Skip to main content

Issues in Molecular Diversity and the Role of Ligand Binding Sites

Molecular Diversity and Ligand Binding Sites

  • Chapter
Molecular Diversity in Drug Design

Abstract

The role of molecular diversity in the design of combinatorial libraries is discussed with respect to the strategic issues that arise from the sheer numerical scale of combinatorial chemistry and high-throughput screening, and the issues that arise when applying binding site information to the design process. A method for the analysis of binding sites, that can be used to explore the common features and the differences between a set of related binding sites, is presented. The method is applied to the analysis of nucleotide binding sites.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Floyd, C.D., Lewis, C.N. and Whittaker, M. More leads in the haystack. Chem. Br., 1996, 31–35.

    Google Scholar 

  2. Kubinyi, H. Similarity and dissimilarity: a medicinal chemist’s view. Perspect. Drug Disc. Des. 1998, 9/10/11, 225–252.

    CAS  Google Scholar 

  3. Houghten, R.A. Combinatorial Libraries: Finding the needle in the haystack. Current Biology, 1994, 4, 564–567.

    Article  CAS  Google Scholar 

  4. Newton C.G. Molecular Diversity in Drug Design. Application to High-speed Synthesis and High-Throughput Screening. In: Molecular Diversity in Drug Design, Ed. Dean P.M. and Lewis R.A., Kluwer, 1999, Ch. 2.

    Google Scholar 

  5. Barnard, J.M., Downs, G.M., Willett, P., Tyrrell, S.M. and Turner, D.B. Rapid diversity analysis in combinatorial libraries using Markush structure techniques. 213th ACS National Meeting, San Francisco, California, April 13, 1997.

    Google Scholar 

  6. Ecker, D.J. and Crooke, S.T. Combinatorial drug discovery: which methods will produce the greatest value? Biotech., 1995, 13, 351–360.

    CAS  Google Scholar 

  7. Lajiness, M. Evaluation of the Performance of Dissimilarity Selection Methodology. In QSAR: Rational Approaches to the Design of Bioactive Compounds, Eds Silipo, C. and Vittoria, A., Escom, 1991, pp. 201–204.

    Google Scholar 

  8. Patterson, D.E., Cramer, R.D., Ferguson, A.M., Clark, R.D. and Weinberger, L.E. Neighbourhood Behaviour: A Useful Concept for Validation of Molecular Diversity Descriptors. J. Med. Chem., 1996, 39, 3049–3059.

    Article  CAS  Google Scholar 

  9. Gillet, V.J., Willett, P. and Bradshaw, J. Identification of biological activity profiles using substructural analysis and genetic algorithms. J. Chem. Inf. Comput. Sci., 1998, 38, 165–179.

    Article  CAS  Google Scholar 

  10. Cramer, R.D., Clark, R.D., Patterson, D.E. and Ferguson, A.M. Bioisosterism as a Molecular Diversity Descriptor: Steric Fields of Single Topomeric Conformers. J. Med. Chem., 1996, 39, 3060–3069.

    Article  CAS  Google Scholar 

  11. World Drug Index, Derwent Publications Ltd. 14 Great Queen Street, London, WC2B, UK.

    Google Scholar 

  12. Daylight Chemical Information Systems, Inc., 27401 Los Altos, 370 Mission Viejo, CA 92691 USA.

    Google Scholar 

  13. Farmer, P.S. and Ariëns, E.J. Speculations on the design of non-peptide peptidomimetics. Trends Pharmacol. Sci., 1982, 3, 362–365.

    Article  CAS  Google Scholar 

  14. Mason, J.S. and Hermsmeier, M.A. Diversity Assessment. Curr. Opin. Chem. Biol. 1999, 3, 342–349.

    Article  CAS  Google Scholar 

  15. Gerber, P.R. and Müller, K. Superimposing Several Sets of Atomic Coordinates. Acta Crystalographr. A, 1987, 43, 426–428.

    Google Scholar 

  16. Ward, J.H. Hierarchical Grouping for Evaluating Clustering Methods. J. Am. Stat. Assoc., 1963, 58, 236–244.

    Google Scholar 

  17. Mojena, R. Hierarchical grouping methods and stopping rules: An evaluation. The Computer Journal, 1977, 20, 359–363.

    Article  Google Scholar 

  18. Sobolev, V., Wade, R. Vriend, G., and Edeman, M. Molecular Docking Using Surface Complementarity. PROTEINS: Structure, Function and Genetics, 1996, 25, 120–129.

    Article  CAS  Google Scholar 

  19. Sobolev, V. and Edelman, M. Modeling the Quinone-B Binding Site of Photosystem-I1 Reaction Centre Using Notions of Complementarity and Contact-Surfacebetween Atoms. PROTEINS: Structure, Function and Genetics, 1995, 21, 214–225.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Philip M. Dean Richard A. Lewis

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

Smith, J., Dean, P.M., Lewis, R.A. (2002). Issues in Molecular Diversity and the Role of Ligand Binding Sites. In: Dean, P.M., Lewis, R.A. (eds) Molecular Diversity in Drug Design. Springer, Dordrecht. https://doi.org/10.1007/0-306-46873-5_1

Download citation

  • DOI: https://doi.org/10.1007/0-306-46873-5_1

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-5980-7

  • Online ISBN: 978-0-306-46873-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics