Skip to main content

Background Theory of Molecular Diversity

Background Theory of Molecular Diversity

  • Chapter
Molecular Diversity in Drug Design

Abstract

Recent developments in the technologies of HTS and combinatorial chemistry have thrown down a challenge to computational chemistry, that of maximising the chemical diversity of the compounds made and screened. This paper examines the theory behind molecular diversity analysis and includes a discussion of most of the common diversity indices, and intermolecular similarity and dissimilarity measures. The extent to which the different approaches to diversity analysis have been validated and compared is reviewed. The effects of designing diverse libraries by analysing product and reagent space are presented, and the issues surrounding the comparison of libraries and databases in diversity space are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Warr, W. Combinatorial Chemistry and Molecular Diversity, J. Chem. Inf. Comput. Sci., 1997, 37, 134–140.

    Article  CAS  Google Scholar 

  2. Martin, E.J., Blaney, J.M., Siani, M.S., Spellmeyer, D.C., Wong, A.K. and Moos, W.H. Measuring Diversity — Experimental Design of Combinatorial Libraries for Drug Discovery. J. Med. Chem., 1995, 38, 1431–1436.

    CAS  Google Scholar 

  3. Ellman, J. A. Design, Synthesis, and Evaluation of Small-Molecule Libraries. Acc. Chem. Res., 1996, 29, 132–143.

    Article  CAS  Google Scholar 

  4. Downs, G.M. and Willett P. Similarity Searching in Databases of Chemical Structures. In Reviews in Computational Chemistry, 1996, 7, Eds. K.B. Lipkowitz and D.B. Boyd, VCH, New York.

    Google Scholar 

  5. Sneath P.H.A. and Sokal R.R. Numerical Taxonomy, 1973, WH Freeman, San Francisco.

    Google Scholar 

  6. Willett, P. and Winterman, V. A Comparison of Some Measures for the Determination of Inter-Molecular Structural Similarity. QSAR, 1986, 5, 18–25.

    CAS  Google Scholar 

  7. Willett, P., Barnard, J.M. and Downs, G.M. Chemical Similarity Searching. J. Chem. Inf. Comput. Sci., 1998, 38, 983–996.

    Article  CAS  Google Scholar 

  8. Holliday, J.D. and Willett, P. Definitions of ‘Dissimilarity’ for Dissimilarity-Based Compound Selection. J. Biomolecular Screening, 1996, 1, 145–151.

    CAS  Google Scholar 

  9. Holliday, J.D., Ranade S.S. and Willett, P. A Fast Algorithm for Selecting Sets of Dissimilar Structures from Large Chemical Databases. QSAR, 1996, 15, 285–289.

    Google Scholar 

  10. Lajiness, M.S. Dissimilarity-Based Compound Selection Techniques. Perspect. Drug Disc. Des., 1997, 7/8, 65–84.

    CAS  Google Scholar 

  11. Hassan, M., Bielawski, J.P., Hempel, J.C. and Waldman, M. Optimization and Visualization of Molecular Diversity of Combinatorial Libraries. Mol. Divers., 1996, 2, 64–74.

    Article  CAS  Google Scholar 

  12. Hudson, B.D., Hyde, R.M., Rahr, E. and Wood, J. Parameter Based Methods for Compound Selection from Chemical Databases. QSAR, 1996, 15, 285–289.

    CAS  Google Scholar 

  13. Brown, R.D. and Martin, Y.C. Use of Structure-Activity Data To Compare Structure Based Clustering Methods and Descriptors for Use in Compound Selection. J. Chem. Inf. Comput. Sci., 1996, 36, 572–584.

    Article  CAS  Google Scholar 

  14. Higgs, R.E., Bemis, K.G., Watson, I.A. and Wikel, J.H. Experimental Designs for Selecting Molecules from Large Chemical Databases. J. Chem. Inf. Comput. Sci., 1997, 37, 861–870.

    Article  CAS  Google Scholar 

  15. Gillet, V. J., Willett, P. and Bradshaw, J. The Effectiveness of Reactant Pools for Generating Structurally-Diverse Combinatorial Libraries. J. Chem. Inf. Comput. Sci., 1997, 37, 731–740.

    Article  CAS  Google Scholar 

  16. Sheridan, R. P. and Kearsley, S. K. Using a Genetic Algorithm to Suggest Combinatorial Libraries. J. Chem. Inf. Comput. Sci., 1995, 35, 310–320.

    Article  CAS  Google Scholar 

  17. Agrafiotis, D.K. Stochastic Algorithms for Molecular Diversity. J. Ckem. Inf. Comput. Sci., 1997, 37, 841–851.

    CAS  Google Scholar 

  18. Boyd, S.M., Beverley, M., Norskov, L. and Hubbard, R.E. Characterising the Geometric Diversity of Functional Groups in Chemical Databases. J. Comput.-Aided Mol. Des., 1995, 9, 417–42.

    Article  CAS  Google Scholar 

  19. Bone, R.G.A and Villar, H.O. Exhaustive Enumeration of Molecular Substructures. J. Comp. Chem., 1997, 18, 86–107.

    CAS  Google Scholar 

  20. Nilakantan, R., Bauman, N. and Haraki, K.S. Database Diversity Assessment: New Ideas, Concepts, and Tools. J. Comput.-Aided Mol. Des., 1997, 11, 447–452.

    Article  CAS  Google Scholar 

  21. Reynolds, C.H., Druker, R. and Pfahler, L.B. Lead Discovery Using Stochastic Cluster Analysis (SCA): A New Method for Clustering Structurally Similar Compounds. J. Chem. Inf. Comput. Sci., 1998, 38, 305–312.

    Article  CAS  Google Scholar 

  22. Pearlman, R. S. Novel Software Tools for Addressing Chemical Diversity. Network Science, 1996, http://www.netsci.org/Science/Combichem/feature08.html

    Google Scholar 

  23. Pickett, S.D., Mason, J.S. and McLay, I.M. Diversity Profiling and Design Using 3D Pharmacophores: Pharmacophore-Derived Queries (PDQ). J. Chem. Inf. Comput. Sci., 1996, 36, 1214–1223.

    Article  CAS  Google Scholar 

  24. Mason, J.S. and Pickett S.D. Partition-Based Selection. Perspect. Drug Disc. Des., 1997, 7/8, 85–114.

    CAS  Google Scholar 

  25. Mason, J.S., McLay, I.M. and Lewis, R.A. Applications of Computer-Aided Drug Design Techniques to Lead Generation. In New Perspectives in Drug Design, 1994, Eds. P.M Dean, G. Jolles and C.G. Newton, Academic Press, London, pp. 225–253.

    Google Scholar 

  26. Lewis, R.A., Mason, J.S. and McLay, I.M. Similarity Measures for Rational Set Selection and Analysis of Combinatorial Libraries: The Diverse Property-Derived (DPD) Approach. J. Chem. Inf. Comput. Sci., 1997, 37, 599–614.

    Article  CAS  Google Scholar 

  27. Johnson, M.A. and Maggiora, G.M. Concepts and Applications of Molecular Similarity, 1990, John Wiley, New York.

    Google Scholar 

  28. Wild, D.J. and Willett, P. Similarity Searching in Files of Three-Dimensional Chemical Structures: Alignment of Molecular Electrostatic Potentials with a Genetic Algorithm. J. Chem. Inf. Comput. Sci., 1996, 36, 159–167.

    Article  CAS  Google Scholar 

  29. Downs, G.M., Willett, P. and Fisanick W. Similarity Searching and Clustering of Chemical-Structure Databases Using Molecular Property Data. J. Chem. Inf. Comput. Sci., 1994, 34, 1094–1102.

    Article  CAS  Google Scholar 

  30. Brown, R.D. Descriptors for diversity analysis. Perspect. Drug Disc. Des., 1997, 7, 31–49.

    Google Scholar 

  31. Agrafiotis, D.K. Molecular Diversity. In Encyclopedia of Computational Chemistry, Ed. P. v. R. Schleyer, 1998, Wiley.

    Google Scholar 

  32. Molconn-X, 1993, available from Hall Associates, Massachusetts.

    Google Scholar 

  33. Cheng, C., Maggiora, G., Lajiness, M. and Johnson, M. Four Association Coefficients for Relating Molecular Similarity Measures. J. Chem. Inf. Comput. Sci., 1996, 36, 909–915.

    Article  CAS  Google Scholar 

  34. Cummins, D.J., Andrews, C.W., Bentley, J.A. and Cory, M. Molecular diversity in chemical databases: comparison of medicinal chemistry knowledge bases and databases of commercially available compounds. J. Chem. Inf. Comput. Sci., 1996, 36, 750–763.

    Article  CAS  Google Scholar 

  35. Rose, V.S., Rahr, E. and Hudson, B.D. The Use of Procrustes Analysis to Compare Different Properity Sets for the Characterisation of a Diverse Set of Compounds. QSAR, 1994, 13, 152–158.

    CAS  Google Scholar 

  36. Daylight Chemical Information Systems, Inc., Mission Viejo, CA, USA.

    Google Scholar 

  37. Barnard, J.M. Substructure Searching Methods — Old and New. J. Chem. Inf. Comput. Sci., 1993, 33, 532–538.

    Article  CAS  Google Scholar 

  38. MACCS II. Molecular Design Ltd., San Leandro, CA.

    Google Scholar 

  39. Brown, R.D. and Martin Y.C. The Information Content of 2D and 3D Structural Descriptors Relevant to Ligand Binding. J. Chem. Inf. Comput. Sci., 1997, 37, 1–9.

    Article  CAS  Google Scholar 

  40. McGregor, M.J. and Pallai, P.V. Clustering of Large Databases of Compounds: Using the MDL “Keys” as Structural Descriptors. J. Chem. Inf. Comput. Sci., 1997, 37, 443–448.

    Article  CAS  Google Scholar 

  41. Hagadone, T.R. Molecular Substructure Similarity Searching — Efficient Retrieval in 2-Dimensional Structure Databases. J. Chem. Inf. Comput. Sci., 1992, 32, 515–521.

    Article  CAS  Google Scholar 

  42. UNITY Chemical Information Software. Tripos Inc., 1699 Hanley Rd., St. Louis, MO 63144.

    Google Scholar 

  43. Patterson, D.E., Cramer, R.D., Ferguson, A.M., Clark, R.D. and Weingerger, L.E. Neighbourhood Behaviour: A Useful Concept for Validation of “Molecular Diversity” Descriptors. J. Med. Chem., 1996, 39, 3049–3059.

    Article  CAS  Google Scholar 

  44. Shemetulskis, N.E., Dunbar, J.B., Dunbar B.W., Moreland D.W. and Humblet, C. Enhancing the Diversity of a Corporate Database Using Chemical Database Clustering and Analysis. J. Comput.-Aided Mol. Des., 1995, 9,407–416.

    Article  CAS  Google Scholar 

  45. Matter H. Selecting Optimally Diverse Compounds from Structural Databases: A Validation Study of Two-Dimensional and Three-Dimensional Molecular Descriptors. J. Med. Chem., 1997, 40, 1219–1229.

    Article  CAS  Google Scholar 

  46. Snarey, M., Terrett, N.K., Willett, P. and Wilton D.J. Comparison of Algorithms for Dissimilarity-Based Compound Selection. J. Mol. Graph. Modelling, 1997, 15, 372–385.

    CAS  Google Scholar 

  47. Kearsley, S.K., Sallamack, S., Fluder, E.M., Andose, J.D., Mosley, R.T. and Sheridan, R.P. Chemical Similarity Using Physiochemical Property Descriptors. J. Chem. Inf. Comput. Sci., 1996, 36, 118–127.

    Article  CAS  Google Scholar 

  48. Bauknecht, H., Zell, A., Bayer, H., Levi, P., Wagener, M., Sadowski, J. and Gasteiger, J. Locating Biologically Active Compounds in Medium-Sized Heterogeneous Datasets by Topological Autocorrelation Vectors: Dopamine and Benzodiazepine Agonists. J. Chem. Inf. Comput. Sci., 1996. 36, 1205–1213.

    Article  CAS  Google Scholar 

  49. Sadowski, J., Wagener, M. and Gasteiger, J. (1995) Assessing Similarity and Diversity of Combinatorial Libraries by Spatial Autocorrelation Functions and Neural Networks. Angew. Chem. Int. Ed. Engl., 1995, 34, 2674–2677.

    CAS  Google Scholar 

  50. Moreau, G. and Broto, P. Autocorrelation of Molecular Structures: Application to SAR studies. Nouv. J. Chim., 1980, 4, 757–764.

    CAS  Google Scholar 

  51. Kohonen, T. Self-organization and Associative memory, 3rd Ed, 1989, Springer, Berlin.

    Google Scholar 

  52. CONCORD. A Program for the Rapid Generation of High Quality Approximate 3-Dimensional Molecular Structures. The University of Texas at Austin and Tripos Inc, St. Louis, MO 63144.

    Google Scholar 

  53. Sheridan, R.P., Nilikantan, R., Rusinko, A., Bauman, N., Haraki, K. and Venkataraghavan, R. 3DSEARCH: A System for Three-Dimensional Substructure Searching. J. Chem. Inf. Comput. Sci., 1989, 29, 255–260.

    Article  CAS  Google Scholar 

  54. ChemDiverse. Oxford Molecular Group, Oxford Science Park, Oxford, UK.

    Google Scholar 

  55. Chapman, D.J. The Measurement of Molecular Diversity: A Three-Dimensional Approach. J. Comput-Aided Mol. Des., 1996, 10, 501–512.

    CAS  Google Scholar 

  56. SYBYL Molecular Modelling Package. Tripos Inc., St. Louis, MO 63144.

    Google Scholar 

  57. Cramer, R.D., Patterson, D.E. and Bunce, J.D. Comparative Molecular Field Analysis (CoMFA). 1. Effect of Shape on Binding of Steroids to Carrier Proteins. J. Am. Chem. Soc., 1988, 110, 5959–5967.

    Article  CAS  Google Scholar 

  58. Todeschini, R.; Lasagni, M.; Marengo, E. New Molecular Descriptors for 2D and 3D Structures — Theory. J. Chemom., 1994, 8, 263–272.

    Article  CAS  Google Scholar 

  59. Kauver, L.M., Higgins, D.L., Villar, H.O., Sportsman, J.R., Engqvist-Goldstein, A., Bukar, R., Bauer, K.E., Dilley, H. and Rocke, D.M. Predicting Ligand-Binding to Proteins by Affinity Fingerprinting. Chem. Biol., 1995, 2, 107–118.

    Google Scholar 

  60. Briem, H. and Kuntz, I.D. Molecular Similarity Based on Dock-Generated Fingerprints. J. Med. Chem., 1996, 39, 3401–3408.

    Article  CAS  Google Scholar 

  61. Young, S.S., Farmen, M. and Rusinko, A. Random Versus Rational. Which is Better for General Compound Screening? Network Sci. (Electronic publication) 1996, 2.

    Google Scholar 

  62. Taylor, R. Simulation analysis of experimental design strategies for screening random compounds as potential new drugs and agrochemcials. J. Chem. Inf. Comput. Sci., 1995, 35, 59–67.

    Article  CAS  Google Scholar 

  63. Spencer, R.W. Diversity Analysis in High Throughput Screening. J. Biomolecular Screening, 1997, 2, 69–70.

    Google Scholar 

  64. Potter, T. Matter, H. Random or Rational Design? Evaluation of Diverse Compound Subsets from Chemical Structure Databases. J. Med.Chem., 1998, 41, 478–488.

    Article  CAS  Google Scholar 

  65. Zheng, W., Cho, S.J. and Tropsha, A. Rational Combinatorial Library Design. 1. Focus-2D: A New Approach to the Design of Targetted Combinatorial Chemical Libraries. J. Chem. Inf. Comput. Sci., 1998, 38, 251–258.

    Article  CAS  Google Scholar 

  66. Liu, D., Jiang, H., Chen, K. and Ji, R. A New Approach to Design Virtual Combinatorial Library with Genetic Algorithm Based on 3D Grid Property. J. Chem. Inf. Comput. Sci., 1998, 38, 233–242.

    CAS  Google Scholar 

  67. Brown, R.D. and Martin, Y.C. Designing Combinatorial Library Mixtures Using a Genetic Algorithm. J. Med. Chem., 1997, 40, 2304–2313.

    CAS  Google Scholar 

  68. Pickett, S. D., Luttmann, C., Guerin, V., Laoui, A. and James, E. DIVSEL and COMPLIB — Strategies for the Design and Comparison on Combinatorial Libraries using Pharmacophoric Descriptors. J. Chem. Inf. Comput. Sci., 1998,38, 144–150.

    Article  CAS  Google Scholar 

  69. Lewis, R.A., Good, A.C. and Pickett, S.D. Quantification of Molecular Similarity and Its Application to Combinatorial Chemistry. In Computer-Assisted Lead Finding and Optimization: Current Tools for Medicinal Chemistry Eds. van de Waterbeemd, H., Testa, B. and Folkers, G., Wiley-VCH: Weinheim, 1997, pp. 135–156.

    Google Scholar 

  70. Good, A.C. and Lewis, R.A. New Methodology for Profiling Combinatorial Libraries and Screening Sets: Cleaning Up the Design Process with HARPick. J.Med.Chem., 1997,40, 3926–3936.

    Article  CAS  Google Scholar 

  71. Downs, G.M. and Barnard, J.M. Techniques for Generating Descriptive Fingerprints in Combinatorial Libraries. J. Chem. Inf. Comput. Sci., 1997, 37, 59–61.

    Article  CAS  Google Scholar 

  72. Turner, D.B., Tyrrell, S.M. and Willett, P. Rapid Quantification of Molecular Diversity for Selective Database Acquisition. J. Chem. Inf. Comput. Sci., 1997, 37, 18–22.

    Article  CAS  Google Scholar 

  73. Gillet, V.J., Willett, P. and Bradshaw, J. Identification of Biological Activity Profiles Using Substructural Analysis And Genetic Algorithms. J. Chem. Inf. Comput. Sci., 1998, 38, 165–179.

    Article  CAS  Google Scholar 

  74. Ajay, Walters, W.P. and Murcko, M. Can We Learn to Distinguish between “Drug-like” and “Nondrug-like” Molecules? J. Med. Chem., 1998, 41, 3314–3324.

    Article  CAS  Google Scholar 

  75. Sadowski, J. and Kubinyi, H. A Scoring Scheme for Discriminating between Drugs and Nondrugs. J. Med. Chem., 1998, 41, 3325–3329.

    Article  CAS  Google Scholar 

  76. Gillet, V.J., Willett P., Bradshaw, J. and Green D.V.S. Selecting combinatorial libraries to optimise diversity and physical properties. J. Chem. Inf. Comput. Sci., 1999, 39, 169–177.

    Article  CAS  Google Scholar 

  77. Jones, G., Willett, P., Glen, R.C., Leach, A.R. and Taylor, R. Further Development of a Genetic Algorithm for Ligand Docking and its Application to Screening Combinatorial Libraries. ACS SymposiumSeries, in press.

    Google Scholar 

  78. Murray, C.W., Clark, D.E., Auton, T.R., Firth, M.A., Li, J., Sykes, R.A., Waszkowycz, B., Westhead, D.R. and Young, S.C. PRO-SELECT: Combining Structure-Based Drug Design and Combinatorial Chemistry for Rapid Lead Discovery. 1. Technology. J. Comput.-Aided Mol. Des., 1997, 11, 193–207.

    Article  CAS  Google Scholar 

  79. Graybill, T.L., Agrafiotis, D.K., Bone, R., Illig, C.R., Jaeger, E.P., Locke, K.T., Lu, T., Salvino, J.M., Soll, R.M., Spurlino, J.C., Subasinghe, N., Tomczuk, B.E. and Salemme, F.R. Enhancing the Drug Discovery Process by Integration of High-Throughput Chemistry and Structure-Based Drug Design. In Molecular Diversity and Combinatorial Chemistry, Eds. I.E. Chaiken and K.D. Janda, 1996, ACS, Washington D.C.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Philip M. Dean Richard A. Lewis

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

Gillet, V.J. (2002). Background Theory of Molecular Diversity. In: Dean, P.M., Lewis, R.A. (eds) Molecular Diversity in Drug Design. Springer, Dordrecht. https://doi.org/10.1007/0-306-46873-5_3

Download citation

  • DOI: https://doi.org/10.1007/0-306-46873-5_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-5980-7

  • Online ISBN: 978-0-306-46873-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics