Skip to main content

Proteolysis of Mutant Gene Products are Key Mechanisms in Neurodegenerative Diseases

  • Chapter
  • 113 Accesses

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D.J. Selkoe The cell biology of β-amyloid precursor protein and presenilin in Alzheimer’s disease, Trends Cell Biol. 8:447 (1998).

    Article  PubMed  CAS  Google Scholar 

  2. D.L. Price, R.E. Tanzi, D.R. Boirchelt, and S.S. Sisodia, Alzheimer’s disease: genetic studies and transgenic models, Ann. Rev. Genet. 32:461 (1998).

    PubMed  CAS  Google Scholar 

  3. D.L. Price, S.S. Sisodia, and D.R. Borchelt, Genetic neurodegenerative diseases; the human illness and transgenic models, Science 282:1079 (1998).

    Article  PubMed  CAS  Google Scholar 

  4. The Huntington’s Disease Collaborative Research Group, A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s Disease chromosomes. Cell 72:971 (1993).

    Google Scholar 

  5. J.P.G. Vonsattel and M. DiFiglia, Huntington disease,J. Neuropathol. Exp. Neurol. 57:369 (1998).

    PubMed  CAS  Google Scholar 

  6. M. DiFiglia, E. Sapp, K.O. Chase, S.W. Davies, G.P. Bates, J.P. Vonsattel, and N. Aronin, Aggregation of huntingtin in neuronal intranuclear inclusions and dystrophic neurites in brain, Science 277:1990 (1997).

    Article  PubMed  CAS  Google Scholar 

  7. S.W. Davies, M. Turmaine, B.A. Cozens, M. DiFiglia, A.H. Sharp, C.A. Ross, E. Scherzinger, E.E. Wanker, L. Mangiarini, and G.P. Bates, Formation of neuronal intranuclear inclusions underlies the neurological dysfunction in mice transgenic for the HD mutation, Cell 90:537 (1997).

    Article  PubMed  CAS  Google Scholar 

  8. E. Scherzinger, R. Lurz, M. Turmaine, L. Mangiarini, B. Hollenbach, R. Hasenbank, G.P. Bates, S.W. Davies, H. Lehrach, and E.E. Wanker, Huntingtin-encoded polyglutamine expansions form amyloid-like protein aggregates in vitro and in vivo, Cell 90:549 (1997).

    Article  PubMed  CAS  Google Scholar 

  9. M.H. Polymeropoulos, C. Lavedan, E. Leroy, S.E. Ide, A. Dehejia, A. Dutra, B. Pike, H. Root, J. Rubenstein, R. Boyer, E.S. Stenroos, S. Chandreasekharappa, A. Athanassiadou, T. Papapetropoulos, W.G. Johnson, A.M. Lazzarini, R.C. Duvoisin, G. Iorio L.I. Golbe, R.L. Nussbaum, Mutation in the alpha-synuclein gene identified in families with Parkinson’s disease, Science 276:2045 (1997).

    Article  PubMed  CAS  Google Scholar 

  10. R. Kruger, W. Kuhn, T. Muller, D. Woitalla, M. Graeber, S. Kosel, H. Przuntek, J.T. Epplen, L. Schols, and O. Riess, Ala30Pro mutation in the gene encoding alpha-synuclein in Parkinson’s disease, Nat. Genet. 18:106 (1998).

    PubMed  CAS  Google Scholar 

  11. K. Ueda, H.J. Fukushima, E. Masliah, Y. Xia, A. Iwai, M. Yoshimoto, D.A.C. Otero, J. Kondo, Y. Ihara, and T. Saitoh, Molecular cloning of cDNA encoding an unrecognized component of amyloid in Alzheimer’s disease. Proc. Natl. Acad. Sci. USA 90:11282 (1993).

    PubMed  CAS  Google Scholar 

  12. A. Iwai, E. Masliah, M. Yoshimoto, N. Ge, L. Flanagan, H.A. Rohan de Silva, A, Kittel, and T. Saitoh, The precursor protein of non-Aβ component of Alzheimer’s disease amyloid is a presynaptic protein of the central nervous system, Neuron 14:467 (1995).

    Article  PubMed  CAS  Google Scholar 

  13. R. Jakes, M.G. Spillantini, and M. Goedert, Identification of two distinct synucleins from human brain, FEBS Lett. 345:27 (1994).

    Article  PubMed  CAS  Google Scholar 

  14. A. Iwai. M. Yoshimoto, E. Masliah, and T. Saitoh, Non-Aβ component of Alzheimer’s disease amyloid (NAC) is amyloidogenic, Biochemistry 34:10139 (1995).

    PubMed  CAS  Google Scholar 

  15. M. Yoshimoto, A. Iwai, D. Kang, D.A.C. Otero, Y. Xia, and T. Saitoh, NACP, the precursor protein of the non-amyloid β/A4 protein (AB) component of Alzheimer’s disease amyloid, binds Aβ and stimulates Aβ aggregation, Proc. Natl. Acad. Sci. USA 92:9141 (1995).

    PubMed  CAS  Google Scholar 

  16. E. Masliah, A. Iwai, M. Mallory, K. Ueda, and T. Saitoh, Altered presynaptic protein NACP is associated with plaque formation and neurodegeneration in Alzheimer’s disease, Am. J. Pathol. 148:201 (1996).

    PubMed  CAS  Google Scholar 

  17. Standaert and Young in The pharmacological basis of therapeutics (Goodman and Gilman), McGraw Hill (1996).

    Google Scholar 

  18. J. Kang, H.G. Lemaire, A. Unterbeck, J.M. Salbaum, C.L. Masters, et al The precursor of Alzheimer’s disease amyloid A4 protein resembles as cell-surface receptor, Nature 325:733 (1987).

    Article  PubMed  CAS  Google Scholar 

  19. N.K. Robakis, N. Ramakrishna, G. Wolfe, and H.M. Wisniewski, Molecular cloning and characterization of a cDNA encoding the cerebrovascular and the neuritic plaque amyloid peptides, Proc. Natl. Acad. Sci. USA 84:4190 (1987).

    PubMed  CAS  Google Scholar 

  20. D. Goldgaber, M.I. Lermena, O.W. McBride, U. Saffiotti, and D.C. Gajdusek, Characterization and chromosomal localization of a cDNA encoding brain amyloid of Alzheimer disease, Science 235:877 (1987).

    PubMed  CAS  Google Scholar 

  21. R.E. Tanzi, J.F. Gusella, P.C. Watkins, G.A.P. Bruns, P. St. George-Hyslop, et al., Amyloid β protein gene: cDNA, mRNA distribution, and genetic linkage near the Alzheimer locus, Science 235:880 (1987).

    PubMed  CAS  Google Scholar 

  22. R.E. Tanzi, A.I. McClatchey, E.D. Lampert, L. Villa-Komaroff, J.F Gusella, et al., Protease inhibitor domain encoded by an amyloid protein precursor mRNA associated with Alzheimer’s disease, Nature 331:528 (1988).

    Article  PubMed  CAS  Google Scholar 

  23. L.L. Iversen, The toxicity in vitro of beta-amyloid protein, Biochem. J. 3111 (1995).

    Google Scholar 

  24. D. Selkoe, Amyloid beta-protein and the genetics of Alzheimer’s disease, J. Biol. Chem. 271:18295 (1996).

    PubMed  CAS  Google Scholar 

  25. Kuo et al., Water soluble Aβ(N-40, N-42) oligomers in normal and Alzheimer’s disease brains, J. Biol. Chem. 271:4077 (1996).

    PubMed  CAS  Google Scholar 

  26. E. Levy, M.D. Carman, I.J. Fernandez-Madrid, M.D. Power, I. Lieberburg, I., et al., Mutation of the Alzheimer’s disease amyloid gene in hereditary cerebral hemorrhage, Dutch type, Science 248: 1124 (1990).

    PubMed  CAS  Google Scholar 

  27. A. Goate, M.C. Chartier-Harlin, M. Mullan, J. Braown, F. Crawford, et al., Segregation of a missense mutation in the amyloid precursor protein gene with familial Alzheimer’s disease, Nature 349:704 (1991).

    Article  PubMed  CAS  Google Scholar 

  28. L. Hendricks, C.M. van Duijn, P. Cras, M. Cruts, W. Van Hul, et al., Presenile dementia and cerebral haemorrhage linked to a mutation at codon 692 of the β-amyloid precursor protein gene, Nat. Genet. 1:218 (1992).

    Google Scholar 

  29. J. Murrell, M. Farlow, B. Ghetti, and M.D. Benson, A mutation in the amyloid precursor protein associated with hereditary Alzheimer’s disease, Science 254:97 (1991).

    PubMed  CAS  Google Scholar 

  30. B.T. Lamb, L.M. Call, H.H. Slunt, K.A. Bardel, A.M. Lawler, et al., Altered metabolism of familial Alzheimer’s disease-linked amyloid precursor protein variants in yeast artificial chromosome transgenic mice, Hum. Mol. Genet. 6:1535 (1997).

    PubMed  CAS  Google Scholar 

  31. K. Hsiao, P. Chapman, S. Nilsen, C. Eckman, Y. Harigaya, et al., Correlative memory deficits, Aβ elevation and amyloid plaques in transgenic mice, Science 274:99 (1996).

    Article  PubMed  CAS  Google Scholar 

  32. C. Sturchler-Pierrat, D. Abramowski, M. Duke, K.H. Wiederhold, C. Mistl, et al., Two amyloid precursor protein transgenic mouse models with Alzheimer disease-like pathology, Proc. Natl. Acad. Sci. USA 94:13287 (1997).

    Article  PubMed  CAS  Google Scholar 

  33. D.R. Borchelt, G. Thinakaran, C.B. Eckman, M.K. Lee, F. Davenport, et al., Familial Alzheimer’s disease-linked presenilin 1 variants elevate Aβ1-42/1-40 ratio in vitro and in vivo. Neuron 17:1005 (1996).

    Article  PubMed  CAS  Google Scholar 

  34. D.R. Borchelt, T. Ratovitski, J. Van Lare, M.K. Lee, V.B. Gonzales, et al., Accelerated amyloid deposition in the brains of transgenic mice co-expressing mutant presenilin 1 and amyloid precursor proteins, Neuron 19:939 (1997).

    Article  PubMed  CAS  Google Scholar 

  35. M. Citron, D. Westaway, W. Xia, G. Carlson, T. Kiehl, et al., Mutant presenilins of Alzheimer’s disease increase production of 42-residue amyloid B-protein in both transfected cells and transgenic mice, Nat. Med. 3:67 (1997).

    Article  PubMed  CAS  Google Scholar 

  36. Tomita et al. Molecular dissection of domains in mutant presenilin 2 that mediate overproduction fo amyloidogenic forms of amyloid beta peptides, J. Biol. Chem. 273:6277 (1998).

    PubMed  CAS  Google Scholar 

  37. R.M. Nitsch, B.E., Flack, R.J., Wurtman, and J.H., Growdon, Release of Alzheimer’s amyloid precursor derivatives stimulated by activation of muscarinic acetylcholine receptors, Science 258:304 (1992).

    PubMed  CAS  Google Scholar 

  38. E.H. Koo, S.S. Sisodia, D.R. Archer, L.J. Martin, A. Weidemann, et al., Precursor of amyloid protein in Alzheimer disease undergoes fast anterograde axonal transport, Proc. Natl. Acad. Sci. USA 87:1561 (1990).

    PubMed  CAS  Google Scholar 

  39. S.S. Sisodia, E.H. Koo, P.N. Hoffman, G. Perry, and D.L. Price, Identification and transport of full-length amyloid precursor proteins in rat peripheral nervous system, J. Neurosci. 13:3136 (1993).

    PubMed  CAS  Google Scholar 

  40. T. Hartmann, S.C. Bieger, B. Bruhl, P. Tienari, N. Ida, D. Allsop, G.W. Roberts, C.L. Masters, C.G. Dotti, K. Unsicker, and K. Beyreuther, Distinct sites of intracellular production of Alzheimer’s disease Aβ40/42 amyloid protein, Nat. Med. 3:1016 (1997).

    PubMed  CAS  Google Scholar 

  41. C. Haass, C.A. Lemere, A. Capell, M. Citron, P. Seubert, et al., The Swedish mutation causes early-onset Alzheimer’s disease by B-secretase cleavage within the secretory pathway, Nat. Med. 1:291 (1995).

    Article  Google Scholar 

  42. V.Y.H. Hook, A. Azaryan, and S.R, Hwang, Proteases and the emerging role of protease inhibitors in prohormone processing, FASEB J. 8:1269 (1994).

    PubMed  CAS  Google Scholar 

  43. H. Gainer, J.T. Russell, and Y.P. Loh, The enzymology and intracellular organization of peptide precursor processing: the secretory vesicle hypothesis, Neuroendocrinology 40:171 (1985).

    PubMed  CAS  Google Scholar 

  44. K. Docherty and D.F. Steiner, Post-translational proteolysis in polypeptide hormone biosynthesis, Ann. Rev. Physiol. 44:625 (1982).

    Article  CAS  Google Scholar 

  45. V.Y.H. Hook, L.E. Eiden, and M.J. Brownstein, A carboxypeptidase processing enzyme for enkephalin precursors, Nature 295:341 (1982).

    Article  PubMed  CAS  Google Scholar 

  46. L.D. Fricker, Peptide processing exopeptidase; amino-and carboxypeptidases involved in with peptide biosynthesis, In: Peptide Biosynthesis and Processing, L.D. Fricker, ed., Boca Raton, CRC Press (1991).

    Google Scholar 

  47. V.Y.H. Hook and S. Yasothomsrikul, Carboxypeptidase and aminopeptidase proteases in proneuropeptide processing, in: Proteolytic and Cellular Mechanisms in Prohormone and Proprorein Processing, V.Y.H. Hook, ed., Austin, Texas, R.G. Landes Co. (1998).

    Google Scholar 

  48. N.G. Seidah, M. Mbikay, M. Marcinkiewicz, and M. Chretien, The mammalian precursor convertases: paralogs of the subtilisin/kexin family of calcium-dependent serine proteinases, in: Proteolytic and Cellular Mechanisms in Prohormone and Proprotein Processing, V.Y.H. Hook, ed., Austin, Texas, R.G. Landes Co. (1998).

    Google Scholar 

  49. F.G. Gervais, D. Xu, G.S. Robertson, J.P. Vaillancourt, Y. Zhu, J. Huang, A. Leblanc, D. Smith, M. Rigby, M.S. Shearman, E.E. Clarke, H. Zheng, et al., Involvement of caspases in proteolytic cleavage of Alzheimer’s amyloid-β precursor protein and amyloidogenic Aβ peptide formation, Cell 97:395 (1999).

    Article  PubMed  CAS  Google Scholar 

  50. C. Haass, Dead end for neurodegeneration, Nature 399:204 (1999).

    Article  PubMed  CAS  Google Scholar 

  51. R. Vassar, B.D. Bennet, S. Babu-Khan, S. Kahn, E.A. Mendiaz, P. Denis, D.B. Teplow, et al., β-Secretase cleavage of Alzheime’s amyloid precursor protein by the transmembrane aspartic protease BACE, Science 286:735 (1999).

    Article  PubMed  CAS  Google Scholar 

  52. S. Sinha, J.P. Anderson, R. Barbour, G.S. Basi, R. Caccavello, D. Davis, M. Doan, et al., Purification and cloning of amyloid precursor protein β-secretase from human brain, Nature 402:537 (1999).

    Article  PubMed  CAS  Google Scholar 

  53. I. Hussain, D. Powell, D.R. Howlett, D.G. Tew, T.D. Meek, C. Chapman, I.S. Gloger, et al., Identification of a novel aspartic protease (Asp2) as β-secretase, Mol. Cell. Neurosci. 14:419 (1999).

    Article  PubMed  CAS  Google Scholar 

  54. R. Yan, M.J. Bienkowski, M.E. Shuck, H. Miao, M.C. Tory, A.M. Pauley, J.R. Brashler, et al., Membrane-anchored aspartyl protease with Alzheimer’s disease beta-secretase activity, Nature 402:533 (1999).

    Article  PubMed  CAS  Google Scholar 

  55. P.S. Harper, ed., Huntington’s Disease (second ed.). W.B. Saunders, London, UK, (1996).

    Google Scholar 

  56. Y.P. Goldberg, B. Kremer, S.E. Andrew, J. Theilmann, R.K. Graham, F. Squitieri, H. Telenius, S. Adam, K.A. Sajoo, et al., Molecular analysis of new mutations for Huntington’s disease: intermediate alleles and sex of origin effects, Nat. Gen. 5:174 (1993).

    CAS  Google Scholar 

  57. F. Vogel and A.G. Motuksky, Human Genetics (seconded.), Springer Verlag, New York (1986).

    Google Scholar 

  58. S.J. Augood, R.L.M. Faull, and P.C. Emson, Dopamine D1 and D2 receptor gene expression in the striatum in Huntington’s disease, Ann. Neurol. 42:215 (1997).

    Article  PubMed  CAS  Google Scholar 

  59. J.P. Vonsattel, R.H. Myers, T.J. Stevens, R.J. Ferrante, E.D. Bird, and E.P. Richardson Neuropathological classification of Huntington’s disease, J. Neuropathol. Exp. Neurol. 44:559 (1985).

    PubMed  CAS  Google Scholar 

  60. D.C. Rubinsztein, J. Jeggo, R. Coles, E. Almqvist, V. Biancalana, J.J. Cassiman, K. Chotai, M. Connarty, D. Craufurd, A. Curtis, D. Curtis, et al., Phenotypic characterization of individuals with 30–40 CAG repeats in the Huntington disease (HD) gene reveals HD cases with 36 repeats and apparently normal elderly individuals with 36–39 repeats, Am. J. Hum. Genet. 59:16 (1996).

    PubMed  CAS  Google Scholar 

  61. M.F. Perutz, M. Johnson, M. Suzuki, and J.T. Finch, Glutamine repeats as polar zippers: their possible role in inherited neurodegenerative diseases, Proc. Natl. Acad. Sci. USA 91:5355 (1994).

    PubMed  CAS  Google Scholar 

  62. G. Jackson, I. Salecker, X. Dong, X. Yao, N. Amheim, P.W. Faber, M.E. MacDonald, and S.L. Zipursky, Polyglutamine-expanded human huntingtin transgenes induce degeneration of Drosophila photoreceptor neurons, Neuron 21:633 (1998).

    Article  PubMed  CAS  Google Scholar 

  63. P. Kazemi-Esfarjani and S. Benzer, Genetic suppression fo polyglutamine toxicity in Drosophila, Science 287:1837 (2000).

    Article  PubMed  CAS  Google Scholar 

  64. C.A. Gutekunst, A.I. Levey, C.J. Heilman, W.L. Whaley, H. Yi, N.R. Nash, H.D. Rees, J.J. Madden, and S.M. Hersch, Identification and localization of huntingtin in brain and human lymphoblastoid cell lines with anti-fusion protein antibodies, Proc. Natl. Acad. Sci. USA 92:8710 (1995).

    PubMed  CAS  Google Scholar 

  65. T. Tukamoto, N. Ukina, K. Ide, and I. Kanazawa, Huntington’s disease gene product, huntingtin, associates with microtubules in vitro, Mol. Brain Res. 51:8 (1997).

    Article  PubMed  CAS  Google Scholar 

  66. J. Velier, M. Kim, C. Schwarz, T.W. Kim, E. Sapp, K. Chase, N. Aronin, and M. DiFiglia, Wild-type and mutant huntingtons function in vesicle trafficking in the secretory and endocytic pathways, Exp. Neurol. 152:34 (1998).

    Article  PubMed  CAS  Google Scholar 

  67. M. DiFiglia, E. Sapp, K. Chase, C. Schwarz, A. Meloni, C. Young, E. Martin, J.P. Vonsattel, R. Carraway, S.A. Reeves, F.M., Boyce, and N.A. Aronin, Huntingtin is a cytoplasmic protein associated with vesicle in human and rat brain neurons, Neuron 14:1075 (1995).

    Article  PubMed  CAS  Google Scholar 

  68. B.M.F. Pearse and M.S. Robinson, Clathrin, adaptors, and sorting, Ann. Rev. Cell Biol. 6:151 (1990).

    PubMed  CAS  Google Scholar 

  69. H.T. Orr, M.Y. Chung, S. Banfi, T.J. Kwiatkowski, A. Servadio, A.L. Beaudet, A.E. McCall, L.A. Duvick, L.P.W. Ranum, and H.Y. Zoghbi, Expansion of an unstable trinucleotide CAG repeat in spinocerebellar ataxia type 1, Nature Genet. 4:221 (1993).

    Article  PubMed  CAS  Google Scholar 

  70. K. Sanpei, H. Takano, S. Igarashi, T. Sato, M. Oyake, H. Sasaki, A. Wakisaka, K. Tashira, Y. Ishida, T. Ikeuchi, et al., Identification of the spinocerebellar ataxia type 2 gene using a direct identification of repeat expansion and cloning technique, DIRECT, Nature Genet. 14:277 (1996).

    Article  PubMed  CAS  Google Scholar 

  71. Y. Kwaguchi, T. Okamoto, M. Taniwaki, M. Aizawa, M. Inoue, et al., CAG expansions in a novel gene for Machado-Joseph disease at chromosome 14q32.1, Nature Genet. 8:221 (1994).

    Google Scholar 

  72. O. Zhuchenko, et al., Autosomal dominant cerebellar ataxia (SCA6) associated with small polyglutamine expansions in the alpha 1 A-voltage dependent calcium channel, Nature Genet. 15:62 (1997).

    Article  PubMed  CAS  Google Scholar 

  73. G. David, N. Abbas, G. Stevanin, A. Durr, G. Yvert, et al., Cloning of the SCA7 gene reveals a highly unstable CAG repeat expansion, Nature Genet. 17:65 (1997).

    Article  PubMed  CAS  Google Scholar 

  74. A.R. Spada, E.M. Wilson, D.B. Lubahan, A.E. Harding, and K.H. Fischbeck, Androgen receptor gene mutations in X-linked spinal and bulbar muscular atrophy, Nature 352:77 (1991).

    Article  PubMed  Google Scholar 

  75. R. Koide, T. Ikeuchi, 0. Onodera, H. Tanaka, S. Igarashi, K. Endo, et al., Unstable expansion of CAG repeat in hereditary dentatorubral-pallidoluysian atrophy (DRPLA), Nature Genet. 6:9 (1994).

    Article  PubMed  CAS  Google Scholar 

  76. H.L. Paulson, M.K. Perez, Y. Tkrottier, J.Q. Trojanowski, S.H. Subramony, S.S. Das, P. Vig, J.L. Mandel, K.H. Fischbeck, and R.N. Pittman, Intranuclear inclusions of expanded polyglutamine protein in spinocerebellar ataxia type 3, Neuron 19:333 (1997).

    Article  PubMed  CAS  Google Scholar 

  77. A. Petersen, K. Mani, and P. Brundin, Recent advances on the pathogenesis of Huntington’s disease, Exp. Neurol. 157:l (1999).

    Article  Google Scholar 

  78. N. Wood, Genes and parkinsonism, J. Neurol. Neurosurg. Psychiatry 62:305–309 (1997).

    Article  PubMed  CAS  Google Scholar 

  79. 0. Riess, R. Jakes, and R. Kruger, Genetic dissection of familial Parkinson’s disease, Molecular Med. Today 4310:438 (1998).

    Google Scholar 

  80. M.G. Spillantini, R.A. Crowther, R. Jakes, M. Hasegawa, and M. Goedert, a-synuclein in filamentous inclusions of Lewy bodies from Parkinson’s disease and dementia with Lewy bodies, Proc. Natl. Acad. Sci. USA 95:6469 (1998).

    PubMed  CAS  Google Scholar 

  81. E. Iseki, W. Marui, K. Kosaka, H. Akiyama, K. Ueda, and T. Iwatsubo, Degenerative terminals of the perforant pathway are human a-synuclein-immunoreactive in the hippocampus of patients with diffuse Lewy body disease, Neurosci. Lett. 258:81 (1998).

    Article  PubMed  CAS  Google Scholar 

  82. D.F. Clayton and J.M. George, The synucleins: a family of proteins involved in synaptic function, plasticity, neurodegeneration and disease, TINS 21:249 (1998).

    PubMed  CAS  Google Scholar 

  83. C. Lavedan, E. Leroy, A. Dehejia, S. Buchholtz, A. Dutra, and R.L. Nussbaum, Polymeropoulos, Identification, localization, and characterization of the human g-synuclein gene, Hum. Genet. 103:106 (1998).

    Article  PubMed  CAS  Google Scholar 

  84. L. Martoeaux, J.T. Campanelli, and R.H. Scheller, Synuclein: a neuron-specific protein localized to the nucleus and presynaptic nerve terminal, J. Neurosci. 8:2804 (1988).

    Google Scholar 

  85. J.M. George, J.H. Woods, and D.F. Clayton, Characterization of a novel protein regulated during the critical period for song learning in the zebra finch, Neuron 15:248 (1995).

    Article  Google Scholar 

  86. E. Masliah, E. Rockenstin, I. Veinbergs, M. Mallory, M. Hasimoto, A. Takeda, Y. Sagar, A. Sisk, and L. Lucke, Dopaminergic loss and inclusion body formation in a-synuclein mice: implications for neurodegenerative disorders, Science 287:1265 (2000).

    Article  PubMed  CAS  Google Scholar 

  87. T. Kitada, S. Asakawa, N. Hattori, H. Matsumine, Y. Yamamura, et al., Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism, Nature 392:605 (1998).

    PubMed  CAS  Google Scholar 

  88. N. Abbas, C.B. Lucking, S. Ricard, A. Durr, V. Bonifati, et al., A wide variety of mutations in the parkin gene are responsible for autosomal recessive parkinsonism in Europe, Hum. Molec. Genet. 8:567 (1999).

    PubMed  CAS  Google Scholar 

  89. L. Hsu, M. Mallory, Y. Xia, I. Veinbergs, M. Hashimoto, M. Yoshimoto, L.J. Thal, T. Saitoh, and E. Masliah, Expression pattern of synucleins (non-Aβ component of Alzheimer’s disease amyloid precursor protein/a-synuclein) during murine brain development, J. Neurochem. 71:338 (1998).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

Hook, V.Y. (2002). Proteolysis of Mutant Gene Products are Key Mechanisms in Neurodegenerative Diseases. In: Lajtha, A., Banik, N.L. (eds) Role of Proteases in the Pathophysiology of Neurodegenerative Diseases. Springer, Boston, MA. https://doi.org/10.1007/0-306-46847-6_17

Download citation

  • DOI: https://doi.org/10.1007/0-306-46847-6_17

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-46579-6

  • Online ISBN: 978-0-306-46847-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics