Skip to main content

Hematopoietic Stem and Progenitor Cells

  • Chapter
Human Cell Culture

Part of the book series: Human Cell Culture ((HUCC,volume 4))

  • 316 Accesses

Summary

Mature blood cells, most of which exhibit a limited lifespan in vivo, are continuously generated from hematopoietic stem and progenitor cells. Stem cells are very rare in adult BM, but they have enough proliferative capacity to overcome stress and disease, potentially over several lifetimes. Control of stem cell growth and differentiation is a subject of intense study, and is known to be influenced by growth factors, stromal cells, ECM, and other culture conditions. These cells can be obtained from a number of primary tissue sources, and various means of processing and purification have been developed. Stem and progenitor cells are assayed through in vivo and in vitro methods, including xenogeneic transplant models, CFU assays, flow cytometry, and LTC-IC assays. Current culture methods for stem and progenitor cells are generally based on one of two approaches; the use of CD34-enriched cells in low density static culture, or the use of high density accessory cell-containing cultures supported by continuous medium perfusion. Both approaches are feasible, and each has its advantages and disadvantages for different applications. Stem cell cultures have been used in clinical studies to generate cells for SCT following cancer chemotherapy, as well as in basic scientific studies designed to better understand the complex process of hematopoiesis and carcinogenesis. Based upon the continued effort directed in this field of research and development, further advances can be expected, with the potential for considerable impact on the state of scientific knowledge and clinical practice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Cronkite EP (1988) Analytical review of structure and regulation of hemopoiesis. Blood Cells 14:313–328.

    PubMed  CAS  Google Scholar 

  2. Lajtha LG (1979) Stem cell concepts. Differentiation 14:23–34.

    PubMed  CAS  Google Scholar 

  3. Boggs DR, Boggs SS, Saxe DF, Gress LA, and Canfield DR (1982) Hematopoietic stem cells with high proliferative potential. J. Clin. Invest. 70:242–253.

    PubMed  CAS  Google Scholar 

  4. Spangrude GJ, Heimfeld S, and Weissman IL (1988) Purification and characterization of mouse hematopoietic stem cells. Science 241 58–62.

    PubMed  CAS  Google Scholar 

  5. Lansdorp PM, Dragowska W, and Mayani H (1993) Ontogeny-related changes in proliferative potential of human hematopoietic cells. J. Exp. Med. 178:787–791.

    Article  PubMed  CAS  Google Scholar 

  6. Vaziri H, Dragowska W, Allsopp RC, Thomas TE, Harley CB, and Lansdorp PM (1994) Evidence for a mitotic clock in human hematopoietic stem cells: Loss of telomeric DNA with age. Proc. Natl. Acad. Sci. 91:9857–9860.

    PubMed  CAS  Google Scholar 

  7. Broccoli D, Young JW, and De Lange T (1995) Telomerase activity in normal and malignant hematopoietic cells. Proc. Natl. Acad. Sci. 92:9082–9086.

    PubMed  CAS  Google Scholar 

  8. Chiu C-P, Dragowska W, Kim NW, Vaziri H, Yui J, Thomas TE, Harley CB, and Lansdorp PM (1996) Differential expression of telomerase activity in hematopoietic progenitors from adult human bone marrow. Stem Cells 14:239–248.

    PubMed  CAS  Google Scholar 

  9. Bodnar AG, Ouellette M, Frolkis M, Holt SE, Chiu C-P, Morin GB, Harley CB, Shay JW, Lichtsteiner S, and Wright WE (1998) Extension of life-span by introduction of telomerase into normal human cells. Science 279:349–352.

    Article  PubMed  CAS  Google Scholar 

  10. Holt SE, Shay JW, and Wright WE (1996) Refining the telomere-telomerase hypothesis of aging and cancer. Nature Biotechnol. 14:836–839.

    Article  CAS  Google Scholar 

  11. Yamakazi K, Roberts RA, Spooncer E, Dexter TM, and Allen TD (1989) Cellular interactions between 3T3 cells and interleukin-3-dependent multipotent haemopoietic cells: A model system for stromal-cell-mediated haemopoiesis. J. Cell.Physiol. 139:301–312.

    Google Scholar 

  12. Verfaillie CM (1992) Direct contact between human primitive hematopoietic progenitors and bone marrow stroma is not required for long-term in vitro hematopoiesis. Blood 79:2821–2826.

    PubMed  CAS  Google Scholar 

  13. Brandt JE, Srour EF, Van Besien K, Briddell RA, and Hoffman R (1990) Cytokine-dependent long-term culture of highly enriched precursors of hematopoietic progenitor cells from human bone marrow. J. Clin. Invest. 86:932–941.

    PubMed  CAS  Google Scholar 

  14. Haylock DN, To LB, Dowse TL, Juttner CA, and Simmons PJ (1992) Ex vivo expansion and maturation of peripheral blood CD34+ cells into the myeloid lineage. Blood 80: 1405–1412.

    PubMed  CAS  Google Scholar 

  15. Toksoz D, Zsebo KM, Smith KA, Hu S, Brankow D, Suggs SV, Martin FH, and Williams DA (1992) Support of human hematopoiesis in long-term bone marrow cultures by murine stromal cells selectively expressing the membrane-bound and secreted forms of the human homolog of the steel gene product, stem cell factor. Proc. Natl. Acad. Sci. 89:7350–7354.

    PubMed  CAS  Google Scholar 

  16. Long MW (1992) Blood cell cytoadhesion molecules. Exp. Hematol. 20:288–301.

    PubMed  CAS  Google Scholar 

  17. Koller MR, Bradley MS, and Palsson BØ (1995) Growth factor consumption and production in perfusion cultures of human bone marrow correlates with specific cell production. Exp.Hematol. 23: 1275–1283.

    PubMed  CAS  Google Scholar 

  18. Zipori D (1989) Stromal cells from the bone marrow: Evidence for a restrictive role in regulation of hemopoiesis. Eur. J. Haematol. 42:225–232.

    PubMed  CAS  Google Scholar 

  19. Zuckerman KS and Wicha MS (1983) Extracellular matrix production by the adherent cells of long-term murine bone marrow cultures. Blood 61:540–547.

    PubMed  CAS  Google Scholar 

  20. Coulombel L, Vuillet MH, Leroy C, and Tchernia G (1988) Lineage-and stage-specific adhesion of human hematopoietic progenitor cells to extracellular matrices from marrow fibroblasts. Blood 71:329–334.

    PubMed  CAS  Google Scholar 

  21. Campbell AD, Long MW, and Wicha MS (1987) Haemonectin, a bone marrow adhesion protein specific for cells of granulocyte lineage. Nature 329:744–746.

    Article  PubMed  CAS  Google Scholar 

  22. Long MW and Dixit VM (1990) Thrombospondin functions as a cytoadhesion molecule for human hematopoietic progenitor cells. Blood 75:2311–2318.

    PubMed  CAS  Google Scholar 

  23. Wight TN, Kinsella MG, Keating A, and Singer JW (1986) Proteoglycans in human long-term bone marrow cultures: Biochemical and ultrastructural analyses. Blood 67: 1333–1343.

    PubMed  CAS  Google Scholar 

  24. Hao Q-L, Shah AJ, Thiemann FT, Smogorzewska EM, and Crooks GM (1995) A functional comparison of CD34+CD38- cells in cord blood and bone marrow. Blood 86:3745–3753.

    PubMed  CAS  Google Scholar 

  25. Preti RA, Razis E, Ciavarella D, Fan Y, Kuhns RE, Cook P, Wong G, Wuest DL, and Ahmed T (1994) Clinical and laboratory comparison study of refrigerated and cryopreserved bone marrow for transplantation. Bone Marrow Transplant. 13:253–260.

    PubMed  CAS  Google Scholar 

  26. de Wynter EA, Coutinho LH, Pei X, Marsh JCW, Hows JM, Luft T, and Testa NG (1995) Comparison of purity and enrichment of CD34+ cells from bone marrow, umbilical cord and peripheral blood (primed for apheresis) using five separation systems. Stem Cells 13:524–532.

    PubMed  Google Scholar 

  27. Rowley SD (1992) Techniques of bone marrow and stem cell cryopreservation and storage, in RA Sacher and JP AuBuchon (eds.), Marrow transplantation: Practical and technical aspects of stem cell reconstitution, American Association of Blood Banks, Bethesda, pp. 105–127.

    Google Scholar 

  28. Koller MR, Manchel I, Newsom BS, Palsson MA, and Palsson BØ(1995) Bioreactor expansion of human bone marrow: Comparison of unprocessed, density-separated, and CD3-4enriched cells. J. Hematotherapy 4: 159–169.

    CAS  Google Scholar 

  29. Pappenheim A (1898) Abstammung and entstehung der rotten blutzelle. Virchows Arch. 151:89–80.

    Google Scholar 

  30. Naeim F (1992) Pathology of bone marrow, Igaku-Shoin, New York, NY.

    Google Scholar 

  31. Civin CI and Gore SD (1993) Antigenic analysis of hematopoesis: A review. J. Hematotherapy 2:137–144.

    CAS  Google Scholar 

  32. Brott DA, Koller MR, Rummel SA, and Palsson BO (1995) Flow cytometric analysis of cells obtained from human bone marrow cultures, in M AI-Rubeai and AN Emery (eds.). Flow cylometry applications in cell culture, Marcel Dekker, New York, pp. 121–146.

    Google Scholar 

  33. Civin CI, Strauss LC, Brovall C, Fackler MJ, Schwartz JF, and Shaper JH (1984) Antigenic analysis of hematopoiesis. III. A hematopoietic progenitor cell surface antigen defined by a monoclonal antibody raised against KG-Ia cells. J. Immunol. 133: 157–165.

    PubMed  CAS  Google Scholar 

  34. Berenson RJ, Bensinger WI, Hill RS, Andrews RG, Garcia-Lopez J, Kalamasz DF, Still BJ, Spitzer G, Buckner CD, Bernstein ID, and Thomas ED (1991) Engraftment after infusion of CD34+ marrow cells in patients with breast cancer or neuroblastoma. Blood 77:1711–1122.

    Google Scholar 

  35. Osawa M, Hanada K, Hamada H, and Nakauchi H (1996) Long-term lymphohematopoietic reconstitution by a single CD34-low/negative hematopoietic stem cell. Science 213:242–245.

    Google Scholar 

  36. Goodall MA, Rosenzweig M, Kim H, Marks DF, DeMaria M, Paradis G. Grupp SA, Sieff CA, Mulligan RC, and Johnson RP (1997) Dye efflux studies suggest that hematopoietic stem cells expressing low or undetectable levels of CD34 antigen exist in multiple species. Nature Medicine 3:1337–1345.

    Google Scholar 

  37. Rebel VI, Dragowska W, Eaves CJ, Humphries RK, and Lansdorp PM (1994) Amplification of Sca-l+ Lin-WGA+ cells in serum-free cultures containing steel factor, interleukin-6, and erythropoietin with maintenance of cells with long-term in vivo reconstituting potential. Blood 83: 128–136.

    PubMed  CAS  Google Scholar 

  38. Spangrude GJ, Brooks DM, and Tumas DB (1995) Long-term repopulation of irradiated mice with limiting numbers of purified hematopoietic stem cells: In vivo expansion of stem cell phenotype but not function. Blood 85:1006–1016.

    PubMed  CAS  Google Scholar 

  39. Till JE and McCulloch EA (1961) A direct measurement of the radiation sensitivity of normal mouse bone marrow cells. Radiation Research 14:213–222.

    PubMed  CAS  Google Scholar 

  40. Szilvassy SJ, Fraser CC, Eaves CJ, Lansdorp PM, Eaves AC, and Humphries RK (1989) Retrovirus-mediated gene transfer to purified hemopoietic stem cells with long-term lympho-myelopoietic repopulating ability. Proc. Natl. Acad. Sci. 86:8798–8802.

    PubMed  CAS  Google Scholar 

  41. Zanjani ED, Ascensao JL, Harrison MR, and Tavassoli M (1992) Ex vivo incubation with growth factors enhances the engraftment of fetal hematopoietic cells transplanted into sheep fetuses. Blood 79:3045–3049.

    PubMed  CAS  Google Scholar 

  42. Kyoizumi S, Baum CM. Kaneshima H, McCune JM, Yee EJ, and Namikawa R (1992) Implantation and maintenance of functional human bone marrow in SCID-hu mice. Blood 79:1704–1711.

    PubMed  CAS  Google Scholar 

  43. Larochelle A, Vormoor J, Lapidot T, Sher G, Furukawa T, Li Q, Schultz LD, Olivieri NF, Stamatoyannopoulos G, and Dick JE (1995) Engraftment of immune-deficient mice with primitive hematopoietic cells from β-thalassemia and sickle cell anemia patients: Implications for evaluating human gene therapy protocols. Human Molec. Gerietics 4: 163–172.

    CAS  Google Scholar 

  44. Sutherland HJ, Eaves AC, and Eaves CJ (1991) Quantitative assays for human hemopoietic progenitor cells, in AP Gee (ed.), Bone marrow processing and purging, CRC Press, Ann Arbor, pp. 155–167.

    Google Scholar 

  45. Friedenstein AJ, Chailakhjan RK, and Lalykina KS (1970) The development of fibroblast colonies in monolayer cultures of guinea-pig bone marrow and spleen cells. Cell Tissue Kinet. 3:393–403.

    PubMed  CAS  Google Scholar 

  46. Sutherland HJ, Lansdorp PM, Henkelman DH, Eaves AC, and Eaves CJ (1990) Functional characterization of individual human hematopoietic stem cells cultured at limiting dilution on supportive marrow stromal layers. Proc.Natl.Acad.Sci. 87:3584–3588.

    PubMed  CAS  Google Scholar 

  47. Hao Q-L, Thiemann FT, Petersen D, Smogozewska EM, and Crooks G M (1996) Extended long-term culture reveals a highly quiescent and primitive human hematopoietic progenitor population. Blood 88:3306–3313.

    PubMed  CAS  Google Scholar 

  48. van der Sluijs JP, de Jong JP, Brons NHC, and Ploemacher RE (1990) Marrow repopulating cells, but not CFU-S. establish long-term in vitro hemopoiesis on a marrow-derived stromal layer. Exp.Hematol. 18:893–896.

    PubMed  Google Scholar 

  49. Koller MR, Manchel I, and Smith AK (1998) Quantitative long-term culture-initialing cell assays require accessory cell depletion that can be achieved by CD34-enrichment or 5-fluorouracil exposure. Blood 91:4056–4064.

    PubMed  CAS  Google Scholar 

  50. Dexter TM, Spooncer E, Simmons P, and Allen TD (1984) Long-term marrow culture: An overview of techniques and experience, in DG Wright and JS Greenberger (eds.), Long term hone marrow culture, Alan R. Liss, New York, pp. 57–96.

    Google Scholar 

  51. Greenberger JS (1984) Long-term hematopoietic cultures, in DW Golde (ed.), Hematopoiesis, Churchill Livingstone, New York, pp. 203–242.

    Google Scholar 

  52. Eaves CJ, Cashman JD, and Eaves AC (1991) Methodology of long-term culture of human hemopoietic cells. J. Tiss.Cult.Meth. 13:55–62.

    Google Scholar 

  53. Dexter TM, Allen TD, and Lajtha LG (1977) Conditions controlling the proliferation of haemopoietic stem cells in vitro. J.Cell.Physiol. 91:335–344.

    Article  PubMed  CAS  Google Scholar 

  54. Gartner S and Kaplan HS (1980) Long-term culture of human bone marrow cells. Proc.Natl.Acad.Sci. 77:4756–4759.

    PubMed  CAS  Google Scholar 

  55. Coutinho LH. Will A, Radford J, Schiró R, Testa NG, and Dexter TM (1990) Effects of recombinant human granulocyte colony-stimulating factor (CSF), human granulocyte macrophage-CSF, and gibbon interleukin-3 on hematopoiesis in human long-term bone marrow culture. Blood 75:2118–2129.

    PubMed  CAS  Google Scholar 

  56. Brugger W, Heimfeld S, Berenson RJ, Mertelsmann R, and Kanz L (1995) Reconstitution of hematopoiesis alier high-dose chemotherapy by autologous progenitor cells generated ex vivo. N.E.J.Med. 333:283–287.

    CAS  Google Scholar 

  57. Williams SF, Lee WJ, Bender JG, Zimmerman TM, Swinney P, Blake M, Carreon J. Schilling M, Smith S, Williams DE, Oldham F, and Van Epps DE (1996) Selection and expansion of peripheral blood CD34+ cells in autologous stem cell transplantation for breast cancer. Blood 87:1687–1691.

    PubMed  CAS  Google Scholar 

  58. Alcorn MJ, Holyoake TL, Richmond L, Pearson C, Farrel E, Kyle B, Dunlop DJ, Fitzsimons E, Steward WP, Pragnell IB, and Franklin IM (1996) CD34-positive cells isolated from cryopreserved peripheral-blood progenitor cells can be expanded ex vivo and used for transplantation with little or no toxicity. J.Clirt.Oncol. 14: 1839–1847.

    CAS  Google Scholar 

  59. Sutherland HJ, Hogge DE, Cook D, and Eaves CJ (1993) Alternative mechanisms with and without steel factor support primitive human hematopoiesis. Blood 81: 1465–1470.

    PubMed  CAS  Google Scholar 

  60. Koller MR, Palsson MA, Manchel I, and Palsson BD (1995) LTC-IC expansion is dependent on frequent medium exchange combined with stromal and other accessory cell effects. Blood 86:1784–1793.

    PubMed  CAS  Google Scholar 

  61. Traycoff CM, Abboud MR, Laver J, Brandt JE, Hoffman R, Law P, Ishizawa L, and Srour EF (1994) Evaluation of the in vitro behavior of phenotypically defined populations of umbilical cord blood hematopoietic progenitor cells. Exp.Hematol. 22:215–222.

    PubMed  CAS  Google Scholar 

  62. Koller MR, Manchel I, and Palsson Bø (1997) Importance of parenchymal:stromal cell ratio for the ex vivo reconstitution of human hematopoiesis. Stem Cells 15:305–313.

    PubMed  CAS  Google Scholar 

  63. Mayani H, Dragowska W, and Lansdorp PM (1993) Characterization of functionally distinct subpopulations of CD34+ cord blood cells in serum-free long-term cultures supplemented with hematopoietic cytokines. Blood 82:2664–2672.

    PubMed  CAS  Google Scholar 

  64. Young JC, DiGiusto DL, and Backer MP (1996) In vitro characterization of fetal hematopoietic stem cells: Range and kinetics of cell production from individual stem cells. Biotechnol.Bioeng. 50:465–478.

    Article  CAS  PubMed  Google Scholar 

  65. Lebkowski JS, Schain LR, and Okarma TB (1995) Serum-free culture of hematopoietic stem cells: A review. Stem Cells 13:607–612.

    PubMed  CAS  Google Scholar 

  66. Koller MR, Maher RJ, Manchel I, Oxender M, and Smith AK (1998) Alternatives to animal sera for human bone marrow cell expansion:Human serum and serum-free media. J.Hematotherapy 7:413–421.

    CAS  Google Scholar 

  67. BruggerW, M šcklin W, Heimfeld S, Berenson RJ, Mertelsmann R, and Kanz L (1993) Ex vivo expansion of enriched peripheral blood CD34+ progenitor cells by stem cell factor, interleukin-1 β (IL-1 β) IL-6, IL-3, interferon-γ and erythropoietin. Blood 81:2579–2584.

    Google Scholar 

  68. Koller MR, Oxender M, Brott DA, and Palsson Bø(1996) flt-3 ligand is more potent than c-kit ligand for the synergistic stimulation of ex vivo hematopoietic cell expansion. J.Hematotherapy 5:449–459.

    CAS  Google Scholar 

  69. Koller MR, Jensen TC, Goltry KL, Brott DA, and Smith AK (1997) The effects ofTpo and IL-11 on human bone marrow cell expansion in a small-scale perfused culture system. Blood 90:537a.

    Google Scholar 

  70. Schwartz RM, Palsson Bø, and Emerson SG (1991) Rapid medium perfusion rate significantly increases the productivity and longevity of human bone marrow cultures. Proc.Natl.Acad.Sci. 88:6760–6764.

    PubMed  CAS  Google Scholar 

  71. Schwartz RM, Emerson SG, Clarke MF, and Palsson Bø(1991) In vitro myelopoiesis stimulated by rapid medium exchange and supplementation with hematopoietic growth factors. Blood 78: 3155–3161.

    PubMed  CAS  Google Scholar 

  72. Koller MR, Manchel I, Palsson MA, Maher RJ, and Palsson Bø (1996) Different measures of human hemaopoietic cell culture performance are optimized under vasly different conditions. BiotechnoL.Bioeng. 50: 505–513.

    Article  CAS  PubMed  Google Scholar 

  73. Koller MR, Manchel I, Maher RJ, Goltry KL, Armstrong RD, and Smith AK (1998) Clinical-scale human umbilical cord blood cell expansion in a novel automated perfusion culture system. Bone Marrow Transplant. 21: 653–663.

    Article  PubMed  CAS  Google Scholar 

  74. Koller MR, Bender JG, Miller WM, and Papoutsakis ET (1993) Expansion of human hematopoietic progenitors in a perfusion bioreactor system with IL-3, IL-6, and stem cell factor. Biotechnol 11:358–363.

    Article  CAS  Google Scholar 

  75. Palsson Bø, Paek S-H, Schwartz RM, Palsson M, Lee G-M, Silver SM, and Emerson SG (1993) Expansion of human bone marrow progenitor cells in a high cell density continuous perfusion system. Biotechnol 11:368–371.

    Article  CAS  Google Scholar 

  76. Sandstrom CE, Bender JG, Papoutsakis ET, and Miller WM (1995) Effects of CD34+ cell selection and perfusion on ex vivo expansion of peripheral blood mononuclear cells. Blood 86:958–970.

    PubMed  CAS  Google Scholar 

  77. Zandstra PW, Eaves CJ, and Piret JM (1994) Expansion of hematopoietic progenitor cell populations in stirred suspension bioreactors of normal human bone marrow cells. Biotechnol 12:909–914.

    Article  CAS  Google Scholar 

  78. Koller MR, Emerson SG, and Palsson Bø (1993) Large-scale expansion of human stem and progenitor cells from bone marrow mononuclear cells in continuous perfusion culture. Blood 82:378–384.

    PubMed  CAS  Google Scholar 

  79. Armstrong RD, Koller MR, Maluta J, and Ogier WC (1999) Clinical systems for the production of cells and tissues for human therapy. In Novel therapeutics from modern biotechnology: from laboratory to human testing, eds. DL Oxender and LE Post, Springer Verlag, Berlin, pp. 221–241.

    Google Scholar 

  80. Koller MR, Palsson MA, Manchel I, Maher RJ, and Palsson Bø (1998) Tissue culture surface characterisitcs influence the expansion of human bone marrow cells. Biomaterials 19:1963–1972.

    Article  PubMed  CAS  Google Scholar 

  81. Knobel KM, McNally MA, Berson AE, Rood D, Chen K, Kilinski L, Tran K, Okarma TB, and Lebkowski JS (I994) Long-term reconstitution of mice after ex vivo expansion of bone marrow cells: Differential activity of cultured bone marrow and enriched stem cell populations. Exp,Heinatol. 22: 1227–1235.

    Google Scholar 

  82. Sakakeeny MA and Greenberger JS (1982) Granulopoiesis longevity in continuous bone marrow cultures and factor-dependent cell line generation: Significant variation among 28 inbred mouse strains and outbred stocks. J.Natl.Cancer Inst. 68:305–317.

    PubMed  CAS  Google Scholar 

  83. Van Zant G, Scott-Micus K, Thompson BP, Fleischman RA, and Perkins S (1992) Stem cell quiescence/activation is reversible by serial transplantation and is independent of stromal genotype in mouse aggregation chimeras. Exp. Hematol. 20:470–475.

    PubMed  Google Scholar 

  84. Koller MR, Manchel I, Brott DA. and Palsson Bø (1996) Donor-to-donor variability in the expansion potential of human bone marrow cells is reduced by accessory cells but not by soluble growth factors. Exp.Hematol. 24:1484–1493.

    PubMed  CAS  Google Scholar 

  85. Gratwohl A (1991) Bone marrow transplantation activity in Europe 1990. Bone Marrow Transplant. 8: 197–201.

    PubMed  CAS  Google Scholar 

  86. Horowitz MM and Rowlings PA (1997) An update from the International Bone Marrow Transplant Registry and the Autologous Blood and Marrow Transplant Registry on current activity in hematopoietic stem cell transplantation. Curr. Opin.Hematol. 4:395–400.

    Article  PubMed  CAS  Google Scholar 

  87. Rill DR, Santana VM, Roberts WM, Nilson T, Bowman LC, Krance RA, Heslop HE, Moen RC, Ihle JN, and Brenner MK (1994) Direct demonstration that autologous bone marrow transplantation for solid tumors can return a multiplicity of tumorigenic cells. Blood 84:380–383.

    PubMed  CAS  Google Scholar 

  88. Deisseroth AB, Zu Z, Claxton D, Hanania EG, Fu S, Ellerson D, Goldberg L, Thomas M, Janicek K, Anderson WF, Hester J, Korbling M, Durett A, Moen R, Berenson R, Heimfeld S, Hamer J, Calvert L, Tibbits P, Talpaz M, Kantarjian H, Champlin R and Reading C (1994) Genetic marking shows that Ph+ cells present in autologous transplants of chronic myelogenous leukemia (CML) contribute to relapse after autologous bone marrow transplantation in CML. Blood 83:3068–3076.

    PubMed  CAS  Google Scholar 

  89. Stroncek DF, Holland PV, Bartch G, Bixby T, Simmons RG, Antin JH, Anderson KC, Ash RC, Bolwell BJ, Hansen JA, Heal JM, Henslee-Downey PJ, Jaffé ER, Klein HG, Lau PM, Perkins HA, Popovsky MA, Price TH, Rowley SD, Stehling LC, Weiden PL, Wissel ME, and McCullough J (1993) Experiences of the first 493 unrelated marrow donors in the national marrow donor program. Blood 81: 1940–1946.

    PubMed  CAS  Google Scholar 

  90. Wagner JE, Kernan NA, Steinbuch M, Broxmeyer HE, and Gluckman E (1995) Allogeneic sibling umbilical-cord-blood transplantation in children with malignant and non-malignant disease. Lancet 346:214–219.

    PubMed  CAS  Google Scholar 

  91. Kurtzberg J, Laughlin M, Graham ML, Smith C, Olson JF, Halperin EC, Ciocci G, Carrier C, Stevens CE, and Rubinstein P (1996) Placental blood as a source of hematopoietic stem cells for transplantation into unrelated recipients. N.E.J.Med. 335: 157–166.

    CAS  Google Scholar 

  92. Silver SM, Adams PT, Hutchinson RJ, Douville JW, Paul LA, Clarke MF, Palsson B, and Emerson SG (1993) Phase I evaluation of ex vivo expanded hematopoietic cells produced by perfusion cultures in autologous bone marrow transplantation. Blood 82:296a.

    Google Scholar 

  93. Champlin R, Mehra R, Gajewski J, Khouri I, Geisler D, Davis M, Oba K, Thomas M, Armstrong RD, Douville JW, Weber S, Silver SM, Muller TE, and Deisseroth AB (1995) Ex vivo expanded progenitor cell transplantation in patients with breast cancer. Blood 86:295a.

    Google Scholar 

  94. Mandalam R, Koller MR, and Smith AK (1999) Ex vivo hematopoietic cell expansion for bone marrow transplantation, in R Nordon (ed.), Ex vivo cell therapy, Landes Bioscience, Austin, TX (in press).

    Google Scholar 

  95. Stiff PJ, Oldenberg D, Hsi E, Chen B, Douville JW, Burhop S, Bayer R, Peace D, Malhotra D, Kerger C, Armstrong RD, and Muller TE (1997) Successful hematopoietic engraftment following high dose chemotherapy using only ex-vivo expanded bone marrow grown in Aastrom (stromal-based) bioreactors. Proc.Amer.Soc.Clin.Oncol. 16:88a.

    Google Scholar 

  96. Coulombel L, Eaves CJ, Kalousek D, Gupta C, and Eaves AC (1985) Long-term marrow culture of cells from patients with acute myelogenous leukemia. J.Clin.Invest. 75:961–969.

    Article  PubMed  CAS  Google Scholar 

  97. Barnett MJ, Eaves CJ, Phillips GL, Kalousek DK, Klingemann H-G, Lansdorp PM, Reece DE, Shepherd JD, Shaw GJ, and Eaves AC (1989) Successful autografting in chronic myeloid leukaemia after maintenance of marrow in culture. Bone Marrow Transplant 4:345–351.

    PubMed  CAS  Google Scholar 

  98. Chang J, Morgenstern GR, Coutinho LH, Scarffe JH, Carr T, Deakin DP, Testa NG, and Dexter TM (1989) The use of bone marrow cells grown in long-term culture for autologous bone marrow transplantation in acute myeloid leukaemia: An update. Bone Marrow Transplant. 45–9.

    Google Scholar 

  99. Da WM, Douay L, Barbu V, Fabrega S, Allieri M-A, Drouet X, Deloux J, Giarratana M-C, Oszahin H, Van den Akker J, Vanaeke D, and Gorin N-C (1991) Serum-free liquid marrow culture in patients with acute lymphoblastic leukaemia: a potential application to purge marrow for autologous transplantation. Br. J.Haematol. 78:42–47.

    PubMed  CAS  Google Scholar 

  100. Dinarello CA, Rosenwasser LJ, and Wolff SM (1981) Demonstration of a circulating suppressor factor of thymocyte proliferation during endotoxin fever in humans. J.Immunol. 127:2517–2519.

    PubMed  CAS  Google Scholar 

  101. Smith KA (1988) Interleukin-2: Inception, impact, and implications. Science 240:1169–1160.

    PubMed  CAS  Google Scholar 

  102. Ihle JN, Pepersack L, and Rebar L (1981) Regulation of T cell differentiation: In vitro induction of 20 alpha-hydroxysteroid dehydrogenase in splenic lymphocytes is mediated by a unique lymphokine. J.Immunol. 126:2184–2180.

    PubMed  CAS  Google Scholar 

  103. Yokota T, Arai N, de Vries JE, Spits H, Banchereau J, Zlobnik A, Rennick D, Howard M, Takebe Y, Miyatake S, Lee F, and Arai KI (1988) Molecular biology of interleukin-4 and interleukin-5 genes and biology of their products that stimulate B cells, T cells and hemopoietic cells. Immunol.Rev. 102: 137–130.

    PubMed  CAS  Google Scholar 

  104. Kishimoto T (1989) The biology of interleukin-6. Blood 74:1–10.

    PubMed  CAS  Google Scholar 

  105. Tushinski RJ, McAlister IB, Williams DE, and Namen AE (1991) The effects of interleukin 7 (IL-7) on human bone marrow in vitro. Exp.Hematol. 19:749–754.

    PubMed  CAS  Google Scholar 

  106. Herbert CA and Baker JB (1993) Interleukin-8: A review. Cancer Invest. 11:743–750.

    Google Scholar 

  107. Donahue RE, Yang Y-C, and Clark SC (1990) Human P40 T-cell growth factor (interleukin 9) supports erythroid colony formation. Blood 75:2271–2275.

    PubMed  CAS  Google Scholar 

  108. Zlotnik A and Moore KW (1991) Interleukin 10. Cytokine 3:366–371.

    Article  PubMed  CAS  Google Scholar 

  109. Du XX and Williams DA (1994) Interleukin-1 1: A multifunctional growth factor derived from the hematopoietic microenvironment. Blood 83:2023–2030.

    PubMed  CAS  Google Scholar 

  110. Wolf SF, Temple PA, Kobayashi M, Young D, Dieig M, Lowe L. Dzialo R, Fitz L, Ferenz C, and Hewick RM (1991) Cloning of cDNA for natural killer cell stimulatory factor, a heterodimeric cytokine with multiple biologic effects on T and natural killer cells. J.Immunol. 146:3074–3081

    PubMed  CAS  Google Scholar 

  111. Minty A, Chalon P, Derocq JM, Dumont X, Guillemot JC, Kaghad M, Labit C, Leplatois P, Liauzun P, and Miloux B (1993) Interleukin-13 is a new human lymphokine regulating inflammatory and immune responses. Nature 362:248–240.

    Article  PubMed  CAS  Google Scholar 

  112. Ambrus Jr. JL, Pippin J, Joseph A, Xu C, Blumenthal D, Tamayo A, Claypool K, McCourt D, Srikiatchatochorn A, and Ford RJ (1 993) Identification of a cDNA for a human high-molecular-weight B-cell growth factor. Proc.Natl.Acad.Sci. 90:6330–6334.

    Google Scholar 

  113. .Grabstein KH, Eisenman J, Shanebeck K, Rauch C, Srinivasan S, Fung V, Beers C, Richardson J, Schoenborn MA, and Ahdieh M (1994) Cloning of a T cell growth factor that interacts with the beta chain of the interleukin-2 receptor. Science 264:965–968.

    PubMed  CAS  Google Scholar 

  114. Center DM, Kornfeld H, and Cruikshand WW (1997) Interleukin-16. Int.J.Biochem.Cell Biol. 29:1231–1234.

    Article  PubMed  CAS  Google Scholar 

  115. S.Yao Z, Painter SL, Fanslow WC, Ulrich D, Macduff BM, Spriggs MK, and Armitage RJ (1995) Human IL-17: A novel cytokine derived from T cells. J.Immunol. 155:5483–5486.

    Google Scholar 

  116. Ushio S, Namba M, Okura T, Hattori K, Nukada Y, Akita K, Tanabe F, Konishi K, Micallef M, Fujii M, Torigoe K, Tanirnoto T, Fukuda S, lkeda M, Okamura H, and Kurimoto M (1996) Cloning of the cDNA for human IFN-gamma-inducing factor, expression in Escherichia coli, and studies on the biologic activities of the protein. J. Immunol. 156:4214–4279.

    Google Scholar 

  117. Krantz SB (1991) Erythropoietin. Blood 77:419–434.

    PubMed  CAS  Google Scholar 

  118. Metcalf D (1 985) The granulocyte-macrophage colony-stimulating factors. Science 229:16–22.

    Google Scholar 

  119. Zsebo KM, Wypych J, McNiece IK, Lu HS, Smith KA, Karkare SB, Sachdev RK, Yuschenkoff VN, Birkett NC, Williams LR, Satyagal VN, Tung W, Bosselman RA, Mendiaz EA, and Langley KE (1990) Identification, purification, and biological characterization of hematopoietic stem cell factor from buffalo rat liver-conditioned medium. Cell 63:195–201.

    PubMed  CAS  Google Scholar 

  120. Virelizier JL and Arenzana-Seisdedos F (1985) Immunological functions of macrophages and their regulation by interferons. Med.Biol. 63: 149–159.

    PubMed  CAS  Google Scholar 

  121. Graham GJ, Wright EG, Hewick R. Wolpe SD, Wilkie NM, Donaldson D, Lorimore S, and Pragnell IB (1990) Identification and characterization of an inhibitor of haemopoietic stem cell proliferation. Nature 344:442–444.

    Article  PubMed  CAS  Google Scholar 

  122. Metcalf D (1991) The leukemia inhibitory factor (LIF). Int.J.Cell Cloning 9: 95–90.

    Article  PubMed  CAS  Google Scholar 

  123. Sporn MB and Roberts AB (1989) Transforming growth factor-β Multiple actions and potential clinical applications. JAMA 262:938–930.

    Article  PubMed  CAS  Google Scholar 

  124. Pennica D, Nedwin GE, Hayflick JS, Seeburg PH, Derynck R, Palladino MA, Kohr WJ, Aggarwal BB, and Goeddel DV (1984) Human tumour necrosis factor: Precursor structure, expression and homology to lymphotoxin. Nature 312:724–720.

    Article  PubMed  CAS  Google Scholar 

  125. Lyman SD, James L, Johnson L, Brasel K, de Vries P, Escobar SS, Downey H, Splett RR, Beckmann MP. and McKenna HJ (1994) Cloning of the human homologue of the murine flt3 ligand: A growth factor for early hematopoietic progenitor cells. Blood 83:2795–2801.

    PubMed  CAS  Google Scholar 

  126. de Sauvage FJ, Hass PE, Spencer SD, Malloy BE, Gurney AL, Spencer SA, Darbonne WC, Henzel WJ, Wong SC, Kuang W-J, Oles KJ, Hultgren B, Solberg J, L.A., Goeddel DV, and Eaton DL (1994) Stimulation of megakaryocytopoiesis and thrombopoiesis by the c-Mpl ligand. Nature 369:533–538.

    PubMed  Google Scholar 

  127. Terstappen LWMM, Meiners H, and Loken MR (1989) A rapid sample preparation technique for flow cytometric analysis of immunofluorescence allowing absolute enumeration of cell subpopulations. J.Immunol.Meth. 123: 103–100.

    Article  CAS  Google Scholar 

  128. Wagner JE, Collins D, Fuller S, Schain LR, Berson AE, Almici C, Hall MA, Chen KE, Okarma TB, and Lebkowski JS (1995) Isolation of small, primitive human hematopoietic stem cells: Distribution of cell surface cytokine receptors and growth in SCID-Hu mice. Blood 86:512–523.

    PubMed  CAS  Google Scholar 

  129. Sato N, Sawada K, Kannonji M, Tarumi T, Sakai N, Ieko M, Sakurama S, Nakagawa S, Yasukouchi T, and Krantz SB (1991) Purification of human marrow progenitor cells and demonstration of the direct action of macrophage colony-stimulating factor on colony-forming unit-macrophage. Blood 78:967–974.

    PubMed  CAS  Google Scholar 

  130. Nishihira H, Toyoda Y, Miyazaki H, Kigasawa H, and Ohsaki E (1996) Growth of macroscopic human megakaryocyte colonies from cord blood in culture with recombinant human thrombopoietin (c-mpl ligand) and the effects of gestational age on frequency of colonies. Br. J.Haematol. 92:23–28.

    Article  PubMed  CAS  Google Scholar 

  131. Lu L, Xiao M, Shen R-N, Grigsby S, and Broxmeyer HE (1993) Enrichment, characterization, and responsiveness of single primitive CD34+++ human umbilical cord blood hematopoietic progenitors with high proliferative and replating potential. Blood 81:41–48.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

Koller, M.R., Palsson, B.0. (2002). Hematopoietic Stem and Progenitor Cells. In: Koller, M.R., Palsson, B.O., Masters, J.R.W. (eds) Human Cell Culture. Human Cell Culture, vol 4. Springer, Dordrecht. https://doi.org/10.1007/0-306-46886-7_1

Download citation

  • DOI: https://doi.org/10.1007/0-306-46886-7_1

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-5821-3

  • Online ISBN: 978-0-306-46886-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics