Skip to main content

Part of the book series: Current Applications of Cell Culture Engineering ((CACC,volume 2))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agathos SN(1993) The future ofcell culture engineering. In: Goosen MFA, Daugulis AJ & Faulkner P (eds) Insect Cell Culture Engineering, pp. 221–240. Marcel Dekker, New York.

    Google Scholar 

  • Agathos SN (1994) Large scale insect cell production. In: Maramorosch K & McIntosh AH (eds) Insect Cell Biotechnology, pp. 89–103. CRC Press, Roca Raton.

    Google Scholar 

  • Agathos SN, Jeong Y-H & Venkat K (1990) Growth kinetics of free and immobilized insect cell cultures. Ann. N.Y. Acad. Sci. 589: 372–398.

    PubMed  CAS  Google Scholar 

  • Al Rubeai M, Kioukia N & Emery AN (1994) Monitoring of insectbaculovirus culture processes by flow cytometry. Presented at Cell Culture Engineering IV, Engineering Foundation Conferences, San Diego, CA 7–12 March 1994 (Abstract WE3, Cell Culture Engineering IV Program and Abstracts, p. 86).

    Google Scholar 

  • Archambault J, Robert J & Tom RL (1994) Culture of immobilized insect cells. Bioprocess Eng. 11: 189–197.

    CAS  Google Scholar 

  • Barkhem T, Carlsson B, Danielsson A, Norinder U, Frieberg H & Őhman L (1992) Production in a 100 liter stirred tank reactor of functional full length human thyroid receptor b1 in Sf-9 insect cells using a recombinant baculovirus. In: Vlak JM, Schlaeger E-J & Bernard AR (eds) Baculovirus and Recombinant Protein Production Processes, pp. 235–246. Editiones Roche, Basel.

    Google Scholar 

  • Bédart C, Jolicoeur M, Jardin B, Tom R, Serret S & Kamen A (1994a) Insect cell density in bioreactor cultures can be estimated from on-line measurements of optical density. Biotechnol. Techniques 8: 605–610.

    Google Scholar 

  • Bédart C, Kamen A, Tom R & Massie B (1994b) Maximization of recombinant protein yield in the insect cell/baculovirus system by one-time addition of nutrients to high-density batch cultures. Cytotechnology 15: 129–138.

    Google Scholar 

  • Bonarius HPJ, de Gooijer CD, Tramper J & Schmid G (1995) Determination of the respiration quotient in mammalian cell culture in bicarbonate buffered media. Biotechnol. Bioeng. 45: 524–535.

    Article  CAS  Google Scholar 

  • Caron AW, Archambault J & Massie B (1990) High-level recombinant protein production in bioreactors using the baculovirusinsect cell expression system. Biotechnol. Bioeng. 36: 1133–1140.

    Article  CAS  Google Scholar 

  • Caron AW, Tom RL, Kamen AA & Massie B (1994) Baculovirus expression system scaleup by perfusion of high-density Sf-9 cell cultures. Biotechnol. Bioeng. 43: 881–891.

    Article  CAS  Google Scholar 

  • Chalmers JJ (1994) Cells and bubbles in sparged bioreactors. Cytotechnology 15: 311–320.

    Article  PubMed  CAS  Google Scholar 

  • Chung IS, Taticek RA & Shuler ML (1993) Production of human alkaline phosphatase, a secreted glycosylated protein, from a baculovirus expression system and the attachment-dependent cell line Trichoplusia ni BTI-Tn 5B1-4 using a split-flow, airlift bioreactor. Biotechnol. Progress 9: 675–678.

    Article  CAS  Google Scholar 

  • de Gooijer CD, van Lier FLJ, van den End EJ, Vlak JM & Tramper J (1989) A model for baculovirus production with continuous insect cell cultures. Appl. Microbiol. Biotechnol. 30: 497–501.

    Article  Google Scholar 

  • Depinto W & Familetti PC (1994) Increased expression of recombinant proteins from baculovirus infected cultures using Tn-5B1-4 (High Five) insect cells. In Vitro 30: 722 (Presented at the 1994 Cell and Tissue Culture Congress, Research Triangle Park, NC, 4–7 June 1994).

    Google Scholar 

  • Deutschmann SM & Jäger V (1994) Optimization of the growth conditions of Sf-21 insect cells for high-density perfusion culture in stirred-tank bioreactors. Enzyme Microb. Technol. 16: 1133–1140.

    Article  Google Scholar 

  • Eberhard U & Schügerl K (1987) Investigations of reactors for insect cell culture. Develop. Biol. Standard. 66: 325–330.

    CAS  Google Scholar 

  • Fleischaker RJ & Sinskey AJ (1981) Oxygen demand and supply in cell culture. Eur. J. Appl. Microbiol. Biotechnol. 12: 193–197.

    Article  Google Scholar 

  • Goldblum S, Bae Y-K, Hink WF & Chalmers J (1990) Protective effect of methylcellulose and other polymers on insect cells subjected to laminar shear stress. Biotechnol. Progress 6: 383–390.

    Article  CAS  Google Scholar 

  • Graf H & Schügerl K (1991) Influence of the reciprocating movement on the performance of a membrane aeration system in insect cell cultures. Biotechnol. Techniques 5: 91–94.

    CAS  Google Scholar 

  • Guillame JM, Soria HM, Couteault N, Hurwitz DR, Multon MC & Crespo A (1992) Insect cell fermentation scale-up for recombinant protein production. In: Vlak JM, Schlaeger E-J & Bernard AR (eds) Baculovirus and Recombinant Protein Production Processes, pp. 255–261. Editiones Roche, Basel.

    Google Scholar 

  • Hensler WT & Agathos SN (1994) Evaluation of monitoring approaches and effects of culture conditions on recombinant protein production in baculovirus-infected insect cells. Cytotechnology 15: 177–186.

    Article  PubMed  CAS  Google Scholar 

  • Hensler W, Singh V & Agathos SN (1994) Sf9 insect cell growth and β-galactosidase production in serum and serum-free media. Ann. N.Y. Acad. Sci. 745: 149–166.

    PubMed  CAS  Google Scholar 

  • Hink WF (1982) Production of Autographa californica nuclear polyhedrosis virus in cells from large-scale suspension cultures. In: Kurstak E (ed.) Microbial and Viral Pesticides, pp. 493–506. Marcel Dekker, New York.

    Google Scholar 

  • Hink WF & Strauss EM (1976) Growth of Trichoplusia ni (TN-368) cells in suspension culture. In: Kurstak E & Maramorosch K (eds) Invertebrate Tissue Culture, pp. 297–300. Academic Press, New York.

    Google Scholar 

  • Hink WF & Strauss EM (1980) Semi-continuous culture of the TN-368 cell line in fermenters with virus production in harvested cells. In: Kurstak E, Maramorosch K & Dübendorfer A (eds) Invertebrate Systems In Vitro, pp 27–33. Elsevier-North Holland Biomedical Press, Amserdam.

    Google Scholar 

  • Jäger V (1996) Perfusion culture of insect cells. This volume.

    Google Scholar 

  • Jain D, Ramasubramanyan K, Could S, Lenny A, Candelore M, Tota M, Strader C, Alves K, Cuca G, Tung JS, Hunt G, Junker B, Buckland BC & Silberklang M (1991) Large-scale recombinant protein production using the insect cell-baculovirus expression vector system: antistasin and β-adrenergic receptor. In: Spier RE, Griffiths JB & Meignier B (eds.) Production of Biologicals from Animal Cells in Culture, pp. 345–350. Butterworth-Heinemann, Oxford.

    Google Scholar 

  • Junker BH, Hunt G, Burgess B, Aunins J & Buckland BC (1994) Modified microbial fermenter performance in animal cell culture and its implications for flexible fermenter design. Bioprocess Eng. 11: 57–63.

    Article  CAS  Google Scholar 

  • Kamen AA, Tom RL, Caron AW, Chavarie C, Massie B & Archambault J (1991) Culture of insect cells in a helical ribbon impeller bioreactor. Biotechnol. Bioeng. 38: 619–628.

    Article  CAS  Google Scholar 

  • Kamen AA & Tom R (1994) Mass spectroscopy determination of insect cell respiration rates in culture and production processes. In: Spier RE, Griffiths JB & Berthold W (eds) Animal Cell Technology. Products of Today, Prospects for Tomorrow (12th Meeting of the European Society for Animal Cell Culture Technology) pp. 345–350. Butterworth-Heinemann, Oxford.

    Google Scholar 

  • Kim K & Familetti PC (1994) Optimal culture conditions for the production of recombinant proteins from baculovirus infected cells. In Vitro 30: 722 (Presented at the 1994 Cell and Tissue Culture Congress, Research Triangle Park, NC, 4–7 June 1994).

    Google Scholar 

  • King GA, Daugulis AJ, Faulkner P, Bayly D & Goosen MFA (1988) Growth of baculovirus-infected insect cells in microcapsules to a high cell and virus density. Biotechnol. Lett 10: 683–688.

    Google Scholar 

  • King G, Kuzio J, Daugulis A, Faulkner P, Alien B, Wu J & Goosen MFA (1991) Assessment of virus production and chloramphenicol acetyl transferase expression by insect cells in serum-free and serum-supplemented media using a temperature-sensitive baculovirus. Biotechnol. Bioeng. 38: 1091–1099.

    Article  CAS  Google Scholar 

  • King GA, Daugulis AJ, Faulkner P & Goosen MFA (1992) Recombinant β-galactodidase production in serum-free medium in a 14-L airlift bioreactor. Biotechnol. Progr. 8: 567–571.

    CAS  Google Scholar 

  • Kioukia N, Nienow AW, Emery AN & Al-Rubeai M (1995) Physiological and environmental factors affecting the growth of insect cells and infection with baculovirus. J. Biotechnol. 38: 243–251.

    Article  PubMed  CAS  Google Scholar 

  • Klöppinger M, Fertig G, Fraune E & Miltenburger HG (1990) Multistage production of Autographa california nuclear polyhedrosis virus in insect cell cultures. Cytotechnology 4: 271–278.

    PubMed  Google Scholar 

  • K16ppinger M, Fertig G, Fraune E & Miltenburger HG (1991) High cell density perfusion culture of insect cells for production of baculovirus and recombinant protein. In: Spier RE, Griffiths JB & Meignier B (eds) Production of Biologicals from Animal Cells in Culture (10th Meeting of the European Society for Animal Cell Culture Technology) pp. 470–476. Butterworth-Heinemann, Oxford.

    Google Scholar 

  • Kompier R, Tramper J & Vlak JM (1988) A continuous process for production of baculovirus using insect-cell cultures. Biotechnol. Lett. 10: 849–854.

    Article  Google Scholar 

  • Kompier R, Kislev N, Segal I & Kadouri A (1991) Use of a stationary bed reactor and serum-free medium for the production of recombinant protein in insect cells. Enzyme Microb. Technol. 13: 822–827.

    Article  PubMed  CAS  Google Scholar 

  • Konstantinov KB, Pambayun R, Matanguihan R, Yoshida T, Perusich CM & Hu W-S (1992) On-line monitoring of hybridoma cell growth using a laser turbidity sensor. Biotechnol. Bioeng. 40: 1337–1342.

    Article  CAS  Google Scholar 

  • Kool M, Vondken JW, van Lier FLJ, Tramper J & Vlak JM (1991) Detection and analysis of Autographa californica nuclear polyhedrosis virus mutants with defective interfering properties. Virology 183: 739–746.

    Article  PubMed  CAS  Google Scholar 

  • Lazarte EJ, Tossin P-F & Nicolau C (1992) Optimization of the production of full-length rCD4 in baculovirus-infected Sf9 cells. Biotechnol. Bioeng. 40: 214–217.

    Article  CAS  Google Scholar 

  • Licari P & Bailey JE (1991) Factors influencing recombinant protein yields in an insect cell — baculovirus system: multiplicity of infection and intracellular protein degradation. Biotechnol. Bioeng. 37: 238–246.

    Article  CAS  Google Scholar 

  • Licari P & Bailey JE (1992) Modeling the population dynamics of baculovirus-infected insect cells: optimizing infection stategies for enhanced recombinant protein yields. Biotechnol. Bioeng. 39: 432–441.

    CAS  Google Scholar 

  • Lindsay DA & Betenbaugh MJ (1992) Quantification of cell culture factors affecting recombinant protein yields in baculovirusinfected insect cells. Biotechnol. Bioeng. 39: 614–618.

    Article  CAS  Google Scholar 

  • Maiorella B, Inlow D, Shauger A & Harano D (1988) Largescale insect cell culture for recombinant protein production. Bio/Technol. 6: 1406–1410.

    Article  CAS  Google Scholar 

  • Miltenburger HG & David P (1980) Mass production of insect cells in suspension. Devel. Biol. Standard. 46: 183–186.

    CAS  Google Scholar 

  • Murhammer DW & Goochee CF (1988) Scaleup of insect cell cultures: protective effects of Pluronic F-68. Bio/Technol. 6: 1411–1418.

    Article  CAS  Google Scholar 

  • Neutra R, Levi B-Z & Shoham Y (1992) Optimization of protein production by the baculovirus expression vector system in shake flasks. Appl. Microbiol. Biotechnol. 37: 74–78.

    Article  PubMed  CAS  Google Scholar 

  • Ogonah O, Shuler ML & Granados RR (1991) Protein production (β-galactosidase) from a baculovirus vector in Spodoptera frugiperda and Trichoplusia ni cells in suspension culture. Biotechnol. Lett. 13: 265–270.

    Article  CAS  Google Scholar 

  • Papoutsakis ET (1991) Media additives for protecting freely suspended animal cells against agitation and aeration damage. Trends Biotechnol. 9: 316–324.

    PubMed  CAS  Google Scholar 

  • Reuveny S, Kemp CW, Eppstein L & Shiloach J (1992) Carbohydrate metabolism in insect cell cultures during cell growth and recombinant protein production. Ann. N.Y. Acad. Sci. 665: 220–237.

    Google Scholar 

  • Reuveny S, Kirn YJ, Kemp CW & Shiloach J (1993a) Production of recombinant proteins in high-density insect cell cultures. Biotechnol. Bioeng. 42: 235–239.

    Article  CAS  Google Scholar 

  • Reuveny S, Kim YJ, Kemp CW & Shiloach J (1993b) Effect of temperature and oxygen on cell growth and recombinant protein production in insect cell cultures. Appl. Microbiol. Biotechnol. 38: 619–623.

    Article  PubMed  CAS  Google Scholar 

  • Rhodes M, Gardiner S & Broad D (1991) Scaleup of animal cell suspension culture. In: Ho CS and Wang DIC (eds.) Animal Cell Bioreactors, pp. 253–268. Butterworth-Heinemann, Boston.

    Google Scholar 

  • Schlaeger E-J, Foggetta M, Vonach JM & Christensen K (1993) SF-1, a low cost culture medium for the production of recombinant proteins in baculovirus infected insect cells. Biotechnol. Techniques 7: 183–188.

    CAS  Google Scholar 

  • Schlaeger E-J, Wippler J & Foggetta M (1994) Scale-up of baculovirus expressed recombinant proteins using the High Five insect cell line. Presented at Cell Culture Engineering IV, Engineering Foundation Conferences, San Diego, CA 7–12 March 1994 (Abstract WE2, Cell Culture Engineering IV Program and Abstracts, p. 85).

    Google Scholar 

  • Schopf B, Howaldt MW & Bailey JE (1990) DNA distribution and respiratory activity of Spodoptera frugiperda populations infected with wild-type and recombinant Autographa California nuclear polyhedrosis virus. J. Biotechnol. 15: 169–186.

    Article  PubMed  CAS  Google Scholar 

  • Scott RI, Blanchard JH & Ferguson CHR (1992) Effects of oxygen on recombinant protein production by suspension cultures of Sf9 insect cells. Enzyme Microb. Technol. 14: 798–804.

    Article  PubMed  CAS  Google Scholar 

  • Shuler ML, Cho T, Wickham T, Ogonah O, Kool M, Hammer DA, Granados RR & Wood HA (1990) Bioreactor development for production of viral pesticides or heterologous proteins in insect cell cultures. Ann. N.Y. Acad. Sci. 589: 399–422.

    PubMed  CAS  Google Scholar 

  • Streett DA & Hink WF(1978) Oxygen consumption of TN 368 cell line infected with AcNPV. J. Invertebr. Pathol. 31: 112–122.

    Google Scholar 

  • Tramper J, Williams JB, Joustra D & Vlak JM (1986) Shear sensitivity of insect cells in suspension. Enzyme Microb. Technol. 8: 33–36.

    Google Scholar 

  • Tramper J, de Gooijer KD & Vlak JM (1993) Scale-up considerations and bioreactor development for animal cell cultivation. In: Goosen MFA, Daugulis AJ & Faulkner P (eds) Insect Cell Culture Engineering, pp. 139–177. Marcel Dekker, New York.

    Google Scholar 

  • van Lier FLJ, van den End EJ, de Gooijer CD, Vlak JM & Tramper J (1990) Continuous production of baculovirus in a cascade of insect-cell reactors. Appl. Microbiol. Biotechnol. 33: 43–47.

    Article  PubMed  Google Scholar 

  • van Lier FLJ, van der Meijs WCJ, Grobben NA, Olie RA, Vlak JM & Tramper J (1992) Continuousβ-galactosidase production with a recombinant baculovirus insect-cell system in bioreactors. J. Biotechnol. 22: 291–298.

    PubMed  Google Scholar 

  • Vaughn JL (1976) The production of nuclear polyhedrosis virus in large-volume cell cultures. J. Invertebr. Pathol. 28: 233–237.

    Google Scholar 

  • Wang M-Y, Kwong S & Bentley WE (1993a) Effects of oxygen /glucose/glutamine feeding in insect cell baculovirus protein expression: a study on epoxide hydrolase production. Biotechnol. Progr. 9: 355–371.

    CAS  Google Scholar 

  • Wang M-Y, Vakharia V & Bentley WE (1993b) Expresion of epoxide hydrolase in insect cells: a focus on the infected cell. Biotechnol. Bioeng. 42: 240–246.

    CAS  Google Scholar 

  • Wang MY, Valler M, Pulliam TR & Bentley WE (1995) Elicitation of protease activity in Spodoptera frugiperda cell cultures. Presented at the 209th American Chemical Society National Meeting, Anaheim, CA 2–6 April 1995 (Abstract BIOT 120).

    Google Scholar 

  • Weiss SA & Vaughn JL (1986) Cell culture methods for large-scale propagation of baculoviruses. In: Granados RR and Frederici BA (eds) The Biology of Baculoviruses, Vol. 2 Practical Applications for Insect Control, pp. 64–87. CRC Press, Boca Raton.

    Google Scholar 

  • Weiss SA, Smith GC, Kalter SS & Vaughn JL (1981) Improved method for the production of insect cell cultures in large volume. In Vitro 17: 495–502.

    CAS  Google Scholar 

  • Weiss SA, Orr T, Smith GC, Kalter SS, Vaughn JL & Dougherty EM (1982) Quantitative measurement of oxygen consumption in insect cell culture infected with polyhedrosis virus. Biotechnol. Bioeng. 24: 1145–1154.

    Google Scholar 

  • Weiss SA, DeGiovanni A, Godwin G & Kohler J (1988) Large scale cultivation of insect cells. In: Roberts DW and Granados RR (eds) Conference on Biotechnology Biological Pesticides and Novel Plant-Pest Resistance for Insect Pest Management, Boyce Thompson Institute for Plant Research, Cornell University, July 18–20, 1988, pp. 22–30 Cornell University Press, Ithaca, NY.

    Google Scholar 

  • Weiss SA, Belisle BW, DeGiovanni A, Godwin G, Kohler J & Summers MD (1989) Continuous cell lines as substrates for biologicals. Devel. Biol. Standard. 70: 272–279.

    Google Scholar 

  • Wickham TJ, Davis T, Granados RR, Hammer DA. Shuler ML & Wood HA (1991) Baculovirus defective interfering particles are responsible for variations in recombinant protein production as a function of multiplicity of infection. Biotechnol. Lett 13: 483–488.

    Article  Google Scholar 

  • Wickham TJ, Davis T, Granados RR, Shuler ML & Wood HA (1992) Screening of insect cell lines for the production of recombinant proteins and infectious virus in the baculovirus expression system. Biotechnol. Progress 8: 391–396.

    Article  CAS  Google Scholar 

  • Wickham TJ & Nemerow GR (1993) Optimization of growth methods and recombinant protein production in BTI-TN-5B1-4 insect cells using the baculovirus expression vector. Biotechnol. Progress 9: 25–30.

    Article  CAS  Google Scholar 

  • Wong TKK, Nielsen LK, Greenfield PF & Reid S (1994) Relationship between oxygen uptake rate and time of infection of Sf9 insect cells infected with a recombinant baculovirus. Cytotechnology 15: 157–167.

    Article  PubMed  CAS  Google Scholar 

  • Wood HA, Johnston LB & Burand JP (1982) Inhibition of Autographa californica nuclear polyhedrosis virus replication in highdensity Trichoplusia ni cell cultures. Virology 119: 245–254.

    Article  CAS  Google Scholar 

  • Wu J, King G, Daugulis AJ, Faulkner P, Bone DH & Goosen, MFA (1989) Engineering aspects of insect cell suspension culture: a review. Appl. Microbiol. Biotechnol. 32: 249–255.

    Article  CAS  Google Scholar 

  • Wu JY & Goosen MFA (1996) Insect cell immobilization. This volume.

    Google Scholar 

  • Zhang J, Kalogerakis N, Behie LA & Latrou K (1993) A two-stage bioreactor system for the production of recombinant proteins using a genetically engineered baculovirus/insect cell system. Biotechnol. Bioeng. 42: 357–366.

    CAS  Google Scholar 

  • Zhang J, Kalogerakis N & Behie LA (1994a) Optimization of the physicochemical parameters for the culture of Bombyxmori insect cells used in recombinant protein production. J. Biotechnol. 33: 249–258.

    Article  PubMed  CAS  Google Scholar 

  • Zhang J, Kalogerakis N, Behie LA & Latrou K (1994b) Optimum infection conditions for recombinant protein production in insect cell (Bm5) suspension culture. Biotechnol. Progr. 10: 636–643.

    CAS  Google Scholar 

  • Zhou W & Hu W-S (1994) On-line characterization of a hybridoma cell culture. Biotechnol. Bioeng. 44: 170–177.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Kluwer Academic Publishers

About this chapter

Cite this chapter

Agathos, S.N. (1996). Insect cell bioreactors. In: Vlak, J., de Gooijer, C., Tramper, J., Miltenburger, H. (eds) Insect Cell Culture: Fundamental and Applied Aspects. Current Applications of Cell Culture Engineering, vol 2. Springer, Dordrecht. https://doi.org/10.1007/0-306-46850-6_15

Download citation

  • DOI: https://doi.org/10.1007/0-306-46850-6_15

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-3403-3

  • Online ISBN: 978-0-306-46850-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics