Skip to main content

Part of the book series: Current Applications of Cell Culture Engineering ((CACC,volume 2))

  • 525 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Amborski RL & Moskowitz M (1968) The effects of low molecular weight materials derived from animal tissues on the growth of animal cells in vitro. Exptl. Cell Res. 53: 117–128.

    PubMed  CAS  Google Scholar 

  • Bédard C, Tom R, Kamen A & André G (1992) Nutrient consumption and waste product accumulation in Sf9 insect cell culture. In: Baculovirus and Recombinant Protein Production Processes (pp. 339–360). JM Vlak, E-J Schlaeger & AR Bernard (eds). Editiones Roche, Basel, Switzerland.

    Google Scholar 

  • Belisle BW, Celeri C, Tang K, Montgomery T & Gong T (1992) From shake flask to large scale: Cell and virus production in serum-free media. In: Baculovirus and Recombinant Protein Production Processes (pp. 226–233). In: Vlak JM, Schlaeger E-J & AR Bernard (eds). Editiones Roche, Basel, Switzerland.

    Google Scholar 

  • Birch JR, Boraston RC, Metcalfe H, Brown ME, Bebbington CR & Field RE (1994) Selecting and designing cell lines for improved physiological characteristics. Cytotechnology 15: 11–16.

    Article  PubMed  CAS  Google Scholar 

  • Butler M & Jenkins H (1989) Nutritional aspects of the growth of animal cells in culture. J. Biotechnol. 12: 97–110.

    Article  CAS  Google Scholar 

  • Butler M (1992) Serum-free media for neuronal cell culture. In: Neuronal Cell Lines. A Practical Approach (pp. 55–75). JN Wood (ed.). Oxford University Press, Oxford.

    Google Scholar 

  • Cameron R, Possee RD & Bishop DH (1989) Insect cell culture technology in baculovirus expression systems. TIBTECH 7: 66–70.

    Google Scholar 

  • Davies AH (1994) Current methods for manipulating baculoviruses. Bio/Technology 12: 47–50.

    Article  PubMed  CAS  Google Scholar 

  • Davis TR, Wickham TJ, McKenna KA, Granados RR, Shuler ML & Wood HA (1993) Comparative recombinant protein production of eight insect cell lines. In Vitro Cell Dev. Biol. 29A: 388–390.

    CAS  Google Scholar 

  • Ferkovich SM & Oberlander H (1991) Growth factors in invertebrate in vitro culture. In Vitro Cell. Biol. 27A: 483–486.

    CAS  Google Scholar 

  • Gardiner GR & Stockdale H (1975) Two tissue culture media for production of Lepidopteran cells and nuclear polyhydrosis viruses. J. Invertebr. Path. 25: 363–370.

    Article  Google Scholar 

  • Ginsberg HS, Gold E & Jordan WS (1955) Tryptose phosphate broth as supplementary factor maintenance of He La cell tissue culture. Proc. Soc. Exp. Biol. Med. 89: 66–71.

    PubMed  CAS  Google Scholar 

  • Glacken MW, Fleischaker RJ & Sinskey AJ (1986) Reduction of waste product excretion via nutrient control: Possible strategies for maximizing product and cell yields on serum in cultures of mammalian cells. Biotechnol. Bioeng. 28: 1376–1389.

    Article  CAS  PubMed  Google Scholar 

  • Goodwin RH (1975) Insect cell culture: Improved media and methods for initiating attached cell lines from the Lepidoptera. In Vitro 11: 396.

    Google Scholar 

  • Goodwin RH & Adams JR (1980) Nutrient factors influencing viral replication in serum-free insect cell line culture. In: Invertebrate Systems in Vitro (pp. 493–509). Kurstak E, Maramorosch K & Dubendorfer A (eds). Elsevier/North Holland Biomedical Press, Amsterdam.

    Google Scholar 

  • Goodwin RH (1985) Growth of insect cells in serum-free media. In: Techniques in the Life Science, Cell Biololgy. Vol C1, Techniques in setting up and maintenance of tissue and cell cultures (C109, pp. 28). Elsevier Scientific Publishers Ireland Ltd.

    Google Scholar 

  • Goodwin RH (1989) Construction of peptoliposomes for the incorporation of nutrient lipid supplements in insect cell culture media. J. Tissue Culture Meth. 12: 17–20.

    Google Scholar 

  • Goodwin RH (1991) Replacement of vertebrate serum with lipids and other factors in the culture of invertebrate cells, tissues, parasites, and pathogens. In Vitro Cell. Dev. Biol. 27A: 470–478.

    PubMed  CAS  Google Scholar 

  • Grace TDC (1962) Establishment of four strains of cells from insect tissue grown in vitro. Nature 195: 788–789.

    PubMed  CAS  Google Scholar 

  • Grace TDC (1982) Development of insect cell culture. In: Invertebrate Cell Culture Applications (pp. 1–8). K Maramorosch (ed.), Academic Press. New York.

    Google Scholar 

  • Guinea R, & Carrasco 1 (1990) Phospholipid biosynthesis and poliovirus genome replication, two coupled phenomena. EMBO J. 9: 2011–2016.

    PubMed  CAS  Google Scholar 

  • Handa A, Emery AN & Spiers RE (1987) On the evaluation of gasliquid interfacial effects on hybridoma viability in bubble column bioreactors. Delvelop. Biol. Standard 66: 241–252.

    CAS  Google Scholar 

  • Hansen HA & Emborg C (1992) Complex medium supplements give difficulties when investigating mammalian cell physiology. In: Animal Cell Technology: Developments, Processes & Products (pp. 248–250). Spier RE, Griffiths JB & MacDonald C (eds), Butterworth-Heinemann Ltd, Oxford.

    Google Scholar 

  • Hassell T & Butler M (1990) Adaption to non-ammoniagenic medium and selective substrate feeding lead to enhanced yields in animal cell cultures. J. Cell Sci. 96: 501–508.

    PubMed  CAS  Google Scholar 

  • Hide G (1990) Identification of an EGF receptor homologue in trypanosomes. In: Parasites, molecular biology, drug and vaccine design; UCLA symposia on molecular and cellular biology, new series, Vol. 130 (pp. 213–224). Agabian N & Cerami A (eds). Wiley-Liss, New York.

    Google Scholar 

  • Hink WF (1970) Established cell line from the cabbage looper, Trichoplusia ni. Nature 226: 466–467.

    Article  PubMed  CAS  Google Scholar 

  • Hink WF & Strauss EM (1980) In: Invertebrate tissue culture (pp. 297–300). Kurstak E & Maramorosch K (eds). Academic Press, New York.

    Google Scholar 

  • Hink WF (1982) Production of Autographa californica nuclear polyhydrosis virus in cells from large-scale suspension cultures. In: Microbial and Viral Pesticides (pp. 493–506). Kurstak E (ed). Marcel Dekker, New York.

    Google Scholar 

  • Hink WF (1991) A serum-free medium for the culture of insect cells and production of recombinant proteins. In Vitro Cell. Dev. Biol. 27a: 397–401.

    PubMed  CAS  Google Scholar 

  • Hsueh HW & Moskowitz M (1972) A growth factor for animal cells derived from peptone. Exptl. Cell Res. 77: 376–382.

    Google Scholar 

  • Hubners HA, Hubners E & Webb BA (1988) Iron binding proteins and their roles in the tabacco hornworm, Manduca sexta (L). J. Comp. Physiol. B158: 291–300.

    Google Scholar 

  • Hursh DA, Andrews ME & Raff A (1987) A sea urchin gene encodes a polypeptide homologous to epidermal growth factor. Science 237: 1487–1490.

    PubMed  CAS  Google Scholar 

  • Inlow D, Shauger A & Maiorella B (1989) Insect cell culture and baculovirus propagation in protein-free medium. J. Tissue Culture Meth. 12: 13–16.

    Google Scholar 

  • Iscove NN (1984) Culture of lymphocytes and hemopoietic cells in serum-free medium. In: Cell Culture Methods for Molecular and Cell Biology, vol. 4 (Methods for serum-free culture of neuronal and lymphoid cells, pp. 169–185). Barnes DW, Sirbascu DA & Sato GH (eds). Alan R. Liss, Inc., New York.

    Google Scholar 

  • Jones BM & Cunningham I (1961) Growth by cell division in insect tissue culture. Exp. Cell Res. 23: 386–401.

    Article  PubMed  CAS  Google Scholar 

  • Kilburn DG & Webb FC (1968) The cultivation of animal cells at controlled dissolved oxygen partial pressure. Biotechnol. Bioeng. 10: 801–814.

    Article  CAS  Google Scholar 

  • King ME & Spector AA (1981) Lipid metabolism in cultured cells. In: The growth requirements of vertebrate cells in vitro (pp. 293–312). Waymouth C, Ham RG & Chappie PJ (eds). Cambridge University Press, Cambridge.

    Google Scholar 

  • Law JH & Wells MA (1989) Insects as biochemical models. J. Biol. Chem. 264: 16335–16338.

    PubMed  CAS  Google Scholar 

  • Ljunggren J & Häggström 1 (1992) Glutamine limited fed-batch culture reduces the overflow metabolism of amino acids in myeloma cells. Cytotechnology 8: 45–56.

    PubMed  CAS  Google Scholar 

  • Luckow VA & Summers MD (1988) Trends in the development of baculovirus expression vectors. Bio/Technology 6: 47–55.

    Article  CAS  Google Scholar 

  • Luckow VA (1991) Cloning and expression of heterologous genes in insect cells with baculovirus vectors. In: Recombinant DNA Technology and Applications (pp. 97–152). Prokop A, Bajpai RK & Ho CS (eds). McGraw-Hill Inc, New York.

    Google Scholar 

  • Luckow VA (1993) Baculovirus systems for the expression of human gene products. Curr. Opinion Biotechnol. 4: 564–572.

    Article  CAS  Google Scholar 

  • Maiorella B, Inlow D, Shauger A & Harano D (1988) Largescale insect cell-culture for recombinant protein production. Bio/Technology 6: 1406–1410.

    Article  CAS  Google Scholar 

  • Miller DW, Safer P & Miller LK (1986) An insect baculovirus host-vector system for high-level expression of foreign genes. In: Genetic Engineering, Vol. 8, Principles and Methods (pp. 277–298). Setlow JK & Hollander A (eds). Plenum Publishing Corp., New York.

    Google Scholar 

  • Miltenburger HG & Krieg A (1984) Bioinsecticides: II. Baculoviridae. In: Advances in Biotechnological Processes 3 (pp. 291–313). Alan R. Liss, Inc., New York.

    Google Scholar 

  • Mitsuhashi J & Maramorosch K (1964). Leafhopper Tissue Culture: Embryonic, Nymphal and Imaginal Tissues from Aseptic Insects. Contrib. Boyce Thomson Inst. 22: 435–460.

    Google Scholar 

  • Mitsuhashi J (1982) Media for insect cell cultures. In: Advances in Cell Cultures, vol 2 (pp. 133-197). Maramorosch K (ed.). Academic Press, New York.

    Google Scholar 

  • Mitsuhashi J (1989) Simplified medium (MTCM-1601) for insect cell lines. J. Tissue Culture Meth. 12: 21–22.

    Article  Google Scholar 

  • Mizrahi A (1975) Pluronic polyols in human lymphocyte cell line cultures. J. Clin. Microbiol. 2: 11–13.

    PubMed  CAS  Google Scholar 

  • Murhammer DW & Goochee CF (1988) Scaleup of insect cell cultures: protective effects of Pluronic F-68. Bio/Technology 6: 1411–1418.

    Article  CAS  Google Scholar 

  • Muskavitch MAT & Hoffmann FM (1990) Homologs of vertebrate growth factors in Drosophila melanogaster and other invertebrates. In: Growth factors and development (Current topics in developmental biology, vol. 24). Nilsen-Hamilton M (ed.), Academic Press, San Diego, CA.

    Google Scholar 

  • O’Reilly DR, Miller LK & Luckow VA (1992) Insect cell culture media. In: Baculovirus expression vectors. A Laboratory Manual (pp. 110–117). WH Freeman and Company. New York.

    Google Scholar 

  • Padgett RW, St Johnston RD & Gelbart WM (1987) A transcript from a Drosophila pattern gene predicts a protein homologous to the transforming growth factor-beta family. Nature 325: 81–84.

    Article  PubMed  CAS  Google Scholar 

  • Radford KM, Cavegn C, Bertrand M & Bernard AR (1995) The indirect effect of multiplicity of infection in baculovirus infected insect cell cultures on recombinant protein expression. Baculovirus and Insect Cell Gene Expression Conference. Pinehurst, N.C. (USA), March 26–30.

    Google Scholar 

  • Rüder A (1982) Development of a serum-free medium for cultivation of insect cells. Naturwissenschaften 69: 92–93.

    Google Scholar 

  • Roos DS, Duchala CS & Stephensen (1990) Control of virus-induced cell fusion by host cell lipid composition. Virology 175: 345–357.

    Article  PubMed  CAS  Google Scholar 

  • Schlaeger E-J & Schumpp B (1992) Propagation of mouse myeloma cell line J558L producing human CD4 immunoglobulin Gl. J. Immunol. Meth. 146: 111–120.

    Article  CAS  Google Scholar 

  • Schlaeger E-J, Loetscher H & Gentz R (1992A) Production of recombinant soluble human TNF receptors. In: Baculovirus and Recombinant Protein Production Processes (pp. 201–208). Vlak JM, Schlaeger E-J & Bernard AR (eds). Editiones Roche, Basel, Switzerland.

    Google Scholar 

  • Schlaeger E-J, Loetscher H & Gentz R (1992B) Production of recombinant soluble human TNF receptor using the baculovirus insect cell expression system. In: Animal Cell Technology: Developments, Processes & Products (pp. 562–568). Spier RE, Griffiths JB & MacDonald C (eds). Butterworth-Heinemann Ltd, Oxford.

    Google Scholar 

  • Schlaeger E-J, Foggetta M, Vonach JM & Christensen K (1993) SF-1, a low cost culture medium for the production of recombinant proteins in baculovirus infected insect cells. Biotechnol. Techn. 7: 183–188.

    CAS  Google Scholar 

  • Schlaeger E-J, Stricker J, Wippler J & Foggetta M (1996) Investigations of high cell density baculovirus infection using Sf9 and High Five insect cell lines in the low-cost SF-1 medium. In: Animal Cell Technology ‘Developments towards the 21st Centu’ (pp. 313–315). Beuvery EC, Griffiths JB & Zeijlemaker WP (eds). Kluwer Academic Publishers. Dordrecht/Boston/ London

    Google Scholar 

  • Schlaeger E-J & Christensen K (1996) Improvement of mammalian cell fed-batch culture. In: Animal Cell Technology ‘Developments towards the 21st Century’ (pp. 855–857). Beuvery EC, Griffiths JB & Zeijlemaker WP (eds). Kluwer Academic Publishers Dordrecht/Boston/ London.

    Google Scholar 

  • Schlaeger E-J (1996) The protein hydrolysate, Primatone RL, is a cost-effective multiple growth promoter of mammalian cell culture in serum-containing and serum-free media and displays anti-apoptosis properties. J Immunol. Meth., in press.

    Google Scholar 

  • Schmid G, Huber F & Kerschbaumer R (1992) Adaption of hybridoma cells to hydrodynamic stress under continuous culture conditions. In: Animal Cell Technology: Developments, Processes & Products (pp. 203–205). Spier RE, Griffiths RB & MacDonald C (eds). Butterworth-Heinemann Ltd., Oxford.

    Google Scholar 

  • Schumpp B & Schlaeger E-J (1990) Optimization of culture conditions for high cell density proliferation of HL-60 human promyelocytic leukemia cells. J. Cell Science 97: 639–647.

    PubMed  CAS  Google Scholar 

  • Smith GE, Summers MD & Fraser MJ (1983) Production of human beta interferon in insect cells infected with a baculovirus vector. Mol. Cell. Biol. 3: 2156–2165.

    PubMed  CAS  Google Scholar 

  • Spector A A, Mathur SN, Kaduce TL & Hyman BT (1981) Lipid nutrition and metabolism of cultured mammalian cells. Prog.Lipid Res. 19: 155–186.

    Google Scholar 

  • Summers MD & Smith GE (1987) A manual of methods for baculovirus vectors and insect cell culture procedures. Bulletin No. 1555. Texas Agricultural Experimental Station,.

    Google Scholar 

  • Taylor WG, Dworkin RA, Pumper RW & Evans VJ (1972) Biological efficacy of several commercially available peptones for mammalian cells in culture. Exptl. Cell Res. 74: 275–278.

    Article  PubMed  CAS  Google Scholar 

  • Tomkins GJ, Dougherty EM & Goodwin RH (1991) Maintenance of infectivity and virulence of nuclear polyhydrosis viruses during serial passage in noctuid (Lepidoptera: Noctudae) cell lines. J. Econ. Entomol. 84: 445–449.

    Google Scholar 

  • Tramper J, Williams JB, Joustra D & Vlak JM (1986) Shear sensitivity of insect cells in suspension. Enzyme Microb. Technol. 8: 33–36.

    Google Scholar 

  • Vaughn JL (1968) A review of the use of insect tissue culture for the study of insect-associated viruses. Curr. Top. Microbiol. Immunol. 42: 108–128.

    PubMed  CAS  Google Scholar 

  • Vaughn JL, Goodwin RH, Tomkins GJ & McCawley P(1977) The establishment of two cell lines from the insect Spodoptera frugiperda (Lepipdoptera; Noctuidae). In Vitro 13: 213–217.

    PubMed  CAS  Google Scholar 

  • Vaughn JL & Fan F (1989) The use of commercial serum replacements for the culture of insect cells. In Vitro Cellular & Developmental Biology 25: 143–145.

    Google Scholar 

  • Velez D, Reuveny S, Miller 1 & Macmillan JD (1986) Kinetics of monoclonal antibody production in low serum growth medium. J. Immunol. Methods 86: 45–52.

    Article  PubMed  CAS  Google Scholar 

  • Vlak JM (1992) The biology of baculoviruses in vivo and in cultered insect cells. In: Baculovirus and Recombinant Protein Production Processes (pp. 2–10). Vlak JM, Schlaeger E-J & Bernard AR (eds). Editiones Roche, Basel, Switzerland.

    Google Scholar 

  • Wharton KA, Johansen KM & Xu T (1985) Nucleotide sequence from the neurogenic locus Notch implies a gene product that shares homology with proteins containing EGF-like repeats. Cell 43: 567–581.

    Article  PubMed  CAS  Google Scholar 

  • Weiss SA, Smith GC, Kalter SS & Vaughn JL (1981) Improved method for the production of insect cell cultures in large volume. In Vitro 17: 495–502.

    CAS  Google Scholar 

  • Weiss SA & Vaughn JL (1986) Cell culture methods for large-scale propagation of baculoviruses. In: The Biology of Baculoviruses, vol.2 (pp. 63–67) Granados RR & Federici BA (eds). CRC Press, Inc., Boca Raton, Fla.

    Google Scholar 

  • Weiss SA, Whitford WG, Godwin GP & Reid S (1992) Media design: Optimizing ofrecombinant proteins in serum-free culture. In: Baculovirus and Recombinant Protein Production Processes (pp. 306–314). Vlak JM, Schlaeger E-J & Bernard AR (eds). Editiones Roche, Basel, Switzerland.

    Google Scholar 

  • Wood HA & Granados RR (1991) Genetically engineneered baculoviruses as agents for pest control. Annu. Rev. Microbiol. 45: 69–87.

    Article  PubMed  CAS  Google Scholar 

  • Wu J, King G, Daugulis AJ, Faulkner P, Bone DH & Goosen MFA (1989) Engineering aspects of insect cell suspension culture: a review. Appl. Microbiol. Biotechnol. 32: 249–255.

    Article  CAS  Google Scholar 

  • Wyatt GR (1961) The biochemistry of insect hemolymph. Ann.u Rev. Entomol. 6: 75.

    CAS  Google Scholar 

  • Wyatt SS (1956) Culture in vitro of tissue from the silkworm Bombyx mori. J. Gen. Physiol. 39: 841–852.

    PubMed  CAS  Google Scholar 

  • Yamane I & Murakami O (1973) 6,8-dihydroxypurine: A novel growth factor for mammalian cells in vitro, isolated from a commercial peptone. J. Cell Physiol. 81: 281–284.

    Article  PubMed  CAS  Google Scholar 

  • Yunker CE, Cory J & Meibos H (1981) Continuous cell lines from embryonic tissues of ticks. In Vitro 17: 139–142.

    PubMed  CAS  Google Scholar 

  • Zoon KC, Bridgen PJ & Smith ME (1979) Production of human lymphoblastoid interferon by Namalwa cells cultured in serum-free media. J. Gen. Virology 44: 227–229.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Kluwer Academic Publishers

About this chapter

Cite this chapter

Schlaeger, EJ. (1996). Medium design for insect cell culture. In: Vlak, J., de Gooijer, C., Tramper, J., Miltenburger, H. (eds) Insect Cell Culture: Fundamental and Applied Aspects. Current Applications of Cell Culture Engineering, vol 2. Springer, Dordrecht. https://doi.org/10.1007/0-306-46850-6_6

Download citation

  • DOI: https://doi.org/10.1007/0-306-46850-6_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-3403-3

  • Online ISBN: 978-0-306-46850-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics