Skip to main content

Scale up aspects of sparged insect-cell bioreactors

  • Chapter
Insect Cell Culture: Fundamental and Applied Aspects

Part of the book series: Current Applications of Cell Culture Engineering ((CACC,volume 2))

  • 499 Accesses

Conclusion

In this chapter we have attempted to evaluate the most important parameters which can be useful for the purpose of design and scale up. Insect cells and animal cells in general can be grown well in large vessels. However, none of the theories and parameters discussed in this chapter have been validated on a larger scale than laboratory and small pilot reactors. Selection of the most suitable design and scale-up method therefore needs in particular studies in larger vessels. The Kolmogorov theory and the killing-volume model are in this respect the most promising approaches for the optimal design of large-scale animal-cell bioreactors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bavarian F, Fan LS & Chalmers JJ (1991) Microscopic visualization of insect cell-bubble interactions I: rising bubbles, air-medium interfacee, and the foam layer. Biotechnol. Progress 7: 140–150.

    Article  CAS  Google Scholar 

  • Beek WJ & Mutzall KMK (1975) Transport Phenomena, Wiley, London.

    Google Scholar 

  • Beverloo WA & Tramper J (1994) Intensity of microcarrier collisions in turbulent flow. Bioprocess Eng. 11: 177–184.

    CAS  Google Scholar 

  • Birch JR & Arathoon R (1990) Large-scale cell culture in biotechnology. In: Large-Scale Mammalian Cell Culture Technology (Lubiniecki AS, ed.), Marcel Dekker, New York, 251.

    Google Scholar 

  • Chalmers JJ & Bavarian F (1991) Microscopic visualization of insect cell-bubble interactions II: the bubble film and bubble rupture. Biotechnol. Progress 7: 151–158.

    Article  CAS  Google Scholar 

  • Chattopadhyay D, Rathman JF & Chalmers JJ (1995) The protective effect of specific medium additives with respect to bubble rupture. Biotechnol. Bioeng. 45: 473–480.

    Article  CAS  Google Scholar 

  • Cherry RS & Hulle CT (1992) Cell death in the thin films of bursting bubbles. Biotechnol. Prog. 8: 11–18.

    Article  PubMed  CAS  Google Scholar 

  • Cherry RS & Papoutsakis ET (1986) Hydrodynamic effects on cells in agitated tissue culture reactors. Bioprocess Eng. 1: 29–41.

    Article  Google Scholar 

  • Cherry RS & Kwon K-Y (1990) Transient shear stresses on a suspension cell in turbulence. Biotechnol. Bioeng. 36: 563–571.

    Article  Google Scholar 

  • Cherry RS & Papoutsakis ET (1988) Physical mechanisms of cell damage in microcarrier cell culture bioreactors. Biotechnol. Bioeng. 32: 1001–1014.

    Article  Google Scholar 

  • Chisti Y & Moo-Young M (1989) On the calculation of shear rate and apparent viscosity in airlift and bubble column bioreactors. Biotechnol. Bioeng. 34: 1391–1392.

    Article  CAS  Google Scholar 

  • Croughan MS, Sayre ES & Wang DIG (1989) Viscous reduction of turbulent damage in animal cell cultures. Biotechnol. Bioeng. 33: 862–872.

    CAS  Google Scholar 

  • Croughan MS, Hamel JF & Wang DIC (1987) Hydrodynamic effects on animal cells grown in microcarrier cultures. Biotechnol. Bioeng. 29: 130–141.

    Article  Google Scholar 

  • Goldblum S, Bae Y-K, Hink WF & Chalmers JJ (1990) Protective effect of methylcellulose and other polymers on insect cells subjected to laminar shear stress. Biotechnol. Prog. 6: 383–390.

    Article  PubMed  CAS  Google Scholar 

  • Handa-Corrigan A, Emery AN & Spier RE (1989) Effect of gas-liquid interfaces on the growth of suspended mammalian cells: mechanisms of cell damage by bubbles. Enzyme Microb. Technol. 11: 230–235.

    Article  CAS  Google Scholar 

  • Henzler H-J & Kauling DJ (1993) Oxygenetation of cell cultures. Bioprocess Eng. 9: 61–75.

    Article  CAS  Google Scholar 

  • Hinzer JO (1959) Turbulence, McGraw-Hill, New York.

    Google Scholar 

  • Jöbses I, Martens DE & Tramper J (1991) Lethal events during gas sparging in animal cell culture. Biotechnol. Bioeng. 37: 484–490.

    Google Scholar 

  • Jordan M, Sucker H, Einsele A, Widmer F & Eppenberger HM (1994) Interactions between animal cells and gas bubbles: the influence of serum and pluronic F68 on the physical properties of the bubble surface. Biotechnol. Bioeng. 43: 446–454.

    Article  CAS  Google Scholar 

  • Katinger HWD & Scheirer W (1982) Status and development of animal cell technology using suspension culture techniques. Acta Biotechnologica 2: 3–41.

    Article  Google Scholar 

  • Kunas KT & Papoutsakis ET (1990) Damage mechanisms of suspended animal cells in agitated bioreactors with and without bubble entrainment. Biotechnol. Bioeng. 36: 476–483.

    Article  CAS  Google Scholar 

  • Lakothia S, Bauer KD & Papoutsakis ET (1992) Damaging agitation intensities increase DNA synthesis rate and alter cell-cycle phase distributions of CHO cells. Biotechnol. Bioeng. 40: 978–990.

    Google Scholar 

  • Maiorella B, Inlow D & Harano D (1988) USA Patent, PCT/US88/02444.

    Google Scholar 

  • Martens DE, De Gooijer CD, Beuevery EC & Tramper J (1992) Effect of serum concentration on hybridoma viable cell density and production of monoclonal antibodies in CSTR-s and on shear sensitivity in air-lift loopreactors. Biotechnol. Bioeng. 39: 891–897.

    Article  CAS  Google Scholar 

  • Martens DE, De Gooijer CD, Van der Velden-de Groot CAM, Beuvery EC & Tramper J. (1993) Effect of dilution rate on growth, productivity, cell cycle and size, and shear sensitivity of a hybridoma cell in a continuous culture. Biotechnol. Bioeng. 41: 429–439.

    Article  CAS  Google Scholar 

  • Martens DE, Nollen EAA, Hardeveld M, Van der Velden-de Groot CAM, De Gooijer CD, Beuvery EC & Tramper J Death rate in a small air-lift loop reactor of vero cells grown on solid microcarriers and in macroporous microcarriers. Submitted.

    Google Scholar 

  • Meijer JJ (1989) Effects of hydrodynamic and chemical/osmotic streess on plant cells in a stirred bioreactor, Ph.D. thesis, Technical University Delft.

    Google Scholar 

  • Murhammer DW & Goochee CF (1990) Structural features of non-ionic polyglycol polymer molecules responsible for the protective effect in sparged animal cell bioreactors. Biotechnol. Prog. 6: 142–148.

    PubMed  CAS  Google Scholar 

  • Murhammer DW & Goochee (1990) Sparged animal cell bioreactors: mechanism of cell damage and pluronic F-68 protection. Biotechnol. Prog. 6: 391–3197.

    PubMed  CAS  Google Scholar 

  • Oh SKW, Nienow AW, Al-Rubeai M & Emery AN (1989) The effects of agitation intensity with and without continuous sparging on the growth and antibody production of hybridoma cells. J. Biotechnol. 12: 45–62.

    Article  CAS  Google Scholar 

  • Papoutsakis ET (1991) Media additives for protecting animal cells against agitation and aeration damage in bioreactors. Trends in Biotechnol. 9: 316–324.

    CAS  Google Scholar 

  • Tramper J, de Gooijer CD & Vlak JM (1993) Scale-up considerations and bioreactor development for animal cell cultivation. In: Insect cell culture engineering (Goossen MFA, Daugulis AJ & Faulkner P, eds.), Marcel Dekker, New York, 139–177.

    Google Scholar 

  • Tramper J, Smit D, Straatman J & Vlak JM (1988) Bubble-column design for growth of fragile insect cells. Bioprocess Eng. 3: 37–41.

    Article  CAS  Google Scholar 

  • Tramper J, Williams JB, Joustra D & Vlak JM (1986) Shear sensitivity of insect cells in suspension. Enzyme Microb. Technol. 8: 33–36.

    Google Scholar 

  • Trinh K, Garcia-Briones M, Hink F & Chalmers JJ (1994) Quantification of damage to suspended insect cells as a result of bubble rupture. Biotechnol. Bioeng. 43: 37–45.

    Article  CAS  Google Scholar 

  • Van’ t Riet K & Smith JM (1975) The trailing vortex system produced by Rushton turbine agitators. Chem. Eng. Sci. 30: 1093–1105.

    Google Scholar 

  • Van’ t Riet K & Tramper J (1991) Basic Bioreactor Design, Marcel Dekker, New York.

    Google Scholar 

  • Van der Pol L, Zijlstra G, Thalen M & Tramper J (1990) Effect of serum concentration on production of monoclonal antibodies and on shear sensitivity of a hybridoma. Bioprocess Eng. 5: 241–245.

    Article  Google Scholar 

  • Wu J & Goosen MFA (1995) Evaluation of the killing volume of gas bubbles in sparged animal cell culture bioreactors. Enzyme Microb. Technol. 17: 241–247.

    CAS  Google Scholar 

  • Wudtke M & Schügerl K (1987) Investigation of the influence of physical environment on the cultivation of animal cells. In: Rheologie und mechanische Beanspruching biologischer Systeme, GVC.VDI, Düsseldorf, 159–173.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Kluwer Academic Publishers

About this chapter

Cite this chapter

Tramper, J., Vlak, J., de Gooijer, C. (1996). Scale up aspects of sparged insect-cell bioreactors. In: Vlak, J., de Gooijer, C., Tramper, J., Miltenburger, H. (eds) Insect Cell Culture: Fundamental and Applied Aspects. Current Applications of Cell Culture Engineering, vol 2. Springer, Dordrecht. https://doi.org/10.1007/0-306-46850-6_19

Download citation

  • DOI: https://doi.org/10.1007/0-306-46850-6_19

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-3403-3

  • Online ISBN: 978-0-306-46850-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics