Skip to main content
  • 116 Accesses

Conclusions

Caspases and calpains act on many different protein substrates in neurons, and cleavage of these substrates results in a variety of physiological and pathophysiological changes in the structure and function of neuronal circuits. In addition to playing central roles in the process of neuronal apoptosis, caspases appear to regulate synaptic plasticity and may be involved in synaptic degeneration and remodeling. The calcium sensitivity of calpains suggests that they are important effectors of changes in neurons brought about by calcium influx, an important physiological and pathological signal in neurons. Many different neurodegenerative disorders involve excessive activation of caspases and calpains including Alzheimer’s, Parkinson’s, Huntington’s diseases and stroke. Experimental findings suggest that caspase and/or calpain inhibitors can attenuate neuronal degeneration in models of these neurodegenerative disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M.O. Hengartner, Programmed cell death in the nematode C. elegans. Recent frog. Horm. Res. 54:213 (1999).

    CAS  Google Scholar 

  2. N.A. Thornberry, H.G. Bull, J.R. Calaycay, K.T. Chapman, A.D. Howard, M.J. Kostura, D.K. Miller, S.M. Molineaux, J.R. Weidner and J. Aunins, A novel heterodimeric cysteine protease is required for interleukin-I beta processing in monocytes, Nature 356:768 (1992).

    Article  PubMed  CAS  Google Scholar 

  3. T. Ferandez-Alnemri, G. Litwack and E.S. Alnemri, Mch2, a new member of the apoptotic Ced-3/Ice cysteine protease gene family, Cancer Res. 55:2737 (1995).

    Google Scholar 

  4. T. Fernandez-Alnemri, A. Takahashi, R. Armstrong, J. Krebs, L. Fritz, K.J. Tomaselli, L. Wang, Z. Yu, C.M. Croce and G. Salveson, Mch3, a novel human apoptotic cysteine protease highly related to CPP32, Cancer Res. 55:6045 (1995).

    Google Scholar 

  5. J. Kamens, M. Paskind, M. Hugunin, R.V. Talanian, H. Allen, D. Banach, M. Bump, M. Hackett, C.G. Johnston and P. Li, Identification and characterization of ICH-2, a novel member of the interleukin-I beta-converting enzyme family of cysteine proteases, J. Biol. Chem. 270:15250–15256. (1995).

    PubMed  CAS  Google Scholar 

  6. E.S. Alnemri, D. J. Livingston, D. W. Nicholson, G. Salvesen, N.A. Thomberry, W. W. Wong and J. Yuan, Human ICEICED-3 protease nomenclature, Cell 87:71 (1996).

    Article  Google Scholar 

  7. J. Walter, A. Schindzielorz, J. Grunberg and C. Haass, Phosphorylation of presenilin-2 regulates its cleavage by caspases and retards progression of apoptosis, Proc. Natl. Acad. Sci. U.S.A. 96:1391 (1999).

    Article  PubMed  CAS  Google Scholar 

  8. N. Margolin, S.A. Raybuck, K.P. Wilson, W. Chen, T. Fox, Y. Gu and D.J. Livingston, Substrate and inhibitor specificity of interlellkill-I beta-converting enzyme and related caspases, J. Biol. Chem. 272:7223 (1997).

    PubMed  CAS  Google Scholar 

  9. M. Mancini, D.W. Nicholson, S. Roy, N.A. Thornberry, E.P. Peterson, L.A. Casciola-Rosen and A. Rosen, The caspase-3 precursor has a c\,tosolic and mitochondrial distribution: implications for apoptotic signaling, J. Cell. Biol. 140:1485 (1998).

    Article  PubMed  CAS  Google Scholar 

  10. S.A. Susin, H.K. Lorenzo, N. Zamzami, I. Marzo, C. Brenner, N. Larochette, M.C. Prevost, P.M. Alzari and G. Kroemer, Mitochondrial release of caspase-2 and-9 during the apoptotic process, J. Exp. Med. 189:381 (1999).

    Article  PubMed  CAS  Google Scholar 

  11. A. Nakagawara, Y. Nakamura, H. Ikeda, T. Hiwasa, K. Kuida, M.S. Su, H. Zhao, A. Cnaan and S. Sakiyama, High levels of expression and nuclear localization of interleukin-I beta converting enzyme (ICE) and CPP32 in favorable human neuroblastomas, Cancer Res. 57:457 (1997).

    Google Scholar 

  12. P.L. Mao, Y. Jian2, B.Y. Wee and A.G. Porter, Activation of caspase-I in the nucleus requires nuclear translocation of pro-caspase-I mediated by its prodomain, J. Biol. Chem. 273:23621 (1998).

    PubMed  CAS  Google Scholar 

  13. J.F. Krebs, R.C. Armstrong, A. Srinivasan, T. Aja, A. M. Wong M. A. Aboy, R. Sayers, B. Pham, T. Vu, K. Hoang, D.S. Karanewsky, C. Leist, A. Schmitz, J.C. Wu, K.J. Tomaselli and L.C. Fritz, Activation of membrane-associated procaspase-3 is regulated by Bc1-2, Cell Biol. 144:915 (1999).

    CAS  Google Scholar 

  14. L.L. Singer, S. S. Scott, J. Chin, E.K. Bayne, G. Limjuco, J. Weidner, D. K. Miller, K. Chapman and M.J. Kostura, The interleukin-I betaconverting enzyme (ICE) is localized on the external cell surface membranes and in the cytoplasmic ground substance of human monocytes by immunoelectron microscopy, J. Exp. Med. 82:1447 (1995).

    Google Scholar 

  15. S. Kumar, M. Kinoshita, M. Noda, N.G. Copeland and N.A. Jenkins, Induction of apoptosis by the mouse Nedd2 gene, which encodes a protein similar to the product of the Caenorhabditis elegans cell death gene ced-3 and the mammalian IL-] betaconverting enzyme, Genes Dev. 8:1613 (1994).

    PubMed  CAS  Google Scholar 

  16. C. Faucheu, A. Diu, A.W. Clian, A. M. Blanchet, C. Miossec, F. Herve, V. Collard-Dutilleul, Y. Gu, R. A. Aldape and J. A. Lippke, A novel human protease similar to the interleukin-I beta converting enzyme induces apoptosis in transfected cells, EMBO J. 14:1914 (1997).

    Google Scholar 

  17. B. Ni, X. Wu, Y. Du, Y. Su, E. Hamilton-Byrd, P.K. Rockey, P. Rosteck, Jr., G.G. Poifier and S.M. Paul, Cloning and expression a rat brain interleukin-I beta-converting enzyme (ICE)-related protease (IRP) and its possible role in apoptosis of cultured cerebellar granule neurons, J. Neurosci. 17:1561 (1997).

    PubMed  CAS  Google Scholar 

  18. P.W. Ng, A.G. Porter and R. U. Janicke, Molecular cloning and characterization of two novel proapoptotic isoforms of caspase l0, J. Biol. Chem. 274:10301 (1999).

    PubMed  CAS  Google Scholar 

  19. M. Asahi, M. Hoshimaru, Y. Uemura, T. Tokime, M. Kojima, T. Ohtsuka, N. Matsuura, T. Aoki, K. Shibahara and H. Kikuchi, Expression of interleukin-I beta converting enzyme gene family and bcl-2 gene family in the rat brain following permanent occlusion of the middle cerebral artery, J. Cereb. Blood Flow Metab. 17:11 (1997).

    PubMed  CAS  Google Scholar 

  20. F. Gillardon, B. Bottiger, B. Schmitz, M. Zimmermann and K.A. Hossmann, Activation of CPP-32 protease in hippocampal neurons following ischemia and epilepsy, Mol. Brain Res. 50:16 (1997).

    Article  PubMed  CAS  Google Scholar 

  21. M. Kinoshita, H. Tomimoto, A. Kinoshita, S. Kumar and M. Noda, Up-regulation of the Nedd2 gene encoding an ICF/Ced-3-like cysteine protease in the gerbil brain after transient global ischemia, J. Cereb. Blood Flow Metab. 17:507 (1997).

    PubMed  CAS  Google Scholar 

  22. A.G. Yakovlev, S.M. Knoblach, L. Fan, G.B. Fox, R. Goodnight and A. Faden, Activation of CPP32-like caspases contributes to neuronal apoptosis and neurological dysfunction after traumatic brain injury, J. Neurosci. 17:7415 (1997).

    PubMed  CAS  Google Scholar 

  23. S.R. D’Mello, C. Galli, T. Ciotti and P. Calissano, Induction of apoptosis in cerebellar granule neurons by low potassium: inhibition of death by insulin-like growth factor I and CAMP, Proc. Natl. Acad. Sci. U.S.A. 90:10989 (1993).

    PubMed  CAS  Google Scholar 

  24. G. M. Yan, B. Ni, M. Weller, K.A. Wood and S. M. Paul, DepoMzation or glutamate receptor activation blocks apoptotic cell death of cultured cerebellar granule neurons, Brain Res. 656:43 (1994).

    Article  PubMed  CAS  Google Scholar 

  25. N.P. Walker, R.V. Talanian, K.D. Brady, L.C. Dang, N.J. Bump, C.R. Ferenz, S. Franklin, T. Ghayur, M.C. Hackett and L.D. Hammill, Crystal structure of the cysteine protease interleukin-1 beta-converting enzyme: a (p2O/p1O)2 homodimer, Cell 78:343 (1994).

    Article  PubMed  CAS  Google Scholar 

  26. P.R. Mittl, S. Di Marco, J.F. Krebs, X. Bai, D.S. Karanewsky, J.P. Priestle, K.J. Tomaselli and M.G. Grutter, Structure of recombinanthuman CPP32 in complex with the tetrapeptide acetyl-Asp-ValAla-Asp fluoromethyl ketone, J. Biol. Chem. 272:6539 (1997).

    PubMed  CAS  Google Scholar 

  27. Y. Gu, J. Wu, C. Faucheu, J.L. Laianne, A. Diu, D.J. Livingston, and M.S. Su, Interleukin-I beta converting enzyme requires oligomerization for activity of processed forms in vivo, EMBO J. 14:1923 (1995).

    PubMed  CAS  Google Scholar 

  28. S.N.I. Srinivasula, M. Ahmad, T. Femandes-Alnemri and E.S. Aineiiri, Autoactivation of procaspase-9 by Apaf-I-mediated oligomerization, Mot. Cell. 1:949 (1998).

    CAS  Google Scholar 

  29. R.M. Siegel, D.A. Martin, L. Zheng, S.Y. Ng, J. Bertin, J. Cohen and M.I. Lenardo, Death-effector filaments: novel cytoplasmic structures that recruit caspases and trigger apoptosis, J. Cell. Biol. 141:1243 (1998).

    Article  PubMed  CAS  Google Scholar 

  30. S.M. Srinivasula, M. Ahmad, T. Femandes-Alnemri, G. Litwack and E.S. Alnemri, Molecular ordering of the Fas-apoptotic pathway: the Fas/APO-1 protease Mch5 is a CnnA-inhibitable protease that activates multiple Ced-3/ICE-like cysteine proteases, Proc. Natl. Acad. Sci. U.S.A. 93:14486 (1996).

    Article  PubMed  CAS  Google Scholar 

  31. R.M. Kluck, E. Bossy-Wetzel, D.R. Green and D.D. Newmeyer, The release of cytochrome c from mitochondria: a primary site for Bcl-2 regulation of apoptosis, Science 275:1132 (1997).

    Article  PubMed  CAS  Google Scholar 

  32. J. Yang, X. Liu, K. Bhalia, C.N. Kim, A.M. Ibrado, J. Cai, T.I. Peng, D.P. Jones and X. Wang, Prevention of apoptosis by Bcl-2: release of cytochrome c from mitochondria blocked, Science 275:1129 (1997).

    Article  PubMed  CAS  Google Scholar 

  33. E.A. Slee, M.T. Harte, R.M. Kluck, B.B. Wolf, C.A. Casiano, D.D. Newmeyer, H.G. Wang, J.C. Reed, D.W. Nicholson, E.S. Alnemri, D.R. Green and S.J. Martin, Ordering the cytochrome cinitiated caspase cascade: hierarchical activation of caspases-2,-3,-6,-7,-8, and-10 in a caspase-9-dependent manner, J. Cell. Biol. 144:281 (1999).

    Article  PubMed  CAS  Google Scholar 

  34. T. Kuwana, J.J. Smith, M. Muzio, V. Dixit, D.D. Newmeyer and S. Kornbluth, Apoptosis induction by caspase-8 is amplified through the mitochondrial release of cytochrome c, J. Biol. Chem. 273:16589 (1998).

    Article  PubMed  CAS  Google Scholar 

  35. H. Li, H. Zhu, C.J. Xu and J. Yuan, Cleavage of BID by caspase 8 mediates the mitochondrialdamage in the Fas pathway of apoptosis, Cell 94:491 (1998).

    Article  PubMed  CAS  Google Scholar 

  36. M.P. Mattson, Free radicals, calcium, and the synaptic plasticity cell death continuum: emerging roles of the transcription factor NF-κB, Int. Rev. Neurobiol. 42:103 (1998).

    PubMed  CAS  Google Scholar 

  37. M.P. Mattson. Modification of ion homeostasis by lipid peroxidation: roles in neuronal degeneration and adaptive plasticity, Trends Neurosci. 21:53 (1998).

    PubMed  CAS  Google Scholar 

  38. M. Ankarcrona, J.M. Dypbukt, E. Bonfoco, B. Zhivotovsky, S. Orrenius, S.A. Lipton and P. Nicotera, Glutamate-induced neuronal death: a succession of necrosis or apoptosis depending on mitochondrial function, Neuron 15961 (1995).

    Google Scholar 

  39. Q. Guo, B.L. Sopher, K. Furukawa, D.G. Pham, N. Robinson, G.M. Martin and M.P. Mattson, Alzheimer’s presenilin mutation sensitizes neural cells to apoptosis induced by trophic factor withdrawal and amytoid 0-peptide: involvement of calcium and oxyradicals, J. Neurosci. 17:4212 (1997).

    PubMed  CAS  Google Scholar 

  40. L. Kruman, A.J. Bruce-Keller, D. Bredesen, G. Waeg and M.P. Mattson, Evidence that 4-hydroxynonenal mediates oxidative stress induced neuronal apoptosis, J. Neurosci. 17:5089 (1997).

    PubMed  CAS  Google Scholar 

  41. N. Inohara, T. Koseki, Y. Hu, S. Chen and G. Nunez, CLARP, a death effector domain-containing protein interacts with caspase-8 and regulates apoptosis, Proc. Natl. Acad. Sci. U.S.A. 94:10717 (1997).

    Article  PubMed  CAS  Google Scholar 

  42. M. Irmier, M. Thome, M. Hahne, P. Schneider, K. Hofmann, V. Steiner, J.L. Bodmer, M. Schroter, K. Bums, C. Mattmann, D. Rimoldi, L.E. French and J. Tschopp, Inhibition of death receptor signals by cellular FLIP, Nature 388:190 (1997).

    Google Scholar 

  43. Y. Refaeli, L. Van Parijs, C.A. London, J. Tschopp and A.K. Abbas, Biochemical mechanisms of IL-2-regulated Fas-mediated T cell apoptosis, Immunity 8:615 (1998).

    Article  PubMed  CAS  Google Scholar 

  44. C. Scaffidi, L. Schmitz, P.H. Krammer and M.E. Peter, The role of C-FLIP in modulation of CD95-induced apoptosis J. Biol. Chem. 274:1541 (1999).

    PubMed  CAS  Google Scholar 

  45. L. Wang, M. Miura, L. Bergeron, H. Zhu and J. Yuan, Ich-1, an Ice/ced-3-related gene, encodes both positive and negative regulators of programmed cell death, Cell 78:739 (1994).

    Article  PubMed  CAS  Google Scholar 

  46. E.S. Alnemri, T. Femandes-Ainemri and G. Litwack, Cloning and expression of four novel isoforms of human interleukin-I beta converting enzyme with different apoptotic activities, J. Biol. Chem. 270:4312 (1995).

    PubMed  CAS  Google Scholar 

  47. T. Femandez-Alnemri, R.C. Armstrong and J. Krebs, In vitro activation of CPP32 and Mch3 by Mch4, a novel human apoptotic cysteine protease containing two FADD-like domains, Proc. Natl. Acad. Sci. U.S.A. 93:7464 (1996).

    Google Scholar 

  48. S.N.I. Srinivasula, M. Ahmad, Y. Guo, Y. Zhan, Y. Lazebnik, T. Fernandes-Alnemri and E.S. Ainemri, Identification of an endogenous dominant-negative short isoform of caspase-9 that can regulate apoptosis, Cancer Res. 59:999 (1999).

    PubMed  CAS  Google Scholar 

  49. D.W. Seol and T.R. Billiar, A caspase-9 variant missing the catalytic site is an endogenous inhibitor of apoptosis, J. Biol. Chem. 274:2072 (1999).

    PubMed  CAS  Google Scholar 

  50. L. Bergeron, G.I. Perez, G. Macdonald, L. Shi, Y. Sun, A. Jurisicova, S. Vannuza, K.E. Latham, J.A. Flaws, J.C. Salter, H. Hara, M.A. Moskowitz, E. Li, A. Greenberg, J.L. Tilly and J. Yuan, Defects in regulation of apoptosis in caspase-2-deficient mice, Genes Dev. 12:1304 (1998).

    PubMed  CAS  Google Scholar 

  51. Z.H. Jiang, W.J. Zhang, Y. Rao and J.Y. Wu, Regulation of Ich-I pre-mRNA alternative splicing and apoptosis by mammalian splicing factors, Proc. Natl. Acad. Sci. U.S.A. 95:9155 (1998).

    PubMed  CAS  Google Scholar 

  52. D.L. Vaux, S. Cory and J.M. Adams, Bcl-2 gene promotes haemopoietic cell survival and cooperates with c-myc to immortalize pre-B cells, Nature 335:440 (1988).

    Article  PubMed  CAS  Google Scholar 

  53. C.L. Sentman, J.R. Shutter, D. Hockenbery, 0. Kanagawa and S.J. Korsmeyer, Bcl-2 inhibits multiple forms of apoptosis but not negative selection in thymocytes, Cell 67:879 (1991).

    Article  PubMed  CAS  Google Scholar 

  54. R.C. Armstrong, T. Aja, J. Xiang, S. Gaur, J.F. Krebs, K. Hoang, X. Bai, S.J. Korsmeyer, D.S. Karanewsky, L.C. Fritz and K.J. Tomaselli, Fas-induced activation of the cell death-related protease CPP32 is inhibited by Bcl-2 and by ICE family protease inhibitors, J. Biol. Chem. 271:16850 (1996).

    Article  PubMed  CAS  Google Scholar 

  55. D.W. Voehfinger, D.J. McConkey, T.J. McDonnell, S. Bfisbay and R.E. Meyn, Bcl-2 expression causes redistribution of glutathione to the nucleus, Proc. Natl. Acad. Sci. U.S.A. 95:2956 (1998).

    Google Scholar 

  56. E.H. Cheng, D.G. Kirsch, R.J. Clem, R. Ravi, M.B. Kastan, A. Bedi, K. Ueno and J.M. Hardwick, Conversion of Bcl-2 to a Bax-like death effector by caspases, Science 278:1966 (1997).

    Article  PubMed  CAS  Google Scholar 

  57. R.J. Clem, E.H. Cheng, C.L. Karp, D.G. Kirsch, K. Ueno, A. Takahashi, M.B. Kastan, D.E. Gfiffin, W.C. Eamshaw, M.A. Veliuona and J.M. Hardwick, Modulation of cell death by Bcl-XL through caspase interaction, Proc. Natl. Acad. Sci. U.S.A. 95:554 (1998).

    Article  PubMed  CAS  Google Scholar 

  58. Q.L. Deveraux, N. Roy, H.R. Stennicke, T. Van Arsdale, Q. Zhou, S.M. Srinivasula, E.S. Alnemf, G.S. Salvesen and J.C. Reed, IAPs block apoptotic events induced by caspase-8 and cytochrome c by direct inhibition of distinct caspases, EMBO J. 17:2215 (1998).

    Article  PubMed  CAS  Google Scholar 

  59. N. Roy, Q.L. Deveraux, R. Takahashi, G.S. Saivesen and J.C. Reed, The c-IAP-1 and c-IAP-2 proteins are direct inhibitors of specific caspases, EMBO J. 166914 (1997).

    Google Scholar 

  60. V. Gagliardini, P.A. Fernandez, R.K. Lee, H.C. Drexler, R.J. Rotello, M.C. Fishman and J. Yuan, Prevention of vertebrate neuronal death by the crma gene, Science 263:826 (1994).

    PubMed  CAS  Google Scholar 

  61. L. Martinou, P.A. Fernandez, M. Missotten, E. White, B. Allet, R. Sadoul and J.C. Martinou, Viral proteins EIB 19K and p35 protect sympathetic neurons from cell death induced by NGF deprivation, J. Cell. Biol. 128:201 (1995).

    Article  PubMed  CAS  Google Scholar 

  62. M. Tewari and V.M. Dixit, Fas-and tumor necrosis factor-induced apoptosis is inhibited by the poxvirus crma gene product, J. Biol. Chem. 270:3255 (1995).

    Article  PubMed  CAS  Google Scholar 

  63. J. Bump, M. Hackett, M. Hugunin, S. Seshagiri, K. Brady, P. Chen, C. Ferenz, S. Franklin, T. Ghaur and P. Li, Inhibition of ICE family proteases by baculovirus antiapoptotic protein p35, Science 269:1885 (1995).

    PubMed  CAS  Google Scholar 

  64. Q. Zhou, J.F. Krebs, S.J. Snipas, A. Price, E.S. Alnenui, K.J. Tomaselli and G.S. Salvesen, Interaction of the baculovirus antiapoptotic protein p35 with caspases. Specificity, kinetics, and characterization of the caspase/p35 complex, Biochemistry 37:10757 (1998).

    PubMed  CAS  Google Scholar 

  65. C.A. Ray, R.A. Black, S.R. Kronheim, T.A. Greenstreet, P.R. Sleath, G.S. Salvesen and D.J. Pickup, Viral inhibition of inflammation: cowpox virus encodes an inhibitor of the interleukin-I beta converting enzyme, Cell 69:597 (1992).

    Article  PubMed  CAS  Google Scholar 

  66. D. Xue and H.R. Horvitz, Inhibition of the Caenorhabditis elegans cell-death protease CED-3 by a CED-3 cleavage site in bacutovirus p35 protein, Nature 377:248 (1995).

    Article  PubMed  CAS  Google Scholar 

  67. S. Rabizade, D. J. LaCount, P.D. Friesen and D.E. Bredesen, Expression of the baculovirus p35 gene inhibits mammalian neural cell death, J. Neurochem. 61:2318 (1993).

    Google Scholar 

  68. M.H. Cardone, N. Roy, H.R. Stennicke, G.S. Salvesen, T.F. Franke, E. Stanbrictge, S. Frisch and J.C. Reed, Regulation of cell death protease caspase-9 by phosphorylation, Science 282:1318 (1998).

    Article  PubMed  CAS  Google Scholar 

  69. S. Huan, Y. Jiang, Z. Li, E. Nishida, P. Mathias, S. Lin, R. Ulevitch, G.R. Nemerow and J. Han, Apoptosis signaling pathway in T cells is composed of ICE/Ced-3 family proteases and MAP kinase 6b, Immunity 6:739 (1997).

    Google Scholar 

  70. F. Toyoshima, T. Moriguch and E. Nishida, Fas induces cytoplasmic apoptotic responses and activation of the MKK7-JNK/SAPK and MKK6-p38 pathways independent of CPP32-like proteases, J. Cell. Biol. 139:1005 (1997).

    Article  PubMed  CAS  Google Scholar 

  71. C. Widmann, S. Gibson and G.L. Johnson, Caspase-dependent cleavage of signaling proteins during apoptosis. A tum-off mechanism for anti-apoptotic signals, J. Biol. Chem. 273:7141 (1998).

    Article  PubMed  CAS  Google Scholar 

  72. A. Basu and G.R. Akkaraju, Regulation of caspase activation and cis-Diamminedichloro-platinum(II)-induced cell death by protein kinase C, Biochemistry 38:4245 (1999).

    Article  PubMed  CAS  Google Scholar 

  73. J. Li, T.R. Billiar, R.V. Talanian and Y.M. Kim, Nitric oxide reversibly inhibits seven members of the caspase family via S-nitrosylation, Biochem. Biophys. Res. Commun. 240:419 (1997).

    PubMed  CAS  Google Scholar 

  74. A. Samali, H. Nordgren, B. Zhivotovsky, E. Peterson and S. Orrenius, A comparative study of apoptosis and necrosis in HepG2 cells: oxidant-induced caspase inactivation leads to necrosis, Biochem. Biophys. Res. Commun. 255:6 (1999).

    Article  PubMed  CAS  Google Scholar 

  75. S. Dimmeler, J. Haendeler, M. Nehls and A.M. Zeiher, Suppression of apoptosis by nitric oxide via inhibition of interleukin-lbetaconverting enzyme (ICE)-like and cysteine protease protein (CPP)-32-like proteases, J. Exp. Med. 185:601 (1997).

    Article  PubMed  CAS  Google Scholar 

  76. S. Dimmeler and A.M. Zeiher, Nitric oxide and apoptosis: another paradigm for the double-edged role of nitric oxide, Nitric Oxide 1:275 (1997).

    Article  PubMed  CAS  Google Scholar 

  77. Y.M. Kim, R.V. Talanian and T.R. Billiar, Nitric oxide inhibits apoptosis by preventing increases in caspase-3-like activity via two distinct mechanisms, J. Biol. Chem. 272:31138 (1997).

    PubMed  CAS  Google Scholar 

  78. J.E. Saavedra, T.R. Billiar, D.L. Williams, Y.M. Kim, S.C. Watkins and L.K. Keefer, Targeting nitric oxide (NO) delivery in vivo. Design of a liver-selective NO donor prodrug that blocks tumor necrosis factor-alpha-induced apoptosis and toxicity in the liver, J. Med. Chem. 40: 1947 (1997).

    Article  PubMed  CAS  Google Scholar 

  79. L. Rossig, B. Fichtlscherer, K. Breitschopf, J. Haendeler, A.M. Zeiher, A. Mulsch and S. Dimmeler, Nitric oxide inhibits caspase-3 by S-nitrosation in vivo, J. Biol. Chem. 274:6823 (1999).

    Article  PubMed  CAS  Google Scholar 

  80. S. Orrenius, C. S. Nobel, D.J. van den Dobbelsteen, M.J. Burkitt and A.F. Slater, Dithiocarbamates and the redox regulation of cell death, Biochem. Soc. Trans. 24:1032 (1996).

    PubMed  CAS  Google Scholar 

  81. S. Hortelano, B. Dallaporta, N. Zamzami, T. Hirsch, S.A. Susin, L. Marzo, L. Bosca and G. Kroemer, Nitric oxide induces apoptosis via triggering mitochondrial permeability transition, FEBS Lett. 410:373 (1997).

    Article  PubMed  CAS  Google Scholar 

  82. C.S. Nobel, D.H. Burgess, B. Zhivotovsky, M.J. Burkitt, S. Orrenius and A.F. Slater, Mechanism of dithiocarbamate inhibition of apoptosis: thiol oxidation by dithiocarbamate disulfides directly inhibits processing of the caspase-3 proenzyme, Chem. Res. Toxicol. 10:636. (1997).

    Google Scholar 

  83. C.S. Nobel, M. Kimland, D.W. Nicholson, S. Orrenius and A.F. Slater, Disulfiram is a potent inhibitor of proteases of the caspase family, Chem. Res. Toxicol. 10:1319 (1997b).

    PubMed  CAS  Google Scholar 

  84. M. Woo, R. Hakem, M.S. Soengas, G.S. Duncan, A. Shahinian, D. Kagi, A. Hakem, M. McCurrach, W. Khoo, S.A. Kaufman, G. Senaidi, T. Howard, S.W. Lowe and T.W. Mak, Essential contribution of caspase 3/CPP32 to apoptosis and its associated nuclear changes, Genes Dev. 12:806 (1998).

    PubMed  CAS  Google Scholar 

  85. M. Enari, H. Sakahira, H. Yokoyama, K. Okawa, S. lwamatsu and A. Nagata, A caspase-activated DNase that degrades DNA during apoptosis and its inhibitor ICAD, Nature 391:43 (1998).

    PubMed  CAS  Google Scholar 

  86. H. Sakahira, M. Enari and S. Nagata, Cleavage of CAD inhibitor in CAD activation and DNA degradation during apoptosis, Nature 391:96 (1998).

    PubMed  CAS  Google Scholar 

  87. X. Liu, H. Zou, C. Slaughter and X. Wang, DFF, a heterodimeric protein that functions downstream of caspase-3 to trigger DNA fragmentation during apoptosis, Cell 89: 175 (1997).

    Google Scholar 

  88. L.A. Casciola-Rosen, D.K. Miller, G.I. Anhalt and A. Rosen, Specific cleavage of the 70-kDa protein component of the UI small nuclear ribonucleoprotein is a characteristic biochemical feature of apoptotic cell death, J. Biol. Chem. 269:30757 (1994).

    PubMed  CAS  Google Scholar 

  89. Y.A. Lazebnik, S.H. Kaufmann, S. Desnoyers, G.G. Poirier and W.C. Earnshaw, Cleavage of poly(ADP-ribose) polymerase by a proteinase with properties like ICE, Nature 371:346 (1994).

    Article  PubMed  CAS  Google Scholar 

  90. Q. Song, S.P. Lees-Miller, S. Kumar, Z. Zhang, D.W. Chan, G.C. Smith, S.P. Jackson, E.S. Alnemri, G. Litwack, K.K. Khanna and M.F. Lavin, DNA-dependent protein kinase catalytic subunit: a target for an ICE-like protease in apoptosis, EMBO J. 15:3238 (1996).

    PubMed  CAS  Google Scholar 

  91. B. An, J.R. Jin, P. Lin and Q.P. Dou, Failure to activate interleukin 1 beta-convertingenzymelikeproteases and to cleaveretinoblastoma protein in drug-resistant cells, FEBS Lett. 399: 158 (1996).

    Article  PubMed  CAS  Google Scholar 

  92. R.U. Janicke, P.A. P.A. Walker, X.Y. Lin and A.G. Porter, Specific cleavage of the retinoblastoma protein by an ICE-like protease in apoptosis, EMBO J. 15:6969 (1996).

    PubMed  CAS  Google Scholar 

  93. T. Ghayur, M. Hugunin, R.V. Talanian, S. Ratnofsky, C. Quinlan, Y. Emoto, P. Pandey, R. Datta, Y. Huang, S. Kharbanda, H. Allen, R. Kamen, W. Wong and D. Kufe, Proteolytic activation of protein kinase C delta by an ICEICED 3-like protease induces characteristics of apoptosis, J. Exp. Med. 184:2399 (1996).

    Article  PubMed  CAS  Google Scholar 

  94. H. Seimiya, T. Mashima, M. Toho and T. Tsuruo, c-Jun NH2-terminal kinase-mediated activation of interleukin-lbeta converting enzyme/CED-3-like protease during anticancer drug-induced apoptosis, J. Biol. Chem. 272:4631 (1997).

    Article  PubMed  CAS  Google Scholar 

  95. R. Ravi, A. Bedi, E.J. Fuchs and A. Bedi, CD95 (Fas)-induced caspase-mediated proteolysis of NF-κB. Cancer Res. 58:882 (1998).

    PubMed  CAS  Google Scholar 

  96. M.P. Mattso, C. Culmsee, Z.F. Yu and S. Camandola, Roles of NF-κB in neuronal survival and plasticity, J. Neurochem. 74:443 (2000).

    Google Scholar 

  97. Z. Xia, M. Dickens, J. Raingeaud, R.J. Davis and M.E. Greenberg, Opposing effects of ERK and JNK-p38 MAP kinases on apoptosis, Science 270:1326 (1995).

    PubMed  CAS  Google Scholar 

  98. S. Camandola, G. Poli and M.P. Mattson, The lipid peroxidation product 4-hydroxy-2,3-nonenal increases AP-1-binding activity through caspase activation in neurons, J. Neurochem. 74: 159 (2000).

    Article  PubMed  CAS  Google Scholar 

  99. T. Hirsch, P. Marchetti, S.A. Susin, B. Dallaporta, N. Zamzami, L. Marzo, M. Geuskens and G. Kroemer, The apoptosis-necrosis paradox. Apoptogenic proteases activated after mitochondrial permeability transition determine the mode of cell death, Oncogene 15:1573 (1997).

    Article  PubMed  CAS  Google Scholar 

  100. S.A. Susin, N. Zamzami, M. Castedo, T. Hirsch, P. Marchetti, A. Macho, E. Daugas, M. Geuskens and G. Kroemer, Bcl-2 inhibits the mitochondrial release of an apoptogenic protease, J. Exp. Med. 184:1331 (1996).

    Article  PubMed  CAS  Google Scholar 

  101. M.P. Mattson, J.N. Keller and J.G. Begley, Evidence for synaptic apoptosis, Exp. Neurol. 153:35 (1998).

    Article  PubMed  CAS  Google Scholar 

  102. S.L. Chan, W.S.T. Griffin and M.P. Mattson, Evidence for caspasemediated cleavage of AMPA receptor subunits in neuronal apoptosis and in Alzheimer’s disease, J. Neurosci. Res. 57:315 (1999).

    Article  PubMed  CAS  Google Scholar 

  103. A. Srinivasan, K.A. Roth, R.O. Sayers, K.S. Shindler, A.M. Wong, L.C. Fritz and K.J. Tomaselli, In situ immunodetection of activated caspase-3 in apoptotic neurons in the developing nervous system, Cell Death Differ. 5:1004 (1998).

    Article  PubMed  CAS  Google Scholar 

  104. E. Masliah, M. Mallory, M. Alford, S. Tanaka and L.A. Hansen, Caspase dependent DNA fragmentation might be associated with excitotoxicity in Alzheimer disease, J. Neuropathol. Exp. Neurol. 57:1041 (1998).

    PubMed  CAS  Google Scholar 

  105. C. Stadelmann, T.L. Deckwerth, A. Srinivasan, C. Bancher, W. Bruck, K. Jellinger and H. Lassmann, Activation of caspase-3 in single neurons and autophagic granules of granulovacuolar degeneration in Alzheimer’s disease. Evidence for apoptotic cell death, Am. J. Pathol 155:1459 (1999).

    PubMed  CAS  Google Scholar 

  106. K. Kuida, T.S. Zheng, S. Na, C. Kuan, D. Yang, H. Karasuyama, P. Rakic and R.A. Flavell, Decreased apoptosis in the brain and premature lethality in CPP32-deficient mice, Nature 384:368 (1996).

    Article  PubMed  CAS  Google Scholar 

  107. K. Kuida, T.F. Haydar, C.Y. Kuan, Y. Gu, C. Taya, H. Karasuyama, M.S. Su, P. Rakic and R.A. Flavell, Reduced apoptosis and cytochrome c-mediated caspase activation in mice lacking caspase 9, Cell 94:325 (1998).

    Article  PubMed  CAS  Google Scholar 

  108. S. Wang, M. Miura, Y.K. Jung, H. Zhu and E. Li, J. Yuan, Murine caspase-11, an ICE-interacting protease, is essential for the activation of ICE, Cell 92501 (1998).

    Google Scholar 

  109. K.A. Roth, C. Kuan, T.F. Haydar, C. D’sa-Eipper, K.S. Shindler, T.Z. Zheng, K. Kuida, R.A. Flavell and P. Rakic, Epistatic and independent functions of caspase-3 and Bcl-XL in developmental programmed cell death, Proc. Natl. Acad. Sci. U.S.A. 97:466 (2000).

    Article  PubMed  CAS  Google Scholar 

  110. E. E. Varfolomeev, M. Schuchmann, V. Luria, N. Chiannilkulchai, J.S. Beckmann, I.L. Mett, D. Rebrikov, V.M. Brodianski, O.C. Kemper, O. Kollet, T. Lapidot, D. Soffer, T. Sobe, K.B. Avraham, T. Goncharov, H. Holtmann, P. Lonai and D. Wallach, Targeted disruption of the mouse Caspase 8 gene ablates cell death induction by the TNF receptors, Fas/Apol, and DR3 and is lethal prenatally, Immunity 9:267 (1998).

    Article  PubMed  CAS  Google Scholar 

  111. R.M. Friedlander, V. Gagliardini, H. Hara, K.B. Fink, W. Li, G. MacDonald, M.C. Fishman, A.H. Greenberg, M.A. Moskowitz and J. Yuan, Expression of a dominant negative mutant of interleukin-I beta converting enzyme in transgenic mice prevents neuronal cell death induced by trophic factor withdrawal and ischemic brain injury, J. Exp. Med. 185:933 (1997).

    Article  PubMed  CAS  Google Scholar 

  112. Q.X. Li, G. Evin, D.H. Small, G. Multhaup, K. Beyreuther and C.L. Masters, Proteolytic processing of Alzheimer’s disease beta A4 amyloid precursor protein in human platelets, J. Biol. Chem. 270:14140 (1995).

    PubMed  CAS  Google Scholar 

  113. K. Kuida, J.A. Lippke, G. Ku, M.W. Hardin, D.J. Livingston, M.S. Su and R.A. Flavell, Altered cytokine export and apoptosis mice deficient in interleukin-I beta converting enzyme, Science 267:2000 (1995).

    PubMed  CAS  Google Scholar 

  114. T. Ghayur, S. Banerjee, M. Hugunin, D. Butler D, L. Herzog, A. Carter, L. Quintal, L. Sekut, R. Talanian, M. Paskind, W. Wong, R. Kamen, D. Tracey and H. Allen, Caspase-I processes IFN-gammainducing factor and regulates LPS-induced IFN-gamma production, Nature 386619 (1997).

    Google Scholar 

  115. Q. Guo, W. Fu, J. Xic, H. Luo, S.F. Sells, J.W. Geddes, V. Bondada, V.M. Rangnekar and M.P. Mattson, Par-4 is a mediator of neuronal degeneration associated with the pathogenesis of Alzheimer disease, Nat. Med. 4:957 (1998).

    Article  PubMed  CAS  Google Scholar 

  116. M.P. Mattson, J. Partin and J.G. Begley, Amyloid beta-peptide induces apoptosis-related events in synapses and dendrites, Brain Res. 807:167 (1998).

    Article  PubMed  CAS  Google Scholar 

  117. Q. Guo, L. Sebastian, B.L. Sopher, M.W. Miller, C.B. Ware, G.M. Martin and M.P. Mattson, Increased vulnerability of hippocampal neurons from presenilin-I mutant knock-in mice to amyloid beta-peptide toxicity: central roles of superoxide production and caspase activation, J. Neurochem. 72:1019 (1999b).

    Article  CAS  Google Scholar 

  118. V.O. Ona, M. Li, J.P. Vonsattel, L.J. Andrews, S.Q. Khan, W.M. Chung, AS. Frey, AS. Menon, X.J. Li, P.E. Stieg, J. Yuan, J.B. Penney, A.B. Young, J.H. Cha and R.M. Friedlander, Inhibition of caspase-1 slows disease progression in a mouse model of Huntington’s disease, Nature 399:263 (1999).

    PubMed  CAS  Google Scholar 

  119. B. Cutillas, M. Espejo, J. Gil, I. Ferrer and S. Ambrosio, Caspase inhibition protects nigral neurons against 6-OHDA-induced retrograde degeneration, Neuroreport 10:2605 (1999).

    PubMed  CAS  Google Scholar 

  120. R. Siman, M. Baudry and G. Lynch, Purification from synaptosomal plasma membranes of calpain 1, a thiol protease activated by micromolar calcium concentrations, J. Neurochem. 41:950 (1983).

    PubMed  CAS  Google Scholar 

  121. H. Sorimachi, S. Is’hiura and K. Suzuki, Structure and physiological function of calpains, Biochem. J. 328:721 (1997).

    PubMed  CAS  Google Scholar 

  122. R.L. Mellgren, Calcium-dependent proteases: an enzyme system active at cellular membranes? FASEB J. 1:10 (1987).

    Google Scholar 

  123. T. Hamakubo, R. Kannagi, T. Murachi and A. Matus, Distribution of calpains I and II in rat brain, J. Neurosci. 6:3103 (1986).

    PubMed  CAS  Google Scholar 

  124. R.A. Nixon, Fodrin degradation by calcium-activated neutral proteinase (CANP) in retinal ganglion cell neurons and optic glia: preferential localization of CANP activities in neurons, J. Neurosci. 6: 1264 (1986).

    PubMed  CAS  Google Scholar 

  125. K. Onizuka, M. Kunimatsu, Y. Ozaki, K. Muramatsu, M. Sasaki and H. Nishino, Distribution of mucalpain proenzyme in the brain and other neural tissues in the rat, Brain Res. 697:179 (1995).

    Article  PubMed  CAS  Google Scholar 

  126. H. Sofimachi, T.C. Saido and K. Suzuki, New era of calpain research. Discovery of tissue-specific calpains, FEBS Lett. 343:l–5. (1994).

    Google Scholar 

  127. H. Blanchard, P. Grochulski, Y. Li, J.S. Arthur, P.L. Davies, J.S. Elce and N.I. Cygler, Structure of a calpain Ca (.2 +)-binding domain reveals a novel EF-hand and Ca (2+)-induced conformational changes, Nat. Struct. Biol. 4:532 (1997).

    Article  PubMed  CAS  Google Scholar 

  128. D.E. Goll, V.F. Thompson, R.G. Taylor and T. Zalewska, Is calpain activity regulated by membranes and autolysis or by calcium and calpastatin? Bioessays 14:549 (1992).

    Article  PubMed  CAS  Google Scholar 

  129. T.C. Saido, H. Sorimachi and K. Suzuki, Calpain: new perspectives in molecular diversity and physiological-pathological involvement, FASEB J. 8:814 (1994).

    PubMed  CAS  Google Scholar 

  130. K. Suzuki, S. Imajoh, Y. Emori, H. Kawasaki, Y. Minami and S. Ohno, Calcium-activated neutral protease and its endogenous inhibitor. Activation at the cell membrane and biological function, FEBS Lett. 220:271 (1987).

    Article  PubMed  CAS  Google Scholar 

  131. T. Fukuda, E. Adachi, S. Kawashima, L. Yoshiya and P.H. Hashimoto, Immunohistochemical distribution of calcium-activated neutral proteinases and endogenous CANP inhibitor in the rabbit hippocampus, J. Comp. Neurol. 302:100 (1990).

    Article  PubMed  CAS  Google Scholar 

  132. D.E. Croall and G.N. DeMartino, Calcium-activated neutral protease (calpain) system: structure, function, and regulation, Physiol. Rev. 71:813 (1991).

    PubMed  CAS  Google Scholar 

  133. W.N. Kuo, U. Ganesan, D.L. Walbey, D.L. Davis, K. Allen and L.K. McCall, Modulation of the activity of calpain 11 by phosphorylation—changes in the proteolysis of cyclic AMP-dependent protein kinase (peak 11, DEAE), Appl. Theor. Electrophor. 13:317 (1993).

    Google Scholar 

  134. F. Salamino, R. De Tuilio, M. Michetti, P. Mengotti, E. Melloni and S. Pontremoli, Modulation of calpastatin specificity in rat tissues by reversible phosphorylation and dephosphorylation, Biochem. Biophys. Res. Commun. 199:1326 (1994).

    Article  PubMed  CAS  Google Scholar 

  135. R.T. Bartus, P.J. Elliott, N.J. Hayward, R.L. Dean, S. Harbeson, J.A. Straub, Z. Li and J.C. Powers, Calpain as a novel target for treating acute neurodegenerative disorders, Neurol. Res. 17:249 (1995).

    PubMed  CAS  Google Scholar 

  136. K.S. Lee, H. Yanamoto, A. Fergus, S.C. Hong, S.D. Kang, B. Cappelletto, T. Toyoda, N.F. Kassell, M. Leist, C. Volbracht, S. Kuhnle, E. Fava, E. Fernando-May and P. Nicotera, Caspase-mediated apoptosis in neuronal excitotoxicity, triggered by nitric oxide, Mol. Med. 3:750 (1997).

    Google Scholar 

  137. K. Saito, J.S. Elce, J.E. Hamos and R.A. Nixon, Widespread activation of calcium-activated neutral proteinase (calpain) in the brain in Alzheimer disease: a potential molecular basis for neuronal degeneration, Proc. Natl. Acad. Sci. U.S.A. 90:2628 (1993).

    PubMed  CAS  Google Scholar 

  138. R.T. Bartus, R.L. Dean, K. Cavanaugh, D. Eveleth, D.L. Carriero and G. Lynch, Time-related neuronal changes following middle cerebral artery occlusion: implications for therapeutic intervention and the role of calpain, J. Cereb. Blood Flow Metab. 15:969 (1995).

    PubMed  CAS  Google Scholar 

  139. K.S. Lee, S. Frank, P. Vanderklish, A. Arai and G. Lynch, Inhibition of proteolysis protects hippocampal neurons from ischemia, Proc. Natl. Acad. Sci. U.S.A. 88:7233 (1991).

    PubMed  CAS  Google Scholar 

  140. R. A. Nixon, K.I. Saito, F. Grynspan, W.R. Griffin, S. Katayama, T. Honda, P.S. Mohan, T.B. Shea and M. Beermann, Calcium-activated neutral proteinase (calpain) system in aging and Alzheimer’s disease, Ann. N.Y. Acad. Sci. 747:77 (1994).

    PubMed  CAS  Google Scholar 

  141. J. Li, L.K. Nixon, A. Messer, S. Berman and S. Bursztajn, Altered gene expression for calpain/calpastatin system in motor neuron degeneration (Mnd) mutant mouse brain and spinal cord, Brain Res. Mol. Brain Res. 53:174 (1998).

    PubMed  CAS  Google Scholar 

  142. A. Mouatt-Prigent, J.O. Karisson, Y. Agid and E.C. Hirsch, Increased M-calpain expression in the mesencephalon of patients with Parkinson’s disease but not in other neurodegenerative disorders involving the mesencephalon: a role in nerve cell death? Neuroscience 73:979 (1996).

    Article  PubMed  CAS  Google Scholar 

  143. M.P. Mattson, B. Cheng, D. Davis, I. Bryant, I. Lieberburg and R.E. Rydel, b-amyloid peptides destabilize calcium homeostasis and render human cortical neurons vulnerable to excitotoxicity, J. Neurosci. 12:376 (1992).

    PubMed  CAS  Google Scholar 

  144. R.J. Mark, K. Hensley, D.A. Butterfield and M.P. Mattson, Amyloid b-peptide impairs ion-motive ATPase activities: evidence for a role in loss of neuronal Ca2+ homeostasis and cell death, J. Neurosci. 15:6239 (1995).

    PubMed  CAS  Google Scholar 

  145. M.P. Mattson, Cellular actions of beta-amyloid precursor protein and its soluble and fibrillogenic derivatives, Physiol. Rev. 77: 1081 (1997).

    PubMed  CAS  Google Scholar 

  146. Q. Guo, W. Fu, B.L. Sopher, M.W. Miller, C.B. Ware, G.M. Martin and M.P. Mattson, Increased vulnerability of hippocampal neurons to excitotoxic necrosis in presenilin-I mutant knock-in mice, Nat. Med. 5:101 (1999).

    PubMed  CAS  Google Scholar 

  147. K. Shinozaki, K. Maruyama, H. Kume, T. Tomita, T.C. Saido, T. Iwatsubo and K. Obata. The presenilin 2 loop domain interacts with the mu-calpain C-terminal region, Int. J. Mol. Med. 1:797 (1998).

    PubMed  CAS  Google Scholar 

  148. L. Zhang, L. Song and E.M. Parker, Calpain inhibitor I increases ß-amyloid peptide production by inhibiting the degradation of the substrate of gamma-secretase. Evidence that substrate availability limits ß-amyloid peptide production, J. Biol. Chem. 274:8966 (1999).

    PubMed  CAS  Google Scholar 

  149. M.I. Pom-Ares, A. Samali and S. Orrenius, Cleavage of the calpain inhibitor, calpastatin, during apoptosis, Cell Death Differ. 5:1028 (1998).

    Google Scholar 

  150. M.K. Squier, A.C. Miller, A.M. Malkinson and J.J. Cohen, Calpain activation in apoptosis, J. Cell. Physiol. 159:229 (1994).

    Article  PubMed  CAS  Google Scholar 

  151. P.G. Villa, W.J. Henzel, M. Sensenbrenner, C.E. Henderson and B. Pettmann, Calpain inhibitors, but not caspase inhibitors, prevent actin proteolysis and DNA fragmentation during apoptosis, J. Cell. Sci. 111:713 (1998).

    PubMed  CAS  Google Scholar 

  152. M.P. Mattson and W. Duan, “Apoptotic” biochemical cascades in synaptic compartments: roles in adaptive plasticity and neurodegenerative disorders, J. Neurosci. Res. 58:152 (1999).

    PubMed  CAS  Google Scholar 

  153. M.P. Mattson, Neurotransmitters in the regulation of neuronal cytoarchitecture, Brain Res. 472:179 (1988).

    PubMed  CAS  Google Scholar 

  154. I. Izquierdo and J.H. Medina, Memory formation: the sequence of biochemical events in the hippocampus and its connection to activity in other brain structures, Neurobiol. Learn. Mem. 68:285 (1997).

    PubMed  CAS  Google Scholar 

  155. S. Fukuda, K. Harada, M. Kunimatsu, T. Sakabe and K. Yoshida, Postischemic reperfusion induces alpha-fodrin proteolysis by m-calpain in the synaptosome and nucleus in rat brain, J. Neurochem. 7:25 (1998).

    Google Scholar 

  156. J.M. Roberts-Lewis, M.J. Savage, V.R. Marcy, L.R. Pinsker and R. Siman, Immunolocalization of calpain 1-mediated spectrin degradation to vulnerable neurons in the ischemic gerbil brain, J. Neurosci. 14:3934 (1994).

    PubMed  CAS  Google Scholar 

  157. J.W. Hell, R.E. Westenbroek, U. Breeze, K.K. Wang, C. Chavkin and W.A. Catterall, N-methyl-D-aspartate receptor-induced proteolytic conversion of postsynaptic class C L-type calcium channels in hippocampal neurons, Proc. Natl. Acad. Sci. U.S.A. 93:3362 (1996).

    Article  PubMed  CAS  Google Scholar 

  158. P. Juin, M. Pelletier, L. Oliver, K. Tremblais, M. Gregoire, K. Meflah and F.M. Vallette, Induction of a caspase-3-like activity by calcium in normal cytosolic extracts triggers nuclear apoptosis in a cell-free system, J. Biol. Chem. 273:17559 (1998).

    Article  PubMed  CAS  Google Scholar 

  159. S.L. Chan, S.P. Tammatiello, S. Estus and M.P. Mattson, Par-4 mediates trophic factor withdrawal-induced apoptosis of hippocampal neurons: actions prior to mitochondrial dysfunction and caspase activation, J. Neurochem. (1999).

    Google Scholar 

  160. K. Furukawa and M.P. Mattson. Cytochalasins protect hippocampal neurons against amyloid ß-peptide toxicity: evidence that actin depolymerization suppresses Ca2+ influx. J Neurochem 65: 1061–1068. (1995a).

    Google Scholar 

  161. K. Furukawa, V.L. Smith-Swintosky and M.P. Mattson, Evidence that actin depolymerization protects hippocampal neurons against excitotoxicity by stabilizing [Ca2+]I, Exp. Neurol. 133:153 (1995).

    Article  PubMed  CAS  Google Scholar 

  162. K. Furukawa, W. Fu, Y. Li, W. Witke, D.J. Kwiatkowski and M.P. Mattson, The actin-severing protein gelsolin modulates calcium channel and NMDA receptor activities and vulnerability to excitotoxicity in hippocampal neurons, J. Neurosci. 17:8178 (1997).

    PubMed  CAS  Google Scholar 

  163. A. Dosemeci and T.S. Reese, Effect of calpain on the composition and structure of postsynaptic densities, Synapse 20:91 (1995).

    Article  PubMed  CAS  Google Scholar 

  164. X. Bi, G. Tocco and M. Baudry, Calpain-mediated regulation of AMPA receptors in adult rat brain, NeuroReport 6:61 (1994).

    PubMed  CAS  Google Scholar 

  165. X. Bi, V. Chang, E. Molnar, R.A. Mcllhinney and M. Baudry, The C-terminal domain of glutamate receptor subunit I is a target for calpain-mediated proteolysis, Neuroscience 73:903 (1996).

    Article  PubMed  CAS  Google Scholar 

  166. X. Bi, Y. Rong, J. Chen, S. Dang, Z. Wang and M. Baudry, Calpain-mediated regulation of NMDA receptor structure and function, Brain Res. 790:245 (1998).

    Article  PubMed  CAS  Google Scholar 

  167. A. Kishimoto, K. Mikawa, K. Hashimoto, L. Yasuda, S. Tanaka, M. Tominaga, T. Kuroda and Y. Nishizuka, Limited proteolysis of protein kinase C subspecies by calcium-dependent neutral protease (calpain), J. Biol. Chem. 264:4088 (1989).

    PubMed  CAS  Google Scholar 

  168. L.D. Dwyer, A.C. Miller, A.L. Parks, S. Jake, and A.M. Malkinson, Calpain-induced downregulation of activated protein kinase C-alpha affects lung epithelial cell morphology, Am. J. Physiol. 266:L569 (1994).

    PubMed  CAS  Google Scholar 

  169. P. Cooray, Y. Yuan, S. M. Schoenwaelder, C.A. Mitchell, H.H. Salem and S.P. Jackson, Focal adhesion kinase (ppl25FAK) cleavage and regulation by calpain, Biochem. J. 318:41 (1996).

    PubMed  CAS  Google Scholar 

  170. V.L. Cryns, Y. Byun, A. Rana, H. Mellor, K.D. Lustig, L. Ghanem, P.J. Parker, M.W. Kirschner and J. Yuan, Specific proteolysis of the kinase protein kinase C-related kinase 2 by caspase-3 during apoptosis. Identification by a novel, small pool expression cloning strategy, J. Biol. Chem. 272:29449 (1997).

    Article  PubMed  CAS  Google Scholar 

  171. R. Datta, H. Kojima, K. Yoshida and D. Kufe, Caspase-3-mediated cleavage of protein kinase C theta in induction of apoptosis, J. Biol. Chem. 272:20317 (1997).

    Article  PubMed  CAS  Google Scholar 

  172. L.P. Wen, J.A. Fahmi, S. Troie, J.L. Guan, K. Orth and G.D. Rosen, Cleavage of focal adhesion kinase by caspases during apoptosis, J. Biol. Chem. 272:26056 (1997).

    Article  PubMed  CAS  Google Scholar 

  173. B. Levkau, B. Herren, H. Koyama, R. Ross and E.W. Raines, Caspase-mediated cleavage of focal adhesion kinase pp I25FAK and disassembly of focal adhesions in human endothelial cell apoptosis, J. Exp. Med. 187:579 (1998).

    Article  PubMed  CAS  Google Scholar 

  174. K.K. Wang, B.D. Roufogalis and A. Villalobo, Characterization of the fragmented forms of calcineurin produced by calpain I, Bio. Chem. Cell Biol. 67:703 (1989).

    CAS  Google Scholar 

  175. J.B. Denny, J. Polan-Curtain, A. Ghuman, M.J. Wayner and D.L. Armstrong, Calpain inhibitors block long-term potentiation, Brain Res. 534:317 (1990).

    PubMed  CAS  Google Scholar 

  176. F.G. Giancotti and E. Ruoslahti, Integrin signaling, Science 285:1028. (1999)

    Article  PubMed  Google Scholar 

  177. M.S. Grotewiel, C.D. Beck, K.H. Wu and X.R. Zhu, Integrin-mediated short-term memory in Drosophila, Nature 391:455 (1998).

    PubMed  CAS  Google Scholar 

  178. U. Staubli, D. Chun and G. Lynch, Time-dependent reversal of long-term potentiation by an integrin antagonist, J. Neurosci. 8:3460 (1998)

    Google Scholar 

  179. N. Boudreau, C.J. Sympson, Z. Werb and M.J. Bissell, Suppression of ICE and apoptosis in mammary epithelial cells by extracellular matrix, Science. 267:891 (1995).

    PubMed  CAS  Google Scholar 

  180. D.S. Gary and M.P. Mattson, Integrin signaling via the PI3 kinase—Akt pathway increases neuronal resistance to glutamate-induced apoptosis, J. Neurosci. Submitted. (2000)

    Google Scholar 

  181. R.E. Bachelder, M.J. Ribick, A. Marchetti, R. Falcioni, S. Soddu, K.R. Davis and A.M. Mercurio, p53 inhibits alpha 6 beta 4 integrin survival signaling by promoting the caspase 3-dependent cleavage of AKT/PKB, J.Cell. Bioi. 147:1063 (1999).

    CAS  Google Scholar 

  182. E. Fujita, Y. Kouroku, Y. Miho, T. Tsukahara, S. Ishiura and T. Momoi, Wortmannin enhances activation of CPP32 (Caspase-3) induced by TNF or anti-Fas, Cell Death Differ. 5:289 (1998).

    Article  PubMed  CAS  Google Scholar 

  183. L. Lan and N.S. Wong, Phosphatidylinositol 3-kinase and protein kinase C are required for the inhibition of caspase activity by epidermal growth factor, FEBS Lett. 444:90 (1999).

    Article  PubMed  CAS  Google Scholar 

  184. K. Furukawa, S.W. Barger, E.M. Blalock and M.P. Mattson, Activation of K+ channels and suppression of neuronal activity by secreted ß-amyloid-precursor protein, Nature 379:74 (1996).

    Article  PubMed  CAS  Google Scholar 

  185. A. Ishida, K. Furukawa, J.N. Keller and M.P. Mattson, Secreted form of ß-amyloid precursor protein shifts the frequency dependency for induction of LTD and enhances LTP in hippocampal slices, NeuroReport 8:2133 (1997).

    PubMed  CAS  Google Scholar 

  186. M.P. Mattson, B. Cheng, A.R. Culwell, F.S. Esch, I. Lieberburg and R.E. Rydel, Evidence for excitoprotective and intraneuronal calcium-regulating roles for secreted forms of the ß-amyloid precursor protein, Neuron 10:243 (1993).

    Article  PubMed  CAS  Google Scholar 

  187. V.L. Smith-Swintosky, L.C. Pettigrew, S.D. Craddock, A.R. Culwell, R.E. Rydel, and M.P. Mattson, Secreted forms of beta-amyloid precursor protein protect against ischemic brain injury, J. Neurochem. 63:781 (1994).

    PubMed  CAS  Google Scholar 

  188. F.G. Gervais, D. Xu, G. S. Robertson, J.P. Vaillancourt, Y. Zhu, J. Huang, A. LeBlanc, D. Smith, M. Rigby, M.S. Shearman, E.E. Clarke, H. Zheng, L.H. Van Der Ploeg, S.C. Ruffolo, N.A. Thomberry, S. Xanthoudakis, R.J. Zamboni, S. Roy and D.W. Nicholson, Involvement of caspases in proteolytic cleavage of Alzheimer’s amyloid-ß precursor protein and amyloidogenic A ß peptide formation, Cell 97:395 (1999).

    Article  PubMed  CAS  Google Scholar 

  189. A. Weidemann, K. Paliga, U. Drrwang, F.B. Reinhard, 0. Schuckert, G. Evin and C.L. Masters, Proteolytic processing of the Alzheimer’s disease amyloid precursor protein within its cytoplasmic domain by caspase-like proteases, J. Bioi. Chem. 274:5823 (1999).

    CAS  Google Scholar 

  190. R. Siman, J.P. Card and L.G. Davis, Proteolytic processing of ß-amyloid precursor by calpain 1, J. Neurosci. 10:2400 (1990).

    PubMed  CAS  Google Scholar 

  191. M.P. Mattson and Q. Guo, The presenilins, Neuroscientist 5:112 (1999).

    CAS  Google Scholar 

  192. Q. Guo, K. Furukawa, B.L. Sopher, D.G. Pham, J. Xie, N. Robinson, G.M. Martin and M.P. Mattson, Alzheimer’s PS-1 mutation perturbs calcium homeostasis and sensitizes PC12 cells to death induced by amyloid ß-peptide, NeuroReport 8:379 (1996).

    PubMed  CAS  Google Scholar 

  193. T.W. Kim, W.H. Pettingell, Y.K. Jung, D.M. Kovacs and R.E. Tanzi, Alternative cleavage of Alzheimer-associated presenilins during apoptosis by a caspase-3 family protease, Science 277:373 (1997).

    Article  PubMed  CAS  Google Scholar 

  194. H. Loetscher, U. Deuschle, M. Brockhaus, D. Reinhardt, P. Nelboeck, J. Mous, J. Grunberg, C. Haass and H. Jacobsen, Presenilins are processed by caspase-type proteases, J. Biol. Chem. 272:20655 (1997).

    Article  PubMed  CAS  Google Scholar 

  195. M.P. Mattson, S.L Chan, F.M. LaFerla, M. Leissring and J.D. Geiger, Endoplasmic reticulum calcium signaling in neuronal plasticity and neurodegenerative disorders, Trends Neurosci. in press. (2000).

    Google Scholar 

  196. Y.P. Goldberg, D.W. Nicholson, D.M. Rasper, M.A. Kalchman, H.B. Koide, R.K. Graham, M. Bromm, P. Kazemi-Esfarjani, N.A. Thornberry, J.P. Vaillancourt and M.R. Hayden, Cleavage of huntingtin by apopain, a proapoptotic cysteine protease, is modulated by the polyglutamine tract, Nat. Genet. 13:442 (1996).

    Article  PubMed  CAS  Google Scholar 

  197. T. Miyashita, Y. Okamura-Oho, Y. Mito, S. Nagafuchi and M. Yamada, Dentatorubral pallidoluysian atrophy (DRPLA) protein is cleaved by caspase-3 during apoptosis, J. Biol. Chem. 272:29238 (1997).

    Article  PubMed  CAS  Google Scholar 

  198. C.L. Wellington, L.M. Ellerby, A.S. Hackam, R.L. Margolis, M.A. Tfifiro, R. Singaraja, K. McCutcheon, G.S. Salvesen, S.S. Propp, M. Bromm, K.J. Rowland, T Zhang, D. Rasper, S. Roy, N. Thomberry, L. Pinsky, A. Kakizuka, C.A. Ross, D.W. Nicholson, D.E. Bredesen and M.R. Hayden, Caspase cleavage of gene products associated with triplet expansion disorders generates truncated fragments containing the polyglutamine tract, J. Biol. Chem. 273:9158 (1998).

    Article  PubMed  CAS  Google Scholar 

  199. G. Lynch and M. Baudry, Brain spectrin, calpain and long-term chances in synaptic efficacy, Brain Res. Bull. 18:809 (1987).

    Article  PubMed  CAS  Google Scholar 

  200. T. Suzuki, K. Okumura-Noji, A. Ogura, R. Tanaka, K. Nakamura and Y. Kudo, Calpain may produce a Ca(2+)-independent form of kinase C in long-term potentiation, Biochem. Biophys. Res. Commun. 189:1515 (1992).

    PubMed  CAS  Google Scholar 

  201. K. Furukawa, B.L. Sopher, R.E. Rydel, J.G. Begley, D.G. Pham, G.M. Martin, M. Fox and M.P. Mattson, Increased activity-regulating and neuroprotective efficacy of alpha-secretase-derived secreted amyloid precursor protein conferred by a C-terminal heparin-binding domain, J. Neurochem. 67:1882 (1996).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

Mattson, M.P., Chan, S.L. (2002). Cysteine Proteases, Synaptic Degeneration and Neuroodegenerative Disorders. In: Lajtha, A., Banik, N.L. (eds) Role of Proteases in the Pathophysiology of Neurodegenerative Diseases. Springer, Boston, MA. https://doi.org/10.1007/0-306-46847-6_9

Download citation

  • DOI: https://doi.org/10.1007/0-306-46847-6_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-46579-6

  • Online ISBN: 978-0-306-46847-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics