Skip to main content

A Priori Prediction of Ligand Affinity by Energy Minimization

  • Chapter

Part of the book series: Three-Dimensional Quantitative Structure Activity Relationships ((QSAR,volume 2))

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kollman, P., Free energy calculation: Applications to chemical and biochemical phenomena, Chem. Rev., 93 (1993) 2395–2417.

    Article  CAS  Google Scholar 

  2. Oprea, T.I., Waller, C.L. and Marshall, G.R., 3-dimensional quantitavie structure-activity relationship of human-immunodeficiency-virus-(l) protease inhibitors: 2. Predictive power using limited exploration of alternate binding modes,. J. Med. Chem., 37 (1994) 2206–2215.

    Article  CAS  Google Scholar 

  3. Waller, C.L., Oprea, T.I., Giolitti, A. and Marshall, G.R., 3-dimensional QSAR ofhuman-immunodeficiency-virus-(I) protease inhibitors: 1.ACOMFA study employing experimentally-determined alignment rules, J. Med. Chem., 36 (1993) 4152–4160.

    CAS  Google Scholar 

  4. Doweyko, A.M., Three-dimensional pharmacophores from binding data, J. Med. Chem., 37 (1994) 1769–1778.

    Article  CAS  Google Scholar 

  5. Meng, E.C., Kuntz, I.D., Abraham. D.J. and Kellogg, G.E., Evaluating docked complexes with the HINT exponential function and empirical atomic hydrophobicities, J. Comput.-Aided Mol. Design. 8 (1994) 299–306.

    Article  CAS  Google Scholar 

  6. Nauchitel, V., Villaverde, M.C. and Sussman, F., Solvent accessibility as a predictive tool for the free-energy inhibitor binding to the HIV-1 protease, Protein Science. 4 (1995) 1356–1364.

    CAS  Google Scholar 

  7. Wang, H. and Ben-Naim. A., A possible involvement of solvent-induced interactions in drug design, J. Med. Chem., 39 (1996) 1531–1539.

    CAS  Google Scholar 

  8. Wallqvist, A., Jernigan, R.L. and Covell, D.G., A preference-based free-energy parameterization of enzyme-inhibitor binding: Applications to HIV 1 protease inhibitor design, Protein Science. 4 (1995) 1881–1903.

    Article  CAS  Google Scholar 

  9. Wallqvist, A. and Covell, D.G., Docking enzyme-inhibitor complexes using a preference-based free-energy surface, Proteins: Struct., Funct. Gene.. 25 (1996) 403–419.

    CAS  Google Scholar 

  10. Verkhivker, G., Appelt, K., Freer. S.T., and Villafranca. J.E., Empirical free energy calculations of ligand-pretein crystallographic complexes: I. Knowledge-based ligand-protein interaction potentials applied to the prediction of human immunodeficiency virus 1 protease binding affinity, Protein Eng., 8 (1995)677–691.

    CAS  Google Scholar 

  11. Verkhivker, G.M. and Rejto, P.A., A mean field model of ligand-protein interaction Implication for the structural assessment of human immunodeficiency virus type I protease complexes and receptor-specific binding, Proc. Natl. Acad. Sci. USA. 93 (1996) 60–64.

    Article  CAS  Google Scholar 

  12. Meng, E.C. Shoichet, B.K. and Kuntz, I.D., Automated docking with grid-based energy evaluation, J. comput. Chem., 13 (1992) 505.

    Article  CAS  Google Scholar 

  13. Verlinde, C.L.M.J., Rudenko, G., and Wim, G.J.H., In search of new lead compounds for trypanosomiasis drug design: a protein structure-based linked-fragment approach, J., comput.-Aided Mol. Design, 6 (1992) 131–147.

    Article  CAS  Google Scholar 

  14. Rotstein, S.H. and Murcko, M.A., Groupbuild: A fragment-based method for de novo drug design J. Med. Chem., 36 (1993) 1700–1710.

    Article  CAS  Google Scholar 

  15. Bô, H.-J., The development of a simple empirical scoring function to estimate the binding constant for a protein-ligand complex of known three-dimensional structure, J. Compul.-Aided Mol. Design, 8 (1994) 243–256.

    Google Scholar 

  16. Bohacek, R.S.: McMartin, C., De novo designed of highly diverse structures complementary to enzyme binding sites: Application to thermolysin, In Rey nolds, C.H., Holloway, M.K. and Cox. H.K., (Eds.) Computer-aided molecular design: Applications in agrochemicals, materials and pharmaceuticals, ACS Symposium series 589. American Chemical Society, Washington, DC, 1995. pp. 82–97.

    Google Scholar 

  17. Head, R.D., Smythe, M.L., Oprea, T.I., Waller, C.L., Green. S.M. and Marshall, C.R., VALIDATE: A new method for the receptor-based prediction of binding affinities of novel ligands, J. Am. Chem. Soc., 118 (1996) 3959–3969.

    Article  CAS  Google Scholar 

  18. Ortiz, A.R., Pisabarro, M.T., Gago. F. and Wade, R.C., Prediction of drug binding affinities by comparative binding energy analysis, J. Med. Chem., 38 (1995) 2681–2691.

    Article  CAS  Google Scholar 

  19. Vajda, S., Weng, Z., Rosenfeld, R. and DeLisi, C., Effect of conformational flexibility and solvation on receptor-ligand binding free energies, Biochemistry, 33 (1994) 13977–13988.

    Article  CAS  Google Scholar 

  20. King. B.L., Vajda, S. and Delisi. C., Empirical-free-energy as a target function in docking and design: Application to HIV-1 protease inhibitors, FEBS Lett., 383 (1996) 87–91.

    Google Scholar 

  21. Taylor, N.R. and von Itzstein, M., Molecular modeling studies on ligand-binding to sialidase from influenza virus and the mechanism of catalysis, J. Med. Chem., 37 (1994) 616–624.

    CAS  Google Scholar 

  22. De Winter. H.L., and von Itzstein, M., Aldose ruductase cis a target for drug design-Molecular modeling calculations on the binding of acyclic sugar substrates to the enzyme, Biochemistry, 34 (1995) 8299–8308.

    Google Scholar 

  23. Grootenhuis. P.D.J. and van Galen, P.J.M., Correlation of binding affinities with nonbonding inetraction energiesofthrombin-inhibitor complexes, Acta Cryst., D51 (1995) 560–566.

    Article  CAS  Google Scholar 

  24. Kurinov, I.V. and Harrison. R.W., Prediction of New Serine Proteinase Inhibitors, Structural Biology, 1 (1994) 735–743.

    CAS  Google Scholar 

  25. Sansom, C.E., Wu, J. and Weber, I.T., Molecular mechanics analysis of inhibitor binding to HIV-1 protease, Protein Eng., 5 (1992) 659–667.

    CAS  Google Scholar 

  26. Weber, I.T., Harrison. R.W., Molecular mechanism calculations on HIV-1 protease with peptide-substrates correlate with experimental data, Protein Eng., 9 (1996) 679–690.

    Article  CAS  Google Scholar 

  27. Miertus, S., Furlan, M., Tossi, A. and Romeo. D., Design of new inhibitors of HIV-1 aspartic pretease, Chem. Phys., 204 (1996) 173–180.

    Article  CAS  Google Scholar 

  28. Tossi, A., Furlan, M., Antcheva, N., Romeo. D. and Miertus, S., Efficient inhibition of HIV-1 aspartic protease by sunthetic, computer designed peptide mimetics, Minerva Biotec., 8 (1996) 165–171.

    Google Scholar 

  29. Viswanadhan, V.N., Reddy, M.K., Wlodawer, A., Varney, M.D. and Weinstein. J.N., An approach to rapid estimation of relative binding affinities of enzyme inhibitors: Application to peptidomimetic inhibitiors of the human immunodeficiency virus type I protease, J. Med. Chem., 39 (1996) 705–712.

    Article  CAS  Google Scholar 

  30. Holloway, M.K., Wai, J.M., Halgren, T.A., Fitzgerald, P.M.D., Vacca. J.P., Dorsey, B.D., Levin. R. B.. Thompson, W.J., Chen, L.J., Desolms, S.J, Gaffin, N., Ghosh, A.K., Giuliani, E.A, Graham. S.L., Guare, J.P., Hungate, R.W., Lyle, T.A., Sanders, W.M., Tucker. T.J., Wiggins, M., Wiscount. C.M., Woltersdorf, O.W., Young. S.D., Darke, P L., and Zugay. J.A., A priori prediction of activity for HIV-1 protease inhibitors employing energy minimization in the active site, J. Med. Chem., 38 (1995) 305–317.

    Article  CAS  Google Scholar 

  31. Holloway, M.K. and Wai, J.M., Structure-based design of human immunodeficiency virus-1 protease inhibitor: Correlating calculated energy with activity, In Reynolds. C.H., Holloway, M.K., and Cox, H.K. (Eds.) Computer-aided molecular design: Applications in agrochemicals, materials, and pharmaceuticals, ACS Symposium series 589. American Chemical Society, Washington. DC. 1995, pp. 36–50.

    Google Scholar 

  32. Thompson, W.J., Fitzgerald. P.M.D., Holloway, M.K., Emini, EA., Darke, P.L., McKeever. B.M., Schleif, W.A., Quintero, J.C., Zugay. J.A., Tucker. T.J., Schwering, J.E., Homnick C.F., Nunberg, J., Springer, J.P. and Huff. J.R., Synthesis and antiviral activity of a series of HIV-1 protease inhibitors with functionality tethered to the PI or PI, phensl sustituents: X-ray crystal structure assisted design, J. Med. Chem., 35 (1992) 1685–1701.

    Article  CAS  Google Scholar 

  33. Hofmann, T., Hodges, R.S. and James, M.N.G., Effect of pH on the activities of Penicillopepsin and Rhizopus pepsin and a proposalfor the productive substrate binding mode in Penicillopepsin, Biochemistry, 23 (1984) 635–643.

    CAS  Google Scholar 

  34. Hyland, L.J., Tomaszek., T A., Jr. and Mcek. T.D., Human immunodeficiency virus-1 protease: 2. Use of pH rate studies and solvent Kinetic isotope effects to elucidate details of chemical mechanism Biochemistry. 30 (1991) 8454–8463.

    CAS  Google Scholar 

  35. Allinger, N.L., Conformational analysis 130. MM2: A hydrocarbon force field utilizing V 1 and V 2 torsional terms, J. Am. Chem. Soc., 99 (1977) 8127.

    CAS  Google Scholar 

  36. Lam. P.Y.S., Rational design of potent, bioavailable, nonpeptide cyclic ureas as HIV protease inhibitors, Science. 263 (1994) 380–384.

    CAS  Google Scholar 

  37. Thaisrivongs, S., Random and Rational: Lead Generation via Rational Drug Design and Combinatorial Chemistry, New York, 19–20 October 1994.

    Google Scholar 

  38. Vacca. J.P., Fitzgerald. P.M.D., Holloway, M.K., Hungate, R.W., Starbuck. K.E., Chen, L.J., Darke, P.L., Anderson. P.S., and Huff, J.R., Conformationally constrained HIV-1 protease inhibitors, Bioorg. Med. Chem. Lett.. 4 (1994) 499–504.

    Article  CAS  Google Scholar 

  39. Ghosh, A.K., Thompson, W.J., Fitzgerald, P.M.D., Culberson, J.C., Axel. M.G., McKee, S.P., Huff, J.R. and Anderson. P.S., Structure based design of HIV-1 protease inhibitorw: Replacement of two amides and a 10Φ-aromatic system by a fused bis-tetrahydrofuran, J. Med. Chem., 37 (1994) 2506–2508.

    CAS  Google Scholar 

  40. Chen, Z., Li, Y., Chen, E.. Hall. D.L., Darke, P.L, Culberson, J.C., Shafer, J. and Kuo, L.C., Crystal structure at 1.9—A resolution of human immunodeficiency virus (HIV) II protease complexed with L-735, 524; An orally bioavailable inhibitor of the HIV protease, J. Biol. Chem., 269 (1994) 26344–26348.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 KluwerAcademic Publishers

About this chapter

Cite this chapter

Holloway, M.K. (2002). A Priori Prediction of Ligand Affinity by Energy Minimization. In: Kubinyi, H., Folkers, G., Martin, Y.C. (eds) 3D QSAR in Drug Design. Three-Dimensional Quantitative Structure Activity Relationships, vol 2. Springer, Dordrecht. https://doi.org/10.1007/0-306-46857-3_4

Download citation

  • DOI: https://doi.org/10.1007/0-306-46857-3_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-4790-3

  • Online ISBN: 978-0-306-46857-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics