymphokine-activated killer cells and recombinant inlei-leukin-2 to patients with metastatic cancer. New England Journal Medicine 313:1485–1492.

    CAS  Google Scholar 

  230. Rosenberg, SA, Yannelli, JR, Yang, JC, Topalian, SL, Schwartzentruber, DJ, Weber, JS, Parkinson, DR, Seipp, CA, Einhorn, JH, White, DE (1994) Treatment of patients with metastatic melanoma with autologous tumor-infiltrating lymphocytes and interleukin 2. JournaI of the National Cancer Institute 86: 1159–1166.

    CAS  Google Scholar 

  231. Yee, C, Riddell, SR, Greenberg, PD (1997) Prospects for adoptive T-cell therapy. Curr Opinion in Immunology 9:702–708

    CAS  Google Scholar 

  232. Hall, SS (1997) A commotion in the blood: Life, death, and the immune system, Henry Holt and Company, New York.

    Google Scholar 

  233. Lamers, CH, Bolhuis, RL, Warnaar, SO, Stoter, G, Gratama, JW (1997) Local but no systemic immunomodulation by intraperitoneal treatment of advanced ovarian cancer with autologous T-lymphocytes re-targeted by a bi-specific monoclonal antibody. International Journal of Cancer 73:211–219.

    Article  CAS  Google Scholar 

  234. Walter, EA, Greenberg, PD, Gilbert, MJ, Finch, RJ, Watanabe, KS, Thomas, ED, Riddell, SR (1995) Reconstitution of cellular immunity against cytomegalovirus in recipients of allogeneic BM by transfer of T-cell clones from the donor. New England Journal of Medicine 333:1038–1044.

    Article  PubMed  CAS  Google Scholar 

  235. Klimas, N, Patarca, R, Walling, J, Garcia, R, Mayer, V, Moody, D, Okarma, T, Fletcher, MA (1994) Clinical and immunological changes in AIDS patients following adoptive therapy with activated autologous CD8 T-cells and interleukin-2 infusion. AIDS 8:1073–1081.

    PubMed  CAS  Google Scholar 

  236. Bordignon, C, Notarangelo, LD, Nobili, N, Ferrari, G, Casorati, G, Panina, P, Mazzolari, E, Maggioni, D, Rossi, C, Servida, P (1995) Gene therapy in peripheral blood lymphocytes and BM for ADA-immunodeficient patients. Science 270:470–475.

    PubMed  CAS  Google Scholar 

  237. Heslop, HE, Ng, CY, Li, C, Smith, CA, Loftin, SK, Krance, RA, Brenner, MK, Rooney, CM (1996) Long-term restoration of immunity against Epstein-Barr virus infection by adoptive transfer of gene-modified virus-specific T-lymphocytes. Nature Medicine 2:551–555.

    Article  PubMed  CAS  Google Scholar 

  238. Ranga, U, Woffendin, C, Verma, S, Xu, L, June, CH, Bishop, DK, Nabel, GJ (1998) Enhanced T-cell engraftment after retroviral delivery of an antiviral gene in HIV-infected individuals. Proceedings of the National Academy of Sciences USA 95: 1201–1206.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

Levine, B.L., Schlienger, K., June, C.H. (2002). T-Lymphocytes: Mature Polyclonal and Antigen-Specific Cell Culture. In: Koller, M.R., Palsson, B.O., Masters, J.R.W. (eds) Human Cell Culture. Human Cell Culture, vol 4. Springer, Dordrecht. https://doi.org/10.1007/0-306-46886-7_3

Download citation

  • DOI: https://doi.org/10.1007/0-306-46886-7_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-5821-3

  • Online ISBN: 978-0-306-46886-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics