Skip to main content

3D QSAR: Current State, Scope, and Limitations

  • Chapter
3D QSAR in Drug Design

Part of the book series: Three-Dimensional Quantitative Structure Activity Relationships ((QSAR,volume 3))

Conclusion

All evidence suggests that 3D QSAR techniques will continue to make a valuable con-tribution to the computer-assisted analysis of structure-bioactivity relationships. The search for new descriptors of 3D properties of ligands and innovative strategies to investigate the relationships between these properties and bioactivity continues to be a fruitful research enterprise. Increasing information from structural biology will provide valuable feedback to the hypotheses that form the basis of 3D QSAR methods.

3D QSAR methods complement traditional QSAR based on physical properties. They offer the advantage that it is easy to calculate descriptors for most molecules, and the disadvantage that one must select a conformation and usually a superposition rule as part of the analysis.

Because of their speed and accuracy, 3D QSAR methods complement calculations based on the structure of the ligand-macromolecular complex. Whereas the structure of at least one complex aids in the selection of the bioactive conformation and the align-ment of the molecules for 3D QSAR, a QSAR model can be derived much more quickly than calculations based on the complex. Frequently, it is just as predictive. Knowledge of the structure of the complex can also prevent unwarranted extrapolation from a QSAR model.

It is expected that concepts from 3D QSAR will continue to impact the analysis of high-throughput screening structure-activity data and the diversity of compound collec-tions and combinatorial libraries.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kim, K.H., Greco, G. and Novellino, E., A critical review of recent CoMFA applications, In Kubinyi, H., Folkers, G., and Martin, Y.C., (Eds.) 3D QSAR in drug design: Vol. 3, Kluwer Academic Publishers, Dordrecht, The Netherlands, 1998, pp. 257–316.

    Google Scholar 

  2. Dunn III, W.J. and Hopfinger, A.J., 3D QSAR of flexible molecules using tensor representation, In Kubinyi, H., Folkers, G. and Martin, Y.C. (Eds.) 3D QSAR in drug design: Vol. 3, Kluwer Academic Publishers, Dordrecht, The Netherlands, 1998, pp. 167–182.

    Google Scholar 

  3. Hahn, M. and Rogers, D., Receptor surface models, in Kubinyi, H., Folkers, G. and Martin, Y.C. (Eds.) 3D QSAR in drug design: Vol. 3, Kluwer Academic Publishers, Dordrecht, The Netherlands, 1998, pp. 117–134.

    Google Scholar 

  4. Heritage, T.W., Ferguson, A.M., Turner, D.B. and Willett, P., EVA — a novel theoretical descriptor for QSAR studies, In Kubinyi, H., Folkers, G. and Martin, Y.C. (Eds.) 3D QSAR in drug design: Vol. 2, Kluwer Academic Publishers, Dordrecht, The Netherlands, 1998, pp. 381–398.

    Google Scholar 

  5. Klebe, G., Comparative molecular similarity indices analysis — CoMSIA, In Kubinyi, H., Folkers, G. and Martin, Y.C. (Eds.) 3D QSAR in drug design: Vol. 3, Kluwer Academic Publishers, Dordrecht, The Netherlands, 1998, pp. 87–104.

    Google Scholar 

  6. Walters, D.E., Genetically evolved receptor models (GERM) as a ID QSAR tool, In Kubinyi, H., Folkers, G. and Martin, Y.C. (Eds.) 3D QSAR in drug design: Vol. 3, Kluwer Academic Publishers, Dordrecht, The Netherlands, 1998, pp. 159–166.

    Google Scholar 

  7. Wade, R.C., Ortiz, A.R. and Gago, F., Comparative binding energy analysis. In Kubinyi, H., Folkers, G. and Martin, Y.C. (Eds.) 3D QSAR in drug design: Vol. 2, Kluwer Academic Publishers, Dordrecht, The Netherlands, 1998, pp. 19–34.

    Google Scholar 

  8. Holloway, M.K., A priori prediction of ligand affinity by energy minimization, In Kubinyi, H., Folkers, G. and Martin, Y.C. (Eds.) 3D QSAR in drug design: Vol. 2, Kluwer Academic Publishers, Dordrecht, The Netherlands, 1998, pp. 63–84.

    Google Scholar 

  9. Todeschini, R. and Gramatica, P., New 3D molecular descriptors: The WHIM theory and QSAR applications. In Kubinyi, H., Folkers, G. and Martin, Y.C. (Eds.) 3D QSAR in drug design: Vol. 2, Kluwer Academic Publishers, Dordrecht, The Netherlands, 1998, pp. 355–380.

    Google Scholar 

  10. Silverman, B.D., Platt, D.E., Pitman, M. and Rigoutsos, I., Comparative molecular moment analysis (COMMA), in Kubinyi, H., Folkers, G. and Martin, Y.C. (Eds.) 3D QSAR in drug design: Vol. 3, Kluwer Academic Publishers, Dordrecht, The Netherlands, 1998, pp. 183–196.

    Google Scholar 

  11. Jain, A.N., Koile, K. and Chapman, D., Compass: Predicting biological activities from molecular surface properties — performance comparisons on a steroid benchmark, J. Med. Chem., 37 (1994) 2315–2327.

    CAS  Google Scholar 

  12. Martin, Y.C., Kim, K.-H. and Lin, C.T., Comparative molecular field analysis: CoMFA, In Charton, M. (Ed.) Advances in quantitative structure property relationships, JAI Press, Greenwich, CT, 1996, pp. 1–52.

    Google Scholar 

  13. Greco, G., Novellino, E. and Martin, Y.C., Approaches to 3D-QSAR, In Martin, Y.C. and Willett, P. (Eds.) Designing bioactive molecules: Three-dimensional techniques and applications, America Chemical Society, Washington, DC, 1997 (in press).

    Google Scholar 

  14. Ajay, and Murcko, M.A., Computational methods to predict binding free-energy in ligand—receptor complexes, J. Med. Chem., 38 (1995) 4953–4967.

    CAS  Google Scholar 

  15. Kollman, P.A., Advances and continuing challenges in achieving realistic and predictive simulations of the properties of organic and biological molecules, Acc. Chem. Res., 29 (1996) 461–469.

    Article  CAS  Google Scholar 

  16. Bush, B.L. and Nachbar Jr., R.B., Sample-distance partial least-squares — PLS optimized for many variables, with application to CoMFA, J. Comput.-Aided Mol. Design, 7 (1993) 587–619.

    Article  CAS  Google Scholar 

  17. Burger, A., Medical chemistry — the first century, Med. Chem. Res., 4 (1994) 3–15.

    Google Scholar 

  18. Willett, P., Similarity and clustering techniques in chemical information systems, Research Studies Press, Letchworth, 1987.

    Google Scholar 

  19. Hodgkin, E.E. and Richards, W.G., Molecular similarity based on electrostatic potential and electric field. Int. J. Quantum Chem., 14(1987) 105–110.

    CAS  Google Scholar 

  20. Kier, L.B., Molecular orbital theory in drug research. Academic Press, New York, 1971, p. 258.

    Google Scholar 

  21. Martin, Y.C., Pharmacophore mapping. In Martin, Y.C. and Willett, P. (Eds.) Designing bioactive molecules: Three-dimensional techniques and applications, American Chemical Society, Washington, DC, 1997 (in press).

    Google Scholar 

  22. Free, S.M. and Wilson, J., A mathematical contribution to structure-activity studies. J. Med. Chem., 7 (1964) 395–399.

    Article  CAS  Google Scholar 

  23. Pauling, L., Campbell, D.H. and Pressman, D., The nature of the forces between antigen and antibody and of the precipitation reaction. Physiol. Rev., 23 (1943) 203–219.

    CAS  Google Scholar 

  24. Allen, F.H., Kennard, O. and Taylor, R., Systematic analysis of structural data as a research tool in organic chemistry, Acc. Chem. Res., 16 (1983) 146–153.

    Article  CAS  Google Scholar 

  25. Bürgi, H.-B. and Dunitz, J.D., Structure Correlation, 1st Ed., VCH Verlagsgesellschaft mbH, Weinheim, Germany, 1994, Vols. 1 and 2, pp. 900.

    Google Scholar 

  26. Allen, F.H., Bird, C.M., Rowland, R.S., Harris, S.E. and Schwalbe, C.H., Correlation of the hydrogenbond acceptor properties of nitrogen with the geometry of the Nsp (2)-Nsp(3) transition in R(1)(X=)C-NR(2)R(3) substructures—Reaction pathway for the profanation of nitrogen, Acta Crystallogr., Sec. B, 51 (1995) 1068–108.

    Google Scholar 

  27. Mills, J. and Dean, P.M., 3-Dimensional hydrogen-bond geometry and probability information from a crystal survey, J. Comput.-Aided Mol. Design, 10 (1996) 607–622.

    Article  Google Scholar 

  28. Åqvist, J., Medina, C. and Samulesson, J.-E., A new method for predicting binding affinity in computeraided drug design, Protein Eng., 7 (1994) 385–391.

    Google Scholar 

  29. Dirac, P.A.M., Proc. R. Soc. London, Ser. A, 123 (1929) 714.

    CAS  Google Scholar 

  30. Dewar, M.J.S., Zoebish, E.G., Healy, E.F. and Stewart, J.J.P., AMI: A new general purpose quantum mechanical molecular model, J. Am. Chem. Soc., 107 (1985) 3902–3909.

    CAS  Google Scholar 

  31. Clark, T., A handbook of computational chemistry: A practical guide to chemical structure and energy calculations, Wiley, New York, 1985, pp. 332.

    Google Scholar 

  32. Stewart, J.P., Semiempirical molecular orbital methods, In Lipkowitz, K.B. and Boyd, D.B. (Eds.) Reviews in computational chemistry, VCH, Weiheim, Germany, 1990, pp. 45–81.

    Google Scholar 

  33. Kroemer, R.T., Hecht, P. and Liedl, K.R., Different electrostatic descriptors in comparative molecularfield analysis: A comparison of molecular electrostatic and Coulomb potentials, J. Comput. Chem., 17 (1996) 1296–1308.

    Article  CAS  Google Scholar 

  34. Cramer, C.J. and Truhlar, D.G., AM1-SM2 and PM3-SM3 parameterized SCF salvation models for free energies in aqueous solution, J. Comput.-Aided Mol. Design, 6 (1992) 629–666.

    Article  CAS  Google Scholar 

  35. Klamt, A. and Schuurmann, G., COSMO: A new approach to dielectric screening in solvents with explicit expressions for the screening energy and its gradient, J. Chem. Soc., Perkin Trans. 2, (1993) 799–805.

    Google Scholar 

  36. Giesen, D.J., Chambers, C.C., Cramer, C.J. and Truhlar, D.G., Salvation model for chloroform based on class-IV atomic charges, J. Phys. Chem. B, 101 (1997) 2061–2069.

    CAS  Google Scholar 

  37. Richardson, W.H., Peng, C., Bashford, D., Noodleman, L. and Case, D.A., Incorporating solvation effects into density-functional theory: Calculation of absolute acidities, Int. J. Quantum Chem., 61 (1997) 207–217.

    Article  CAS  Google Scholar 

  38. Hammett, L., Physical organic chemistry, McGraw-Hill, New York, 1970.

    Google Scholar 

  39. Hansch, C. and Fujita, T., Rho Sigma pi analysis: A method for the correlation of biological activity and chemical structure, J. Am. Chem. soc., 86 (1964) 1616–1626.

    CAS  Google Scholar 

  40. Hansch, C. and Leo, A., Exploring QSAR: Fundamentals and applications in chemistry and biology, American Chemical Society, Washington, DC, 1995, pp. 557.

    Google Scholar 

  41. Hansch, C., Leo, A. and Hoekman, D., Exploring QSAR: Hydrophobic, electronic, and steric constants, American Chemical Society, Washington, DC, 1995, pp. 348.

    Google Scholar 

  42. Burkert, U. and Allinger, N.L., Molecular mechanics, American Chemical Society, Washington, DC, 1982, pp. 339.

    Google Scholar 

  43. Marshall, G.R., Barry, C.D., Bosshard, H.E., Dammkoehler, R.A. and Dunn, D.A., The conformation parameter in drug design: The active analog approach. In Olson, E.C. and Christoffersen, R.E. (Eds.) Computer-assisted drug design, American Chemical Society, Washington, DC, 1979, pp. 205–226.

    Google Scholar 

  44. Langridge, R., Ferrin, T.E., Kuntz, I.D. and Connolly, M.L., Real-time color graphics in studies of molecular interactions, Science, 211 (1981) 661–667.

    CAS  Google Scholar 

  45. Blaney, J.M., Jorgensen, E.G., Connolly, M.L., Ferrin, T.E., Langridge, R., Oatley, S.J., Burridge, J.M. and Blake, C.C.F., Computer graphics in drug design: Molecular modeling of thyroid hormoneprealbumin interactions, J. Med. Chem., 25 (1982) 785–790.

    Article  CAS  Google Scholar 

  46. Weiner, P.K., Langridge, R., Blaney, J.M., Schaefer, R. and Kollman, P.A., Electrostatic potential molecular-surfaces, Proc. Natl. Acad. Sci. U.S.A., 79 (1982) 3754–3758.

    CAS  Google Scholar 

  47. Martin, Y.C., Quantitative drug design, Dekker, New York, 1978, pp. 425.

    Google Scholar 

  48. Fujita, T., The role of QSAR in drug design. In Jolles, G. and Wolldridge, K.R.H. (Eds.) Drug design: Fact or fantasy?. Academic Press, London, 1984, pp. 19–33.

    Google Scholar 

  49. Boyd, D.B., Successes of computer-assisted molecular design, In Lipkowitz, K.B. and Boyd, D.B. (Eds.) Reviews in computational chemistry. VCH, New York, 1990, pp. 355–371.

    Google Scholar 

  50. Hansch, C., and Fujita, T., (Ed.), Classical and three-dimensional QSAR in agrochemistry, American Chemical Society, Washington, DC, 1995, 342 pp.

    Google Scholar 

  51. Weiniger, D., A Note on the sense and nonsense of searching 3-D databases for pharmaceutical leads, Network Science, (1995). www.awod.com/netsci/Science/Cheminform/feature 04.html.

    Google Scholar 

  52. Brown, R.D. and Martin, Y.C., Use of structure-activity data to compare structure-based clustering methods and descriptors for use in compound selection, J. Chem. Inf. Comput. Sci., 36 (1996) 572–584.

    Article  CAS  Google Scholar 

  53. Brown, R.D. and Martin, Y.C., The information content of 2D and 3D structural descriptors relevant to ligand-receptor binding, J. Chem. Inf. Comput. Sci., 37 (1997) 1–9.

    Article  CAS  Google Scholar 

  54. Brown, R.D., Danaher, E., Lico, I. and Martin, Y.C., unpublished observations.

    Google Scholar 

  55. Kirn, K.H. and Martin, Y.C., Evaluation of electrostatic and steric descriptors of 3D-QSAR: The H+ and CH3 probes using comparative molecular field analysis (CoMFA) and the modified partial least squares method, In Silipo, C. and Vittoria, A. (Eds.) QSAR: Rational approaches to the design of bioactive compounds, Elsevier Science Publishers, Amsterdam, The Netherlands, 1991, pp. 151–54.

    Google Scholar 

  56. Kamlet, M., Doherty, R., Fiserova-Bergerova, V., Carr, P., Abraham, M. and Taft, R., Solubility properties in biological media: 9. Prediction of solubility and partition of organic nonelectrolytes in blood and tissues from solvatochronic parameters., J. Pharm. Sci., 76 (1987) 14–17.

    CAS  Google Scholar 

  57. Klopman, G., Artificial intelligence approach to structure-activity studies: Computer automated structure evaluation of biological activity of organic molecules, J. Am. Chem. Soc., 106 (1984) 7315–7321.

    Article  CAS  Google Scholar 

  58. Hall, L.H. and Kier, L.B., The molecular connectivity chi indexes and kappa shape indexes in structure-property modeling, In Lipkowitz, K.B. and Boyd, D.B. (Eds.) Reviews in computational chemistry, VCH, New York, 1991, pp. 367–422.

    Google Scholar 

  59. Van de Waterbeemd, H., Clementi, S., Costantino, G., Carrupt, P.-A. and Testa, B., CoMFA-derived substituent descriptors for structure-property correlations, In Kubinyi, H. (Ed.) 3D QSAR in drug design: Theory, methods and applications, ESCOM, Leiden, The Netherlands, 1993, pp. 697–707.

    Google Scholar 

  60. van de Waterbeemd, H. (Ed.), Chemometric methods in molecular design, VCH, Weinheim, Germany, 1995, 359 pp.

    Google Scholar 

  61. Hansch, C., Unger, S.H. and Forsythe, A.B., Strategy in drug design: Cluster analysis as an aid in the selection of substituents, J. Med. Chem., 16 (1973) 1212–1222.

    Google Scholar 

  62. Wootton, R., Cranfield, R., Sheppey, G.C. and Goodford, P.J., Physicophemical-activity relationships in practice: 2. Rational selection of benzenoid substituents, J. Med. Chem., 18 (1975) 607–613.

    Article  CAS  Google Scholar 

  63. Martin, Y.C. and Panas, H.N., Mathematical considerations in series design, J. Med. Chem., 22 (1979) 784–791.

    Google Scholar 

  64. Austel, V., Experimental design in synthesisis planning and structure-property correlations, In van de Waterbeemd, H. (Ed.) Chemometric methods in molecular design, VCH, Weinheim, Germany, 1995, pp. 49–62.

    Google Scholar 

  65. Downs, G.M. and Willett, P., Clustering in chemical-structure databases for compound selection. In van der Waterbeemd, H. (Ed.) Chemometric methods in molecular design, VCH, Weinheim, Germany, 1994, pp. 111–30.

    Google Scholar 

  66. Martin, Y.C., Brown, R.D. and Bures, M.G., Quantifying diversity. In Kerwin, J.F. and Gordon, E.M. (Eds.) Combinatorial chemistry and molecular diversity, Wiley, New York, 1997 (in press).

    Google Scholar 

  67. Turner, D.B., Tyrrell, S.M. and Willett, P., Rapid quantification of molecular diversity for selective database acquisition, J. Chem. Inf. Comput. Sci., 37 (1997) 18–22.

    Article  CAS  Google Scholar 

  68. Simon, Z., Dragomir, N., Plauchitiu, M.G., Holban, S., Glatt, H. and Kerek, P., Receptor site mapping for cardiotoxic aglicones by the minimal steric difference method, Eur. J. Med. Chem., 15 (1980) 521–527.

    CAS  Google Scholar 

  69. Hopfinger, A.J., A QSAR investigation of dihydrofolate reductase inhibition by Baker triazines based upon molecular shape analysis, J. Am. Chem. Soc., 102 (1980) 7196–7206.

    Article  CAS  Google Scholar 

  70. Höltje, H.-D. and Kier, L.B., Sweet taste receptor studies using model interaction energy calculations, J. Pharm. Sci., 63 (1974) 1722–1725.

    Google Scholar 

  71. Goodford, P.J., A computational procedure for determining energetically favorable binding sites on biologically important macromolecules, J. Med. Chem., 28 (1985) 849–857.

    Article  CAS  Google Scholar 

  72. Kato, Y., Itai, A. and Iitaka, Y., A novel method for superimposing molecules and receptor mapping, Tetrahedron, 43 (1987) 5229–5234.

    CAS  Google Scholar 

  73. Doweyko, A.M., The hypothetical active site lattice: An approach to modeling active sites from data on inhibitor molecules, J. Med. Chem., 31 (1988) 1396–1406.

    Article  CAS  Google Scholar 

  74. Wold, S., Ruhe. A., Wold, H. and Dunn, W.J., The collinearity problem in linear regression: The partial least square (PLS) approach to generalized inverses, Siam J. Sci. Stat. Comput., 5 (1984) 735–743.

    Article  Google Scholar 

  75. Cramer III, R.D., Patterson, D.E. and Buncc, J.D., Comparative molecular field analysis (CoMFA): 1. Effect of shape on binding of steroids to carrier proteins, J. Am. Chem. Soc., 110 (1988) 5959–5967.

    Article  CAS  Google Scholar 

  76. Kim, K.H. and Martin, Y.C., Direct prediction of dissociation constants (pK a-s) of clonidine-like imidazolines, 2-.substituted imidazoles, and 1-melhyl-2-substituted-imidazoles from 3D structures using a comparative molecular field analysis (CoMFA) approach, J. Med. Chem., 34 (1991) 2056–2060.

    CAS  Google Scholar 

  77. Kim, K.H., Comparison of classical and 3D QSAR, In Kubinyi, H. (Ed.) 3D QSAR in drug design: Theory methods and applications, ESCOM, Leiden, The Netherlands, 1993, pp. 619–642.

    Google Scholar 

  78. Waller, C.L., Oprea, T.I., Giolitti, A. and Marshall, G.R., Three-dimensional QSAR of human immunodeficiency virus (I) protease inhibitors: 1. A CoMFA study employing experimentally-determined alignment rules, J. Med. Chem., 36 (1993) 4152–4160.

    CAS  Google Scholar 

  79. Klebe, G. and Abraham, U., On the prediction of binding properties of drug molecules by comparative molecular field analysis, J. Med. Chem., 36 (1993) 70–80.

    Article  CAS  Google Scholar 

  80. Watson, K.A., Mitchcll, E.P., Johnson, L.N., Cruciani, G., Son, J.C., Bichard, C.J.F., Fleet, G.W.J., Oikonomakos, N.G., Kontou, M. and Zographos, S.E., Glucose analog inhibitors of glycogenphosphorylase—from crystallographic analysis to drug prediction using grid force-field and GOLPE bariable selection, Acta Crystallogr., Sec. D, 51 (1995) 458–472.

    CAS  Google Scholar 

  81. Jorgensen, W.L. and Tiradorives, J., Free-energies of hydration for organic-molecules from Monte Carlo Simulations, Persp. Drug Discov. Design, 3 (1995) 123–138.

    CAS  Google Scholar 

  82. Marrone, T.J., Gilson, M.K. and McCammon, J.A., Comparison of continuum and explicit models of salvation—potentials of mean force for allanine dipeptide, J. Phys. Chem., 100 (1996) 1439–1441.

    Article  CAS  Google Scholar 

  83. Madura, J.D., Nakajima, Y., Hamilton, R.M., Wierzbicki, A. and Warshel, A., Calculations of the electrostatic free-energy contributions to the binding free-energy of sulfonamides to carbonic-anhydrase. Struct. Chem, 7 (1996) 131–138.

    Article  CAS  Google Scholar 

  84. Aqvist, J. and Mowbray, S.L., Sugar recognition by a gliico.se/galactose receptor: Evaluation of binding energetics from molecular dynamics simulations, J. Biol. Chem., 270 (1995) 9978–9981.

    CAS  Google Scholar 

  85. Hansson, T. and Aqvist, J., Estimation of binding free-energies for HIV proteinase-inhibitors by molecular-dynamics simulations, Protein Eng., 8 (1995) 1137–1144.

    CAS  Google Scholar 

  86. Paulsen, M.D. and Ornstein, R.L., Binding free-energy calculations for P450cam-subslrate complexes, Protein Eng., 9 (1996) 567–571.

    Article  CAS  Google Scholar 

  87. Hulten, J., Bonham, N.M., Nillroth. U., Hansson, T., Zuccarello, G., Bouzide, A., Åqvist, J., Classon, B., Danielson, U.H., Karlen, A., Kvarnstrom, I., Samuelsson, B. and Hallberg, A., Cyclic HIV-1 protease inhibitors derived from mannitol: synthesis, inhibitory potencies, and computational predictions of binding affinities, J. Med. Chem., 40 (1997) 885–897.

    Article  CAS  Google Scholar 

  88. Backbro, K., Lowgren, S., Osterlund, K., Atepo, J., Unge, T., Hulten, J., Bonham, N.M., Schaal, W., Karlen, A. and Hallberg, A., Unexpected binding mode of a cvelic sulfamide HIV-1 protease inhibitor, J. Med. Chem., 40 (1997) 898–902.

    Article  CAS  Google Scholar 

  89. Blaney, J.M. and Dixon, J.S., A good ligand is hard to find: Automated docking methods, Persp. Drug Discovery Design, 1 (1993) 301–319.

    CAS  Google Scholar 

  90. Böhm, H.-J., Ligand design, In H. Kubinyi (Ed.) 3D QSAR in drug design: theory, methods and applications, ESCOM, Leiden, The Netherlands, 1993, pp. 386–405.

    Google Scholar 

  91. Böhm, H.-J., The development of a simple empirical scoring function to estimate the binding constant for a protein-ligand complex of known three-dimensional structure, J. Comput.-Aided Mol. Design, 8 (1994) 243–256.

    Google Scholar 

  92. Head, R.D., Smythe, M.L., Oprea, T.I., Waller, C.L., Green, S.M. and Marshall, G.R., VALIDATE: A new method for the receptor-based prediction of binding affinities of novel ligands, J. Am. Chem. Soc., 118 (1996) 3959–3969.

    Article  CAS  Google Scholar 

  93. Jain, A.N., Scoring noncovalent protein-ligand interactions: a continuous differentiable function tuned to compute binding affinities, J. Comput.-Aided Mol. Design, 10 (1996) 427–40.

    Article  CAS  Google Scholar 

  94. Dixon, S. and Blaney, J., Docking, In Martin, Y.C. and Willett, P. (Eds.) Designing bioactivc molecules: Three-dimensional techniques and applications, American Chemical Society, Washington, DC, 1997 (in press).

    Google Scholar 

  95. Holloway, M.K., Wai, J.M., Halgren, T.A., Fitzgerald, P.M.D., Vacua, J.P., Dorsey, B.D., Levin, R.B., Thompson, W.J., Chen, L.J., deSolms, S.J., Gaffin, N., Ghosh, A.K., Giuliani, E.A., Graham, S.L., Guare, J.P., Hungate, R.W., Lyle, T.A., Sanders, W.M., Tucker, T.J., Wiggins, M., Wiscount, C.M., Woltersdorf, O.W., Young, S.D., Darke, P.L. and Zugay, J.A., A priori predict/on of activity for HIV-1 protease inhibitors employing energy minimization in the active site, J. Med. Chem., 38 (1995) 305–317.

    Article  CAS  Google Scholar 

  96. Ortiz, A.R., Pisaharro, M.T., Gago, F. and Wade, R.C., Prediction of drug binding affinities by comparative binding energy ana/ysis, 3. Med. Chem., 38 (1995) 2681–2691.

    Article  CAS  Google Scholar 

  97. Reddy, B.V.B., Gopal, V. and Chatterji, D., Recognition of promoter DNA by subdomain-2 in-4.2 of Escherichia-Coli-sign(70): A knowledge-based model of-35-hexamer interaction with 4.2-helix-lurnhelix motif, J. Biomol. Struct. Dynamics, 14 (1997) 407–419.

    CAS  Google Scholar 

  98. Weber, I.T. and Harrison, R.W., Molecular mechanics calculations on protein-ligand complexes, In Kubinyi, H., Folkers, G. and Martin, Y.C. (Eds.) 3D QSAR in drug design: Vol. 2, Kluwer Academic Publishers, Dordrecht, The Netherlands, 1998, pp. 115–127.

    Google Scholar 

  99. Wallqvist, A., Jeering, R.L. and Coeval, D.G., A preference-based free-energy parameterization of enzyme-inhibitor binding: Applications to HIV-1-protease inhibitor design, Protein Science, 4 (1995) 1881–1903.

    Article  CAS  Google Scholar 

  100. Wallqvist, A. and Covell, D.G., Docking enzyme-inhibitor complexes using a preference-based free-energy surface, Proteins: Struct. Funk. Genet., 25 (1996) 403–411.

    CAS  Google Scholar 

  101. Dewitt, R.S. and Shakhnovich, E.I., Smog — de novo design method based on simple, fast, and accurate free-energv estimates: 1. Methodology and supporting evidence, J. Am. Chem. Soc., 118 (1996) 11733–11744.

    Google Scholar 

  102. Mattos, C., and Ringe, D., Multiple binding modes. In Kubinyi, H. (Ed.) 3D QSAR in drug design: Theory, methods and applications, ESCOM, Leiden, The Netherlands, 1993, pp. 226–254.

    Google Scholar 

  103. Meyer, E.F., Boots, I., Scapozza, L. and Zhang, D., Backward binding and other structural surprises. Persp. Drug Discov. Design, 3 (1996) 168–195.

    Google Scholar 

  104. Klebe, G., Mietzner, T., and Weber, P., Different approaches toward an automatic structural alignment of drug molecules: Applications to sterol mimics, thrombin and thermolysin inhibitors. J. Comput.-Aided Mol. Design, 8 (1994) 751–778.

    CAS  Google Scholar 

  105. Oprea, T.I., Waller, C.L. and Marshall, G.R., Three dimensional quantitative structure-activity relation-ship of human immunodeficiency virus (I) protease Inhibitors: 2. Predictive power using limited exploration of alternate binding modes, J. Med. Chem., 37 (1994) 2206–2215.

    Article  CAS  Google Scholar 

  106. DePriest, S.A., Mayer, D., Naylor, C.B. and Marshall, G.R., 3D-QSAR of angiotensin-converting enzyme and thermolysin inhibitors: A comparison of CoMFA models based on deduced and experimentally determined active-site geometries, J. Am. Chem. Soc., 115 (1993) 5372–5384.

    Article  CAS  Google Scholar 

  107. Schoenleber, R., Martin, Y.C., Wilson, M., DiDomenico, S., Mackenzie, R.G., Artman, L.D., Ackerman, M.S., DeBernardis, J.K, Meyer, M.D., De, B., Hsiao, C.W. and Kebabian, J.W., American Chemical Society Meeting, August, New York, 1991.

    Google Scholar 

  108. Martin, Y.C., Kebabian, J.W., MacKenzie, R. and Schoenleber, R., Molecular Modeling-based Design of Novel, Selective, Potent D1 Dopamine Agonists, In Silipo, C. and Vittoria, A. (Eds.) QSAR: Rational approaches on the design of bioactive compounds, Elsevier, Amsterdam, The Netherlands, 1991, pp. 469–482.

    Google Scholar 

  109. Glen, R., Martin, G., Hill, A., Hyde, R., Woollard, P., Salmon, J., Buckingham, J. and Robertson, A., Computer-aided-design and synthesis of 5-substituted tryptamines and their pharmacology at the 5-HT1D receptor — discovery of compounds with potential antimigraine properties, J. Med. Chem., 38 (1995) 3566–3580.

    CAS  Google Scholar 

  110. Waller, C.L. and Marshall, G.R., Three-dimensional quantitative structure-activity relationship of angiotensin-converting enzyme and thermolysin inhibitors: 2. A comparison of CoMFA models incorporating molecular-orbital fields and desolvation free-energies based on active-analog and complementary-receptor field alignment rules., J. Med. Chem., 36 (1993) 2390–2403.

    CAS  Google Scholar 

  111. Klebe, G., Structural alignment of molecules. In Kubinyi, H. (Ed.) 3D QSAR in drug design: Theory, methods and applications, ESCOM, Leiden, The Netherlands, 1993, pp. 173–99.

    Google Scholar 

  112. Kroemer, R.T., Hecht, P., Guessregen, S. and Liedl, K.R., Improving the predictive quality of CoMFA models, In Kubinyi, H., Folkers, G. and Martin, Y.C. (Eds.) 3D QSAR in drug design: Vol. 3, Kluwer Academic Publishers, Dordrecht, The Netherlands, 1998, pp. 41–56.

    Google Scholar 

  113. Norinder, U., Recent progress in CoMFA methodology and related techniques. In Kubinyi, H., Folkers, G. and Martin, Y.C. (Eds.) 3D QSAR in drug design: Vol. 3, Kluwer Academic Publishers, Dordrecht, The Netherlands, 1998, pp. 25–39.

    Google Scholar 

  114. Lin, C.T., Pavlik, P.A. and Martin, Y.C., Use of molecular fields to compare series of potentially bioactive molecules designed by scientists or by computer. Tetrahedron Comput. Method., 3 (1990) 723–738.

    Article  CAS  Google Scholar 

  115. Norinder, U., Experimental design based 3-D QSAR analysis of steroid-protein interactions: Application to human CRG complexes, J. Comput.-Aided Mol. Design, 4 (1990) 381–389.

    Article  CAS  Google Scholar 

  116. Caliendo, G., Greco, G., Novellino, E., Perissutti, E. and Santagada, V., Combined use of factorial design and comparative molecular field analysis (CoMFA): A case study, Quant. Struct.-Act. Relat., 13 (1994) 249–261.

    CAS  Google Scholar 

  117. Mabilia, M., Belvisi, L., Bravi, G., Catalano, G. and Scolastico, C., A PCA/PLS analysis on nonpeptide angiotensin II receptor antagonists. In Sanz, F., Giraldo, J. and Manaut, F. (Eds.) QSAR and molecular modeling: Concepts, computational tools and biological applications. Proceedings of the l0th European Symposium on Structure-Activity Relationships: QSAR and Molecular Modeling, Barcelona, 4–9 September 1994, Prous, Barcelona, 1995, pp. 456–60.

    Google Scholar 

  118. Cramer III, R.D., Clark, R.D., Patterson, D.E. and Ferguson, A.M., Bioisosterism as a molecular diversity descriptor — steric fields ofsingle topomeric conformers, J. Med. Chem., 39 (1996) 3060–3069.

    Article  CAS  Google Scholar 

  119. Mager, P.P., A random number experiment to simulate resample model evaluations, J. Chemometrics, 10 (1996) 221–240.

    Article  CAS  Google Scholar 

  120. Clark, M. and Cramer III, R.D., The probability of chance correlation using partial least squares (PLS), Quant. Struct.-Act. Relat., 12 (1993) 137–145.

    CAS  Google Scholar 

  121. Doweyko, A.M., Three-dimensional pharmacophores from binding data, J. Med. Chem., 37 (1994) 1769–1778.

    Article  CAS  Google Scholar 

  122. Dunn III, W.J. and Rogers, D., Genetic partial least squares in QSAR, In Devillers, J. (Ed.) Genetic al-gorithms in molecular modeling, Academic Press, London, 1996, pp. 109–130.

    Google Scholar 

  123. Coats, E.A., The CoMFA steroids as a benchmark data set for development of 3D QSAR methods. In Kubinyi, H., Folkers, G. and Martin, Y.C. (Ed.) 3D QSAR in drug design: Vol. 3, Kluwer Academic Publishers, Dordrecht, The Netherlands, 1998, pp. 199–214.

    Google Scholar 

  124. Tropsha, A. and Cho, S.J., Cross-validated region selection for CoMFA studies. In Kubinyi, H., Folkers, G. and Martin, Y.C. (Eds.) 3D QSAR in drug design: Vol. 3, Kluwer Academic Publishers, Dordrecht, TheNetherlands, 1998, pp. 57–69.

    Google Scholar 

  125. Cruciani, G., Clementi, S. and Pastor. M., GOLPE-Guided Region Selection, In Kubinyi, H., Folkers, G. and Martin, Y. (Ed.) 3D QSAR in drug design: Vol. 3, Kluwer Academic Publishers, Dordrecht, The Netherlands, 1998, pp. 71–86.

    Google Scholar 

  126. Dunn III, W.J. and Rogers, D., Genetic partial least-squares in QSAR, In J. Devillers (Ed.) Genetic algorithms in molecular modeling, Academic Press, London, 1996, p. 109–30.

    Google Scholar 

  127. Wikel, J.H. W.J. and Dow, E.R., The use of neural networks for variable selection in QSAR, Bioorg. Medic. Chem. Lett., 3 (1993) 645–651.

    CAS  Google Scholar 

  128. Kubinyi, H., Variable selection in QSAR Studies: 1. An Evolutionary Algorithm, Quant. Struct.-Act. Relat., 13 (1994) 285–294.

    CAS  Google Scholar 

  129. Kubinyi, H., Variable selection in QSAR studies: 2. A highly efficient combination of systematic search and evolution. Quant. Struct.-Act. Relat., 13 (1994) 393–401.

    CAS  Google Scholar 

  130. Rogers, D. and Hopfinger, A.J., Application of genetic function approximation to quantitative struc-ture-activity relationships and quantitative structure-property relationships, J. Chem. Inf. Comput. Sci., 34 (1994) 854–866.

    CAS  Google Scholar 

  131. Lingren, F., Geladi, P., Berglund, A., Sjostrum, M. and Wold, S., Interactive variable selection (IVS) for PLS: 2. Chemical applications, J. Chemometrics, 9 (1995) 331–342.

    Google Scholar 

  132. Tetko, I.V., Villa, A. and Livingslonc, D.J., Neural-network studies: 2. Variable selection, J. Chem. Inf. Comput. Sci., 36 (1996) 794–803.

    Article  CAS  Google Scholar 

  133. Baldovin, A., Wu, W., Centner, V., Jouanrimbaud, D., Massarl, D.L., Favretto, L. and Turello, A., Feature-selection for the discrimination between pollution types with partial least-squares modeling, Analyst, 121 (1996) 1603–1608.

    Article  CAS  Google Scholar 

  134. Centner, V., Massart, D.L., Denoord, O.E., Dejong, S., Vandeginste, B.M. and Sterna, C., Elimination of uninformative variables for multivariate calibration, Anal. Chem., 68 (1996) 3851–3858.

    Article  CAS  Google Scholar 

  135. Hasegawa, K., Miyashita, Y. and Funatsu, K., GA strategy for variable selection in QSAR studies: GA-basecl PLS analysis of calcium-channel antagonists, J. Chem. Inf. Comput. Sci., 37 (1997) 306–310.

    Article  CAS  Google Scholar 

  136. Höltje, H.-D., Anzali, S., Dall, N. and Höltje, M., Binding Site Models, In Kubinyi, H. (Ed.) 3D QSAR in drug design: Theory, methods and applications, ESCOM, Leiden, The Netherlands, 1993, pp. 320–335.

    Google Scholar 

  137. Vedani, A., Zhinden, P., Snyder, J.P. and Greenidge, P.A., Pseudoreceptor modeling: The construction of three-dimensional receptor surrogates, J. Am. Chem. Soc., 117 (1995) 4987–4994.

    Article  CAS  Google Scholar 

  138. Topliss, J.G. and Edwards, R.P., Chance factors in studies of quantitative structure-activity relation-ships, J. Med. Chem., 22 (1979) 1238–1244.

    Article  CAS  Google Scholar 

  139. Hoskuldsson, A., Quadratic PLS regression, J. Chemometrics, 6 (1992) 307–334.

    CAS  Google Scholar 

  140. Benigni, R. and Guiliani, A., Analysis of distance matrices for studying data structures and separating classes. Quant. Struct.-Act. Relat., 12 (1993) 397–401.

    CAS  Google Scholar 

  141. Kubinyi, H., QSAR: Hansch analysis and related approaches, VCH, Weinheim, Germany, 1993, Vol. 1, pp. 240.

    Google Scholar 

  142. Martin, Y.C., Lin, C.T., Hetti, C. and DeLazzer, J., PLS analysis of distance matrices detects non-linear relationships between biological potency and molecular properties, J. Med. Chem., 38 (1995) 3009–3015.

    CAS  Google Scholar 

  143. Livingstone, D. and Manallack, D.T., Statics using neural networks: Chance effects, J. Med. Chem., 36 (1993) 1295–1297.

    Article  CAS  Google Scholar 

  144. Tetko, I.V., Livingstone, D.J. and Luik, A.I., Neural-network studies: 1. Comparison of overfitting and overtraining, J. Chem. Inf. Comput. Sci., 35 (1995) 826–833.

    Article  CAS  Google Scholar 

  145. Devries, S. and Terbraak, C., Prediction error in partial least-squares regression: A critique on the deviation used in the unscramble, Chemometrics Intelligent Lab. systems, 30 (1995) 239–245.

    CAS  Google Scholar 

  146. Jonathan, P., Mccarthy, W.V. and Roberts, A., Discriminant-analysis with singular covariance matrices: A method incorporating cross-validation and efficient randomized permutation tests, J. Chemometrics, 10 (1996) 189–213.

    Article  CAS  Google Scholar 

  147. Kemsley, E.K., Discriminant-analysis of high-dimensional data: A comparison of principal com-ponents-analysis and partial least-squares data reduction methods, Chemometrics Intelligent Lab. Systems, 33 (1996) 47–61.

    CAS  Google Scholar 

  148. Shuker, S., Hajduk, P., Meadows, R. and Fesik, S., Discovering high-affinity ligands for proteins: SAR by NMR, Science, 274 (1996) 1531–1534.

    Article  CAS  Google Scholar 

  149. Sheridan, R.P. and Kearsley, S.K., Using a genetic algorithm to suggest combinatorial libraries, J. Chem. Inf. Comput. Sci., 35 (1995) 310–320.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Kluwer Academic Publishers

About this chapter

Cite this chapter

Martin, Y.C. (1998). 3D QSAR: Current State, Scope, and Limitations. In: Kubinyi, H., Folkers, G., Martin, Y.C. (eds) 3D QSAR in Drug Design. Three-Dimensional Quantitative Structure Activity Relationships, vol 3. Springer, Dordrecht. https://doi.org/10.1007/0-306-46858-1_1

Download citation

  • DOI: https://doi.org/10.1007/0-306-46858-1_1

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-4791-0

  • Online ISBN: 978-0-306-46858-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics