Skip to main content

Binding Affinities and Non-Bonded Interaction Energies

  • Chapter
3D QSAR in Drug Design

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Janin, J., Elusive affinities, Proteins: Struct. Funct. Genet., 21 (1995) 30–39.

    CAS  Google Scholar 

  2. Ajay and Murcko. M.A., computational methods to predict binding free energy in Ligand-receptor complexes J. Med. Chem., 38 (1996)4953–4967.

    Google Scholar 

  3. Böhm, H.-J. and Klebe, G., What can we from molecular recognition inprotein-ligand complexes for the design of new drugs? Angew. Chem. Int. Ed. Engl. 35 (1996) 2588–2614.

    Google Scholar 

  4. Verlinde C.L.M.J. and Hol, W.G.J., Structure-based drug design: Progress, results and challenges, Structure 2 (1994) 577–587.

    Article  CAS  Google Scholar 

  5. Böhm, H.-J., Current computational tools for de novo ligand design. Curr, Opin. Biotech., 7 (1996) 433–436.

    Google Scholar 

  6. Clark. M., Cramer, R.D., III, Jones. D.M., Patterson, D.E. and Simeroth, P.E., comparative molecular field analysis (CoMFA): I. Effect of shape on binding of steriods to carrier proteins, J. Am. Chem. Soc., 110 (1988) 5959–5967.

    Google Scholar 

  7. Clark, M., Cramer, R.D., III, Jones, D.M., Patterson. D.E. and Simeroth, P.E., comparative molecular field analysis (CoMFA): 2. Towards its use with 3D-structural databases, Tetrahedron Comput. Methodol., 3 (1990)47–59.

    Article  CAS  Google Scholar 

  8. Grootenhuis. P.D.J. and van Helden, S.P., Rational approaches towards protease inhibition: Predicting the binding of thrombin inhibitors, In Wipff, G. (Ed.) Computational approaches in supramolecular chemistry, Kluwer Academic Publishers, Dordrecht (NI), 1994, 137–149.

    Google Scholar 

  9. Perakyla, M. and Pakkanen, T.A., Model assembly study of the ligand binding by p-hydroxybenzoate hydroxylase: Correlation between the calculated binding energies and the experimental dissociation constants, Proteins: struct. Funct. Genet., 21 (1995) 22–29.

    CAS  Google Scholar 

  10. Cramer, C.J. and Truhlar, D.G., Continuum solvation models: Classical and quantum mechanical implementations. In Lipkowitz, K.B. and Boyd, D.B. (Eds.) Reviews in computational chemistry, 6, VCH Publishers Inc., New York, 1995,pp. 1–72.

    Google Scholar 

  11. Kollman. P., Free energy calculations: Applications to chemical and biochemical phenomena, Chem. Rev., 93 (1993) 2395–2417.

    Article  CAS  Google Scholar 

  12. Rao. B.G., Tilton, R.F. and Singh, U.C., Free energy perturbation studies on inhibitor binding to HIV-1 proteinase, J. Am. Chem. Soc., 114 (1992) 4447–4452.

    CAS  Google Scholar 

  13. Aqvist, J. and Mowbray, S.L., Sugar recognition by a glucose/galactose receptor: Evaluation of binding energetics from molecular dynamics simulations, J. Biol. Chem., 270 (1995) 9978–9981.

    CAS  Google Scholar 

  14. Liu, H.Y., Mark, A.E. and van Gunsteren, W.F., Estimating the relative free energy of different molecular stawtes with respect to a single reference state, J. Phys. Chem., 100 (1996) 9485–9494.

    CAS  Google Scholar 

  15. Finkelstein, A.V. and Janin, J.. The price of lost freedom: Entropy of biomolecular complex formation, Protein Eng., 3 (1989) 1–3.

    CAS  Google Scholar 

  16. Weiner. S.J., Kollman, P.A., Case. D.A., Singh, U.C., Ghio, C., Alagona, G., Profeta, S. and Weiner, P.K. A new force field for molecular mechanics simulation, J. Am. Chem. Soc., 106 (1984) 765–784.

    CAS  Google Scholar 

  17. Kuntz, I.D., Blancy, J.M., Oatley, S.J., Langridge, R. and Ferrin. T.E., A geometric approach to macro-molecule-ligand interactions, J. Mol. Biol., 161 (1982) 269–288.

    Article  CAS  Google Scholar 

  18. DesJarlais, R.L., Sheridan. R.P., Seibel, G.L., Dixon, J.S., Kuntz, I.D. and Venkataraghavan, R., Using shape complementarily as an initial screen in designing ligands for a receptor binding site of known three-dimensional structure, J. Med. Chem. 31 (1988) 722–729.

    Article  CAS  Google Scholar 

  19. Meng, E.C., Shoichet, B.K. and Kuntz, I.D., Automateddocking using grid-based energy evaluation, J. Comp. Chem., 13 (1992) 505–524.

    CAS  Google Scholar 

  20. Ring, C.S., Sun, E.. McKerrow, J.H., Lee. G.K., Rosenthal, P.J., Kuntz, I.D. and Cohen, F.E., Structure-based inhibitor design by using protein models for the development of antiparasitic agents, Proc. Natl. Acad. Sci. USA, 90 (1993) 3583–3587.

    CAS  Google Scholar 

  21. Grootenhuis, P.D.J. and van Galen, P.J.M., Correlationof binding affinitieswith non-bonded interaction energies of thrombin-inhibitor complexes. Acta Cryst., D51 (1995) 560–566.

    CAS  Google Scholar 

  22. Brooks, B., Bruccoleri, R., Olafson, B., States, D., Swaninathan, S. and Karplus, M., Charmm: A program for macromolecular energy minimization and molecular dynamics calculations, J. Comp. Chem., 4 (1983) 187–217.

    CAS  Google Scholar 

  23. Kurinov, I.V. and Harrison, R.W., Prediction of new serine proteinase inhibitors, Nature Struct. Biol., 1 (1994) 735–743.

    Article  CAS  Google Scholar 

  24. Rappé, A.K., Casewit, C.J., Colwell, K.S., Goddard. W.A.I. and Skiff. W.M., UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations, J. Am. Chem. Soc., 114 (1992) 10024–10046.

    Google Scholar 

  25. Luty, B.A., Wasserman, Z.R., Stouten, P.F.W., Hodge, C.N., Zacharias, M. and McCammon, J.A., A molecular mechanics/grid method for evaluation of ligand-receptor interactions, J. Comp. Chem., 16(1995)454–464

    CAS  Google Scholar 

  26. Viswanadhan, V.N., Reddy, M.R., Wlodawer, A., Varney, M.D. and Weinstein, J.N., An approach to rapid estimation of relative binding affinities of enzyme inhibirors: Application to peptidomimetic inhibitors of the human immunodeficiency virus type 1 protease, J. Med. Chem., 39 (1996) 705–712.

    Article  CAS  Google Scholar 

  27. Ortiz, A.R., Pisabarro, M.T., Gago, F. and Wade, R.C., Prediction of drug bindingaffinitiesby comparative binding energy analysis, J. Med. Chem., 38 (1995) 2681–2691.

    Article  CAS  Google Scholar 

  28. Mitchell, T.J., An algorithm for the construction of ‘D-optimal’ experimental designs, Technometrics, 16 (1974) 203–210.

    Google Scholar 

  29. Holloway, K.M., Wai, J.M., Halgren, T., Fitzegerald, P.M.D., Vacca, J.P., Dorsey, B.D., Levin, R.B., Thompson, W.J., Chen, L.J., deSolms, S.J., Gaffin, N., Ghosh, A.K., Giuliani, E.A., Graham, S.L., Guare, J.P., Hungate, R.W., Lyle, T.A., Sanders. W.M., Tucker, T.J., Wiggins, M., Wiscount, C.M., Woltersdorf, O.W., Young, S.D., Darke, P.L. and Zugay, J.A., A priori prediction of activity for HIV-1 protease inhibitors employing energy minimization in the active site, J. Med. Chem., 38 (1995) 305–317.

    Article  CAS  Google Scholar 

  30. Babu, Y.S., Ealick, S.E., Bugg, C.E., Erion, M.D., Guida, W.C., Montgomery, J.A. and Secrist, J.A., III, Structure-based design of inhibitors of purine nucleoside phosphorylase, Acta Cryst., D51 (1995) 529–535.

    CAS  Google Scholar 

  31. Jetten, M., Peters, C.A.M., Visser, A., Grootenhuis, P.D.J., van Nispen, J.W. and Ottenheijm, H.C.J., Peptide-derived transition state analogue inhibitors of thrombin; Synthesis, activity and selectivity, Bioorg. Med. Chem., 3 (1995) 1099–1114.

    CAS  Google Scholar 

  32. Shen, J. and Wendoloski, J., Electrostatic binding energy calculation using the finite difference solution to the linearized Poisson-Boltzmann equation: Assessment of its accuracy, J. Comp. Chem., 17 (1996) 350–357.

    Google Scholar 

  33. Zhang, T. and Koshland, D.E., Jr., Computational method for relative binding energies of enzyme-substrate complexes, Prot. Sci. 5 (1996) 348–356.

    CAS  Google Scholar 

  34. Jedrzejas, M.J., Singh, S., Brouillette, W.J., Air, G.M. and Luo, M., A strategy for theoretical binding constant, K i, calculations for neuramidase aromatic inhibitors designed on the basis ofthe active site structure of influenza virus neuramidase, Proteins: Struct. Funct. Genet. 23 (1995) 264–277.

    CAS  Google Scholar 

  35. Zacharias, M., Luty, B.A., Davis, M.E. and McCammon, J.A., Combined conformational search and finite-difference Poisson-Boltzmann approach for flexible docking: Application to an operator mutation in the lambda repressor-operator complex, J. Mol. Biol.,238 (1994) 455–465.

    Article  CAS  Google Scholar 

  36. Böhm, H.-J., The development of a simple empiric scoring function to estimate the binding constant for a protein-ligandcomplex of known three-dimensional structure, J. Comput.-Aided Mol. Design, 8 (1994) 243–256.

    Google Scholar 

  37. Dougnerty, D.A. and Stauffer, D.A., Acetylcholine binding by a synthetic receptor: Implicationsfor biological recognition, Science, 250 (1990) 1558–1560.

    Google Scholar 

  38. Head, R.D., Smythe, M.L., Oprea, T.I., Waller, C.L., Green, S.M. and Marshall, G.R., VALIDATE: A new method for the receptor-based prediction of binding affinities of novel ligands, J. Am. Chem. Soc., 118 (1996) 3959–3969.

    Article  CAS  Google Scholar 

  39. Verkhivker, G.M., Rejto, P.A., Gehlhaar, D.K. and Freer, S.T., Exploring the energy landscapes of molecular recognition by a genetic algorithm: Analysisof the requirements for robust docking of HIV-1 protease and FKBP-12 complexes, Proteins: Struct. Funct. Genet., 250 (1996) 342–353.

    Google Scholar 

  40. Knegtel, R.M.A., Rullman, J.A.C., Boelens, R. and Kaptein, R., MONTY: A Monte Carlo approach to protein-DNA recognition,J. Mol. Biol., 235 (1994) 318–324.

    Article  CAS  Google Scholar 

  41. Jain, A.N., Scoring noncovalent protein-ligand interactions: A continuous differentiable function tuned to compute binding affinites, J. Cornput.-Aided Mol. Design, 10 (1996) 427–440.

    CAS  Google Scholar 

  42. Novotny, J., Bruccoleri, R.E. and Saul, F.A., On the attribution of binding energy in antigen-antibody complex MCPC 603.D1.3 and Hyhel-5,Biochemistry, 28 (1989) 4735–4749.

    Article  CAS  Google Scholar 

  43. Bohacek, R.S. and McMartin, C. Definitionand display of steric, hydrophobic and hydrogen-bonding properties of ligand binding sites in proteins using Lee and Richards’ accessible surface: Validation of a high-resolution graphical tool for drug design, J. Med. Chem., 35 (1992) 1671–1684.

    Article  CAS  Google Scholar 

  44. Eisenberg, D. and McLachlan, A.D., Solvation energy in proteinfolding and binding, Nature, 319 (1986) 199–203.

    Article  CAS  Google Scholar 

  45. Horton, N. and Lewis, M., Calculation of the free energy of association forprotein complexes. Prot. Sci., 1(1992) 169–181.

    CAS  Google Scholar 

  46. Krystek, S., Stouch, T. and Novotny, J., Affinity and specificity of serine endopeptidase-protein inhibitor interactions: Empirical free energy calculations based on crystallographic studies, J. Mol. Biol., 234 (1993) 661–679.

    Article  CAS  Google Scholar 

  47. Vajda, S., Weng, Z., Rosenfeld, R. and DeLisi, C., Effect of conformational flexibility and solvation on receptor-ligand binding free energies, Biochemistry, 33 (1994) 13977–13988.

    Article  CAS  Google Scholar 

  48. Wallqvist, A., Jernigan, R.L. and Covell, D.G., A preference-based free energy parameterization of enzyme-inhibitor binding: Applications to HIV-1 protease inhibitor design, Prot. Sci., 4 (1995) 1881–1903.

    CAS  Google Scholar 

  49. Wallqvist, A. and Covell, D.G., Docking enzyme-inhibitor complexes using a preference-based free energy surface, Proteins: Struct. Funct. Genet. 25 (1996) 403–419.

    CAS  Google Scholar 

  50. Laskowski, R.A., Thornton, J.M., Humblet, C. and Singh, J., X-SITE: Use of empirically derived atom packing preferences to identify favorable interaction regions in the binding sites of proteins, J. Mol. Biol. 259 (1996) 175–201.

    Article  CAS  Google Scholar 

  51. Verkhivker, G., Appelt, K., Freer, S.T. and Villafranca, J.E., Empirical free energy calculations of ligand-protein crystallographic complexes: 1. Knowledge-based ligand-protein interaction potentials applied to the prediction of human immunodeficiency virus protease I binding affinity, Protein Eng. 8 (1995) 677–691

    Article  CAS  Google Scholar 

  52. DeWitte, R.S. and Shakhnovich. E.I., SMoG: De novo design method based on simple, fast, and accurate free enerrgy estimates: I. Methodology and supporting evidence, J. Am. Chem. Soc., 118 (1996s) 11733–11744.

    Article  CAS  Google Scholar 

  53. Moult, J.. The current state of the art in proteiin structure prediction, Curr. Opin. Biotech., 7 (1996) 322–127.

    Google Scholar 

  54. Eisenberg, D. Into the black of night, Nature Struct. Biol., 4 (1997)95–97.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 KluwerAcademic Publishers

About this chapter

Cite this chapter

Knegtel, R.M.A., Grootenhuis, P.D.J. (2002). Binding Affinities and Non-Bonded Interaction Energies. In: Kubinyi, H., Folkers, G., Martin, Y.C. (eds) 3D QSAR in Drug Design. Three-Dimensional Quantitative Structure Activity Relationships, vol 2. Springer, Dordrecht. https://doi.org/10.1007/0-306-46857-3_6

Download citation

  • DOI: https://doi.org/10.1007/0-306-46857-3_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-4790-3

  • Online ISBN: 978-0-306-46857-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics