Skip to main content

Cardiomyocytes

  • Chapter
Human Cell Culture

Part of the book series: Human Cell Culture ((HUCC,volume 5))

  • 231 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Moore K, and Persaud TVN (1993): The cardiovascular system. In: The developing human, 5th Ed. W.B. Saunders Company, Philadelphia, pp. 304–353.

    Google Scholar 

  2. Clubb FJ, and Bishop SP (1984): Formation of binucleated myocardial cells in the neonatal rat: an index for growth hypertrophy. Laboratory Investigation 50:571–577.

    PubMed  Google Scholar 

  3. Zak R (1973): Cell proliferation during cardiac growth. Am J Cardiol 31:211–235.

    Article  PubMed  CAS  Google Scholar 

  4. Li R-K, Mickle DAG, Weisel RD, Mohabeer MK, and Zhang J (1995): Cardiac cell transplantation. In: Mechanisms of heart failure, P Singal, I Dixon, R Beamish, N Dhalla, eds. Kluwer Academic Publishers, Norwell, Massachusetts, pp. 337–347.

    Google Scholar 

  5. Anversa P, Olivetti G, and Loud AV (1980): Morphometric study of early postnatal development in the left and right ventricular myocardium of the rat. I. Hypertrophy, hyperplasia and binucleation of myocytes. Circ. Res. 46:495–502.

    PubMed  CAS  Google Scholar 

  6. Adler CP, and Costabel U (1975): Cell number in human heart in atrophy, hypertrophy, and under the influence of cytostatics. Recent Advances in Studies on cardiac structure & metabolism 6:343–355.

    CAS  Google Scholar 

  7. Costabel U, and Adler CP (1996): Myocardial DNA and cell number under the influence of cytostatics. II. Experimental investigations in hearts of rats. Virchows Archiv 32:127–138.

    Google Scholar 

  8. Adler CP, and Costabel U (1980): Myocardial DNA and cell number under the influence of cytostatics. I. post mortem investigations of human hearts. Virchows Archiv 32:109–125.

    PubMed  CAS  Google Scholar 

  9. Arai S, and Machida A (1972): Myocardial cell in left ventricular hypertrophy. Tohoku J Exp Med 108:361–367.

    Article  PubMed  CAS  Google Scholar 

  10. Jackson T, Allard MF, Sreenan CM, Doss LK, Bishop SP, and Swain JL (1990): The c-myc proto-oncogene regulates cardiac development in transgenic mice. Mol. Cell. Biol. 10:3709–3716.

    PubMed  CAS  Google Scholar 

  11. Jackson T, Allard MF, Sreenan CM, Doss LK, Bishop SP, and Swain JL (1991): Transgenic animals as a tool for studying the effect of the c-myc proto-oncogene on cardiac development. Mol. Cell. Biochem. 104:15–19.

    Article  PubMed  CAS  Google Scholar 

  12. Barka T, van der Noen H, and Shaw PA (1987): Proto-oncogene fos (c-fos) expression in the heart. Oncogene 1:439–443.

    PubMed  CAS  Google Scholar 

  13. Sen S, Kundu G, Mekhail N, Castel J, Kunio C, and Healy B (1996): Myotrophin: Purification of a novel peptide from spontaneously hypertensive rat heart that influences myocardial growth. J. Biol. Chem 265:16635–16643.

    Google Scholar 

  14. Thorburn A, Thorburn J, Chen S-Y, Powers S, Shubeita HE, Feramisco JR, and Chien KR (1993): HRas dependent pathways can activate morphological and genetic markers of cardiac muscle cell hypertrophy. J. Biol. Chem 268:2244–2249.

    PubMed  CAS  Google Scholar 

  15. Spirito P, Fu Y-M, Yu Z-Y, Epstein SE, and Casscells W (1991): Immunohistochemical localization of basic and acidic fibroblast growth factors in the developing rat heart. Circulation 84:322–332.

    PubMed  CAS  Google Scholar 

  16. Cheng W, Reiss K, Kajstura J, Kowal K, Quaini F, and Anversa P (1995): Down-regulation of the IGF-I system parallels the attenuation in the proliferative capacity of rat ventricular myocytes during postnatal development Laboratory Investigation 72:646–655.

    PubMed  CAS  Google Scholar 

  17. Anversa P, Palackal T, Sonnenblick EH, Olivetti G, Meggs L, and Capasso JM (1990): Myocyte cell loss and myocyte cellular hyperplasia in the hypertrophied aging rat heart. Circ. Res. 67:371–885.

    Google Scholar 

  18. Kajstura J, Mansukhani M, Cheng W, Reiss K, Krajewski S, Reed JC, Quaini F, Sonnenblick EH, and Anversa P (1995): Programmed cell death and expression of the protooncogene bcl-2 in myocytes during postnatal maturation of the heart. Exp. Cell Res. 219:110–121.

    Article  PubMed  CAS  Google Scholar 

  19. Quaini F, Cigola E, Lagrasta C, Saccani G, Quaini E, Rossi C, Olivetti G, and Anversa P (1994): End-stage cardiac failure in humans is coupled with the induction of proliferating cell nuclear antigen and nuclear mitotic division in ventricular myocytes. Circ. Res. 75:1050–1063.

    PubMed  CAS  Google Scholar 

  20. Liu Y, Cigola E, Cheng W, Kajstura J, Olivetti G, Hintze TH, and Anversa P (1995): Myocyte nuclear mitotic division and programmed myocyte cell death characterize the cardiac myopathy induced by rapid ventricular pacing in dogs. Lab Invest 73:771–787.

    PubMed  CAS  Google Scholar 

  21. Li R-K, Mickle DAG, Weisel RD, Carson S, Omar SA, Tumiati LC, Wilson GJ, and Williams WG (1996): Human pediatric and adult ventricular cardiomyocytes in culture: assessment of phenotypic changes with passaging. Cardiovasc. Res. 32:362–373.

    Article  PubMed  CAS  Google Scholar 

  22. Kohtz DS, Dische NR, Inagami T, and Goldman B (1989): Growth and partial differentiation of presumptive human cardiac myoblasts in culture. J. Cell Biol. 108:1067–1078.

    Article  PubMed  CAS  Google Scholar 

  23. Li R-K, Jia Z-Q, Weisel RD, Mickle DAG, Zhang J, Mohabeer MK, Rao V, and Ivanov J (1996): Cardiomyocyte transplantation improves heart function. Ann. Thorac. Surg. 62:654–661.

    PubMed  CAS  Google Scholar 

  24. Claycomb WC, and Palazzo MC (1980): Culture of the terminally differentiated adult cardiac muscle cell: A light and scanning electron microscope study. Dev. Biol. 80:466–482.

    PubMed  CAS  Google Scholar 

  25. Manasek F (1970): Histogenesis of embryonic myocardium. Am. J. Cardiol. 25:149–168.

    Article  PubMed  CAS  Google Scholar 

  26. Belardinelli L, and Isenberg G (1983): Actions of adenosine and isoproterenol on isolated mammalian ventricular myocytes. Circ. Res. 53:287–297.

    PubMed  CAS  Google Scholar 

  27. Horackova M (1986): Excitation coupling in isolated adult ventricular myocytes from the rat, dog, and rabbit: Effects of various inotropic interventions in the presence of ryanodine. Can. J. Physiol. Pharmacol. 64:1473–1483.

    PubMed  CAS  Google Scholar 

  28. Claycomb WC, and Moses RL (1985): Culture of atrial and ventricular cardiac muscle cells from the adult squirrel monkey Saimiri Sciureus. Exp. Cell Res. 161:95–100.

    Article  PubMed  CAS  Google Scholar 

  29. Li R-K, Mickle DAG, Weisel RD, Zhang J, and Mohabeer MK (1996): In vivo survival and function of transplanted rat cardiomyocytes. Circ. Res. 78:283–288.

    PubMed  CAS  Google Scholar 

  30. Goldman BI, and Wurzel J (1992): Effect of subcultivation and culture medium on differentiation ofhuman fetal cardiac myocytes. In Vitro Cell Dev. Biol. 28A:109–119.

    PubMed  CAS  Google Scholar 

  31. Atherton B, Meyer D, and Simpson D (1986): Assembly and remodeling of myofibrils and intercalated discs in cultured neonatal rat heart cells. J. Cell. Sci. 86:233–248.

    PubMed  CAS  Google Scholar 

  32. Li R-K, Weisel RD, Williams WG, and Mickle DAG (1992): Method of culturing cardiomyocytes from human pediatric ventricular myocardium. J. Tiss. Cult. Meth. 14:93–100.

    CAS  Google Scholar 

  33. Nag AC, and Cheng M (1981): Adult mammalian cardiac muscle cells in culture. Tissue Culture 13:515–523.

    CAS  Google Scholar 

  34. Nag AC, Cheng M, Fleischman DA, and Zak R (1981): Long-term culture of adult mammalian cardiac myocytes: Electron microscopic and immunofluorescent analysis of myofibrillar structure. J. Mol. Cell. Cardiol. 15:301–317.

    Google Scholar 

  35. Katz EB, Steinhelper ME, Delcarpio JB, Daud AI, Claycomb WC, and Field LJ (1992): Cardiomyocyte proliferation in mice expressing alpha-cardiac myosin heavy chain-SV40 T-antigen transgenes. Am. J. Physiol. 262:H1867–H1876.

    PubMed  CAS  Google Scholar 

  36. Delcarpio JB, Lanson NA, Field LJ, and Claycomb WC (1991): Morphological characterization of cardiomyocytes isolated from a transplantable cardiac tumor derived from transgenic mouse atria (AT-I cells). Circ. Res. 69:1591–1600.

    PubMed  CAS  Google Scholar 

  37. Saule S, Merigaud JP, AlMoustafa AEM, Ferre F, Rong PM, Amouyel P, Quaatannens B, Stehelin D, and Dieterlen-Lievre F (1987): Heart tumors specifically induced in young avian embryos by the v-myc oncogene. Proc. Natl. Acad. Sci., USA 84:7982–7986.

    PubMed  CAS  Google Scholar 

  38. Engelmann GL, Birchenall-Roberts M, Ruscetti F, and Samarel A (1993): Formation of fetal rat cardiac cell clones by retroviral transformation: retention of select myocyte characteristics. J. Mol. Cell. Cardiol. 25:197–213.

    Article  PubMed  CAS  Google Scholar 

  39. Sanchez A, Jones WK, Gulick J, Doetschman T, and Robbins J (1991): Myosin heavy chain gene expression in mouse embryoid bodies. An in vitro developmental study. J. Biol. Chem 266:22419–22426.

    PubMed  CAS  Google Scholar 

  40. Muthuchamy M, Pajak L, Howles L, Doetschman T, and Wieczorek DF (1993): Developmental analysis of tropomyosin gene expression in embryonic stem cells and mouse embryos. Mol. Cell. Biol. 13:3311–3323.

    PubMed  CAS  Google Scholar 

  41. Miller-Hance WC, LaCorbiere M, Fuller SJ, Evans SM, Lyons G, Schmidt C, Robbins J, and Chien KR (1993): In vitro chamber specification during embryonic stem cell cardiogenesis. Expression of the ventricular myosin light chain-2 gene is independent of heart tube formation. J. Biol. Chem 268:25244–25252.

    PubMed  CAS  Google Scholar 

  42. Doetschman TC, Eistetter H, Katz M, Schmidt W, and Kemler R (1985): The in vitro development of blastocyst-derived embryonic stem cell line: formation of visceral yolk sac, blood islands and myocardium. J. Embryol. Exp. Morphol. 87:27–45.

    PubMed  CAS  Google Scholar 

  43. Klug MG, Soonpaa MH, and Field LJ (1995): DNA synthesis and multinucleation in embryonic stem cell-derived cardiomyocytes. Am. J. Physiol. 269:H1913–H1921.

    PubMed  CAS  Google Scholar 

  44. Eppenberger-Eberhardt M, Flamme I, Kurer V, and Eppenberger HM (1990): Reexpression of alpha-smooth muscle actin isoform in cultured adult rat cardiomyocytes. Dev. Biol. 139:269–278.(Abstract)

    PubMed  CAS  Google Scholar 

  45. Claycomb WC, Moses RL (1985): Culture of atrial and ventricular cardiac muscle cells from the adult squirrel monkey Saimiri Sciureus. Exp. Cell Res. 161:95–100.

    Article  PubMed  CAS  Google Scholar 

  46. Kohtz DS, Dische NR, Inagami T, and Goldman B (1989): Growth and partial differentiation of presumptive human cardiac myoblasts in culture. J. Cell Biol. 108: 1067–1078.

    Article  PubMed  CAS  Google Scholar 

  47. Eppenberger EM, Hauser I, Baechi T, Schaub MC, Brunner UT, Dechesne CN, and Eppenberger HM (1988): Immunocytochemical analysis of the regeneration of myofibrils in long-term cultures of adult cardiomyocytes of the rat. Dev. Biol. 130:1–15.

    Article  PubMed  CAS  Google Scholar 

  48. Sartore S, Pierobon-Bormioli S, and Shiaffino S (1978): Immunochemical evidence for myosin polymorphism in the chicken heart. Nature 274:82–83.

    Article  PubMed  CAS  Google Scholar 

  49. Price K, Littler W, and Commins P (1980): Human atrial and ventricular myosin light chain subunits in adult and during development. Biochem. J. 191:571–580.

    PubMed  CAS  Google Scholar 

  50. Tseng C, Miranda E, Di Donato F, Boutjdir M, Rashbaum W, Chen EKL, and Buyon JP (1999): mRNA and protein expression of SSA/Ro and SSB/La in human fetal cardiac myocytes cultured using a novel application of the Langendorff procedure. Pediatric Res. 45:260–269.

    CAS  Google Scholar 

  51. White E (1996): Length-dependent mechanisms in single cardiac cells. Exp. Physiol. 81:885–897.

    PubMed  CAS  Google Scholar 

  52. Eid H, Larson DM, Springhorn JP, Attawia MA, Nayak RC, Smith TW, and Kelly RA (1992): Role of Epicardial mesothelial cells in the modification of phenotype and function of adult rat ventricular myocytes in primary coculture. Circ. Res. 71:40–50.

    PubMed  CAS  Google Scholar 

  53. Kaab S, Dixon J, Duc J, Ashen D, Nabauer M, Beuckelmann DJ, Steinbeck G, Mckinnon D, and Tomaselli GF (1998): Molecular basis of transient outward potassium current downregulation in human heart failure: a decrease in Kv4.3 mRNA correlates with a reduction in current density. Circulation 98:1383–1393.

    PubMed  CAS  Google Scholar 

  54. Hoppe UC, and Beuclelmann DJ (1998): Characterization of the hyperpolarization-activated inward current in isolated human atrial myocytes. Cardiovasc. Res. 38:788–801.

    Article  PubMed  CAS  Google Scholar 

  55. Maltsev VA, Sabbah HN, Higgins RSD, Silverman N, Lesch M, Undrovinas AI (1998): Novel, ultraslow inactivating sodium current in human ventricular cardiomyocytes. Circulation 98:2545–2552.(Abstract)

    PubMed  CAS  Google Scholar 

  56. Simpson P (1985): Stimulation of hypertrophy of cultured neonatal rat heart cells through an alpha-adrenergic receptor and induction of beating through an alpha-and beta-adrenergic receptor interaction. Circ. Res. 56:884–894.(Abstract)

    PubMed  CAS  Google Scholar 

  57. Browes J, Piper J, and Thiemermann C (1998): Inhibitors of the activity of poly(ADP-ribose) synthetase reduce the cell death caused by hydrogen peroxide in human cardiac myoblasts. Br. J. Pharmacol. 124:1760–1766.

    Google Scholar 

  58. Li R-K, Mickle DAG, Weisel RD, Tumiati LC, and Wu TW (1989): Effect of oxygen tension on the anti-oxidant enzyme activities of tetralogy of Fallot ventricular myocytes. J. Mol. Cell. Cardiol. 21:567–575.

    Article  PubMed  CAS  Google Scholar 

  59. Teoh KH, Mickle DAG, Weisel RD, Li R-K, Tumiati LC, Coles JG, and Williams WG (1992): Effect of oxygen tension and cardiovascular operation on the myocardial antioxidant enzyme activities in patients with tetralogy of Fallot and aorta-coronary bypass. J. Thorac. Cardiovasc. Surg. 104:159–164.

    PubMed  CAS  Google Scholar 

  60. Rao V, Merante F, Weisel RD, Shirai T, Ikonomidis JS, Cohen G, Tumiati LC, Shiono N, Li R-K, Mickle DAG, and Robinson BH (1998): Insulin stimulates pyruvate dehydrogenase and protects human ventricular cardiomyocytes from simulated ischemia. J. Thorac. Cardiovasc. Surg. 116:485–494.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Kluwer Academic Publishers

About this chapter

Cite this chapter

Li, RK. (2001). Cardiomyocytes. In: Koller, M.R., Palsson, B.O., Masters, J.R. (eds) Human Cell Culture. Human Cell Culture, vol 5. Springer, Dordrecht. https://doi.org/10.1007/0-306-46870-0_6

Download citation

  • DOI: https://doi.org/10.1007/0-306-46870-0_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-6761-1

  • Online ISBN: 978-0-306-46870-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics