Skip to main content

Part of the book series: Current Applications of Cell Culture Engineering ((CACC,volume 2))

  • 489 Accesses

Conclusions

While insect cells can be easily damaged in bioreactors as a result of hydrodynamic forces, it is also relatively easy to prevent this damage. Of several possible damage mechanisms, the best understood and preventable is the attachment of cells to gas-liquid interfaces and the subjection of these attached cells to the hydrodynamic forces and/or physical forces associated with these interfaces. For example, cells attached to gas bubbles in a bioreactor can be transported into the foam layer where they are physically removed from the cell buspension, or they can be killed when the gas bubble they are attached to ruptures at the medium-air interface at the top of the bioreactor. The easiest method to prevent this damage is through the use of specific surface active compounds, such as Pluronic F-68 or Methocel E-50 which prevent the cells from attaching to the gas-medium interface.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Augenstein DC, Sinskey AJ & Wang DIC (1971) Effect of shear on the death of two strains of mammalian tissue cells. Biotechnol. Bioeng. 13:409–418.

    Article  PubMed  CAS  Google Scholar 

  • Agathos SN, Jeong Y-H & Venkat K (1990) Growth kinetics of free and immobilized insect cell cultures. Ann. N.Y. Acad. Sci. 589: 372–398.

    PubMed  CAS  Google Scholar 

  • Binh J, Jarnagin K, Williams S, Chan H & Barnett J (0000) Fed-batch culture of insect cells: a method to increase the yield of recombinant human nerve growth factor (rhNGF) in the baculovirus expression system. J. Biotechnol. 31: 205–217.

    Google Scholar 

  • Backer M, Metzger L, Slaber P, Nevitt K & Boder G (1988) Largescale production of monoclonal antibodies in suspension culture. Biotechnol. Bioeng. 32: 993–1000.

    Article  CAS  PubMed  Google Scholar 

  • Bavarian F, Fan LS & Chalmers JJ (1991) Microscopic visualization of insect cell-bubble interactions. I: Rising bubbles, air-medium interface, and the foam layer. Biotechnol. Prog. 7: 140–150.

    Article  PubMed  CAS  Google Scholar 

  • Boulton-Stone JM & Blake JR (1993) Gas-bubbles bursting at a free surface. J. Fluid Mech. 154: 437–466.

    Google Scholar 

  • Cameron IR, Possee RD, Bishop DHL, (1989) Insect cell culture technology in baculovirus expression systems. Tibtech 7: 66–70.

    Google Scholar 

  • Caron AW, Archambault J & Massie B (1990) High level recombinant protein production in bioreactors using the baculovirusinsect cell expression system. Biotechnol. Bioeng. 36: 1133–1140.

    Article  CAS  PubMed  Google Scholar 

  • Caron AW, Tom RL, Kamen AA & Massis B (1994) Baculovirus expression systems scaleup by perfusion of high-density SF-9 cell cultures. Biotechnol. Bioeng, 43: 881–891.

    Article  CAS  PubMed  Google Scholar 

  • Chalmers JJ & Bavarian F (1991) Microscopic visualization of insect cell-bubble interactions. II: The bubble film and bubble rupture. Biotechnol. Prog. 7: 151–158.

    Article  PubMed  CAS  Google Scholar 

  • Chattopadhyay D, Rathman JF & Chalmers JJ (1995a) The protective effect of specific medium additves with respect to bubble rupture. Biotechnol. Bioeng. 45: 473–480.

    Article  CAS  PubMed  Google Scholar 

  • Chattopadhyay, D, Rathman JF & Chalmers JJ (1995b) Thermodynamic Approach to Explain Cell Adhesion to Air-Medium Interfaces. Biotechnol: Bioeng. 48: 649–658.

    Article  CAS  Google Scholar 

  • Deutschmann SM & Jaeger V (1994) Optimization of the growth conditions of Sf21 insect cells for high-density perfusion culture in stirred-tank bioreactor. Enzyme Microb. Technol. 16: 506–512.

    Article  PubMed  CAS  Google Scholar 

  • Dodge T & Hu W (1986) Growth of hybridoma cells under different agitation conditions, Biotechnol. Letters, 8: 683–686.

    Google Scholar 

  • Fowler MW (1984) Plant cell culture: natural products and industrial applications. Genet. Eng. Rev. 2:41–67.

    CAS  Google Scholar 

  • Garcia-Briones MA, Brodkey RS & Chalmers JJ (1994) Computer simulations of the rupture of a gas bubble at a gas-liquid interface and its implications in animal cell damage, Chem. Eng. Sci. 49: 2301–2320.

    CAS  Google Scholar 

  • Garcia-Briones MA & Chalmers JJ (1992) Cell-bubble interactions: Mechanisms of suspended cell damage, Ann. N.Y. Acad. Sci. 665: 219–229.

    PubMed  CAS  Google Scholar 

  • Glacken MW, Flesichaker RJ & Sinskey AJ (1983) Mammalian cell culture: engineering principles and scale-up, Trends Biotechnol. 1: 102–108.

    Article  CAS  Google Scholar 

  • Goldblum S, Bae Y, Hink WF& Chalmers JJ (1990) Protective effect of methylcellulose and other polymers on insect cells subjected to laminar shear stress. Biotechnol. Prog. 6: 383–390.

    Article  PubMed  CAS  Google Scholar 

  • Handa-Corrigan A, Emary AN & Spier RE (1989) Effect of gasliquid interfaces on the growth of suspended mammalian cells: mechanisms of cell damage by bubbles. Enzyme Microb. Technol. 11:230–235.

    Article  CAS  Google Scholar 

  • Handa A, Emery A & Spier RE (1987) On the evaluation of gasliquid interfacial effects on hybridoma viability in bubble column bioreactors, Develop. Biol. Standard 66: 241–252.

    CAS  Google Scholar 

  • Hink FH (1982) Production of Autographa Calif ornica Nuclear Polyhedrosis virus in cell from large-scale suspension cultures, In: Microbial and Viral Pesticides, Kurstak E (ed.) Marcel Dekker, NY.

    Google Scholar 

  • Hink WF & Strauss E (1979), Suspension culture of the Cabbage Looper (TN-368) cell line, Tissue Cult. Assoc. Man. 5: 1023–1025.

    Google Scholar 

  • Hulscher M & Onken U (1988), Influence of bovine serum albumin on the growth of hybridoma cells in air-lift loop reactors using serum free medium, Biotechnol. Lett. 10: 689–694.

    Google Scholar 

  • Jobses I, Martens D & Tramper J (1990) Lethal effects during gas sparging in animal cell culture. Biotechnol. Bioeng. 10: 801–814.

    Google Scholar 

  • Kamen AA, Tom RL, Caron AW, Chavarie C, Massie B & Archambault J (1991) Culture of insect cells in a helical ribbon impeller bioreactor, Biotechnol. Bioeng. 38: 619–628.

    Article  CAS  PubMed  Google Scholar 

  • Kilburn DG & Webb F (1968) The cultivation of animal cells at controlled dissolved oxygen partial pressure, Biotechnol. Bioeng. 10: 801–814.

    Article  CAS  Google Scholar 

  • Kim HR, Lee KW, Kim TY, Oh JH, Yang JM, Kang SK & Chung IS (1994) Insect Cell Culture for recombinant β-galactosidase production using a spin-filter bioreactor. J. Microbiol. Biotechnol. 4: 200–203

    CAS  Google Scholar 

  • Kunas KT & Papoutsakis ET (1990a) The protective effect of serum against hydrodynamic damage of hybridoma cells in agitated and surface-aerated bioreactors, J. Biotechnol. 15: 57–70.

    Article  PubMed  CAS  Google Scholar 

  • Kunas KT & Papoutsakis ET (1990b) Damage mechanism of suspended animal cells in agitated bioreactors with and without bubble entrainment, Biotechnol. Bioeng. 36: 476–483.

    Article  CAS  PubMed  Google Scholar 

  • Lee G, Huard T, Kaminski M & Palsson B (1988) Effect of mechanical agitation on hydridoma cell growth. Biotechnol. Letters 10: 625–628.

    Google Scholar 

  • Lengyel J, Spradling A & Penman S (1975) Methods with insect cells in suspension culture II Drosophila melanogaster. In: Methods of Cell Biology, Vol. 10, Prescott DM (ed.) Academic Press, NY.

    Google Scholar 

  • MacIntyre F (1968) Bubbles: a boundary-layer “microtome” for micron thick samples of a liquid surface, J. Phys. Chem. 72: 589–592.

    Article  CAS  Google Scholar 

  • MacIntyre F (1972) Flow patters in breaking bubbles, J. Geophys. Res.77:5211–5228.

    Article  CAS  Google Scholar 

  • Martens DE, de Gooijer CD, Beuvery EC & Tramper J (1992) Effect of serum on hybridoma viable cell density and production of monoclonal antibodies in CSTR-s and on shear sensitivity in airlift loop reactors. Biotechnol. Bioeng. 39: 891–897.

    Article  CAS  PubMed  Google Scholar 

  • Maiorella B, Inlow D, Shauger A & Harano D (1988) Large scale insect cell-culture for recombinant protein production. Bio/technol. 6, 1406–1410.

    Article  CAS  Google Scholar 

  • Michaels JD, & Papoutsakis EF (1991) Polyvinyl alcohol and polyethylene glycol as protectants against fluid-mechanical injury of freely-suspended animal cells. J. Biotechnol. 19: 241–258.

    Article  PubMed  CAS  Google Scholar 

  • Michaels JD, Kunas, KT & Papoutsakis ET (1992) Fluid Mechanical damage of freely suspended animal cells in agitated bioreactors: Effects of dextran, dreivatized celluloses, and polyvinyl alcohol. Chem. Eng. Comm. 118: 341–360.

    CAS  Google Scholar 

  • Michaels JD, Nowak JE, Mallik AK, Koczo K, Wasan DT & Papoutsakis ET (1995a) Analysis of Cell-to-Bubble Attachment in Sparged Bioreactors in the Presence of Cell-Protecting Additives. Biotechnol. Bioeng. 47: 407–419.

    CAS  PubMed  Google Scholar 

  • Michaels JD, Nowak JE, Mallik AK, Koczo K, Wasan DT & Papoutsakis ET (1995b) Interfacial Properties of Cell Culture Media with Cell-Protecting Additives. Biotechnol. Bioeng. 47: 420–430.

    CAS  PubMed  Google Scholar 

  • Miyake T, Saigo K, Marunouchi T & Shiba T (1977) Suspension culture of Drosophila cells employing a gyratory shaker, In Vitro, 13: 245–251.

    Google Scholar 

  • Mizrahi A (1984), Oxygen in human lymphoblastoid cell line cultures and effect of polymers in agitated and aerated cultures, Devel Biol Std 55: 93–102.

    Google Scholar 

  • Murhammer DW & Goochee CF (1988) Scaleup of insect cell cutlures: protective effects of Pluronic F-68. Bio/technol. 6: 1411–1415.

    Article  CAS  Google Scholar 

  • Murhammer DW & Goochee CF (1990) Sparged animal cell bioreactors: mechanisms of cell damage and Pluronic F-68 protection. Biotechnol. Prog. 6: 391–397.

    PubMed  CAS  Google Scholar 

  • Oh SKW, Nienow AW, Al-Rubeai & Emery AN (1989) The effect of agitation intensity with and without continuous sparging on the growth and antibody production of hybridoma cells. J. Biotechnol. 12:45–62.

    Article  CAS  Google Scholar 

  • Oh SKW, Nienow AW, Al-Rubeai M & Emery AN (1992) Further studies on the culture of mouse hybridomas in an agitated bioreactor with and without continuous sparging. J. Biotechnol. 22: 245–270.

    Article  PubMed  CAS  Google Scholar 

  • Orton D & Wang DIC (1991) Fluorescent visualization of cell death in bubble areated bioreactors, Cell Culture Engineering III, Engineering Foundation, Feb. 2–7.

    Google Scholar 

  • Runyan W & Gyer R (1963) Growth of L cell suspensions on a Warburg apparatus. Proc. Soc. Biol. Med. 112: 1027–1030.

    CAS  Google Scholar 

  • Schurch U, Kramer H, Einsle A, Widmer F & Eppenberger HM (1988) Experimental evaluation of laminar shear stress on the behaviour of hybridoma mass cell cultures producing monoclonal antibodies against mitochondrial creatine kinase. J. Biotechnol. 7: 179–184.

    Google Scholar 

  • Silva HJ, Cortinas T & Ertola RJ (1987) Effect of hydrodynamic stress on Dunaliella growth. J. Chem. Technol. Biotechnol. 40: 41–49.

    Google Scholar 

  • Smith CG, Greenfield PF & Randerson DH (1987) A technique for determining the shear sensitivity of mammalian cells in suspension culture. Biotechnol. Tech. 1: 39–44.

    Article  Google Scholar 

  • Spradling A, Stinger RH, Lengyel J & Penman S (1975) Methods with insect cells in suspension culture. I. Aedes albopictus. In: Methods of Cell Biology, Vol. 10, Prescott DM (ed.) Academic Press, NY.

    Google Scholar 

  • Swim H & Parker R (1960) Effect of Pluronic F-68 on growth of fibroblasts in suspension on rotary shakers. Proc. Soc. Biol. Med. 103: 252–254.

    CAS  Google Scholar 

  • Telling RC & Elsworth R (1965) Submerged culture of hamster kidney cells in a stainless steel vessel, Biotechnol. Bioeng. 7: 417–434.

    Article  Google Scholar 

  • Tramper J, Williams J & Joustra D (1986), Shear sensitivity of insect cells in suspension, Enzyme Microb. Technol. 8: 33–36.

    Google Scholar 

  • Trinh K, Garcia-Briones MA, Hink FH & Chalmers JJ (1994), Quantification of damage to suspended insect cells as a result of bubble rupture, Biotechnol. Bioeng. 43: 37–45.

    Article  CAS  PubMed  Google Scholar 

  • Vaughn JL (1967) Growth of insect cell lines in suspension culture, In: Proc. Int. Colloq. Invertebr. Tissue Cult. 2nd Tremezzo Como, Italy. Wang NS, Yang JD, Calabrese RV, Chang KC (1994) Unified modeling framework of cell death due to bubbles in agitated and sparged biorectors. J. Biotechnol. 33: 107–122.

    Google Scholar 

  • Yang JD & Wang NS (1992) Cell Inactivation in the Presence of Sparging and Mechanical Agitation, Biotechnol. Bioeng. 40: 806–816.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Kluwer Academic Publishers

About this chapter

Cite this chapter

Chalmers, J.J. (1996). Shear sensitivity of insect cells. In: Vlak, J., de Gooijer, C., Tramper, J., Miltenburger, H. (eds) Insect Cell Culture: Fundamental and Applied Aspects. Current Applications of Cell Culture Engineering, vol 2. Springer, Dordrecht. https://doi.org/10.1007/0-306-46850-6_14

Download citation

  • DOI: https://doi.org/10.1007/0-306-46850-6_14

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-3403-3

  • Online ISBN: 978-0-306-46850-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics