Skip to main content

Abstract

The main strength of MR derives from the relatively large dynamic range of gray scale or intensity values between different types of tissues that the contrast mechanisms of this imaging modality generate. The microscopic properties of tissues that produce these differences in intensity values in MR images include proton density (p), spin-lattice relaxation time (T1), spin-spin relaxation time (T2), flow, susceptibility, magnetization transfer, and diffusion, among others. Of these, the first three mechanisms were the first to be utilized for clinical MR imaging. All three arise from microscopic magnetic properties of the nuclei, i.e., the protons of the water molecules that abound in human tissue. The MR imaging experiment consists of translating the differences in the value of these properties into differences in intensity values and mapping their spatial dependence, i.e., establishing a one-to-one correspondence between different points in the anatomy with different pixels in the image. Since there are a number of textbooks (1–3) devoted entirely to the physics and/or clinical aspects of MR imaging and spectroscopy, we will not consider the details in this chapter.Instead, we will describe aspects of MR imaging and spectroscopy in sufficient detail so as to enable the reader to both understand the techniques and tailor their use to the needs of the specific clinical questions pertaining to CNS infections.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lufkin RB. The MRI manual. St. Louis: Mosby, 1997.

    Google Scholar 

  2. Haacke M. Magnetic resonance imaging: Basic principle and sequence Design. New York: Wiley, 1999.

    Google Scholar 

  3. Stark DD, Bradley WG. Magnetic resonance imaging. St. Louis: Mosby, 1996.

    Google Scholar 

  4. Hennig J, Nauerth A, Friedburg H. RARE-imaging: A fast imaging contrast in fast spin-echo MR imaging. J Magn Reson Med 1986; 3: 823–833.

    Article  CAS  Google Scholar 

  5. Melki PS, Mulkern RV. Magnetization transfer effects in multislice RARE sequences. Magn Reson Med 1992; 24:189–195.

    Article  CAS  PubMed  Google Scholar 

  6. Henkelman RM, Hardy PA, Bishop JE, Poon CS, Plewes DB. Why fat is bright in RARE and fast spin-echo imaging. J Magn Reson Imging. 1992; 2:533–540.

    Article  CAS  Google Scholar 

  7. Jones KM, Mulkern RV, Mantello MR, et al. Brain hemorrhage: Evaluation with fast spin-echo and conventional dual spin-echo images. Radiology 1992; 182:53–58.

    CAS  PubMed  Google Scholar 

  8. Mansfield P. Multi-planar image formation using NMR spin-echoes. J Phys C 1997; 10:L55–L58.

    Article  Google Scholar 

  9. Tourtellote WW, Parker JA. Some spaces and barriers in postmortem multiple sclerosis. Prog Brain Res 1968; 29:493–525.

    Article  Google Scholar 

  10. Hajnal JV, DeCoene B, Lewis PD, et al. High signal regions in normal white matter shown by heavily T2-weighted CSF nulled IR sequence. J Comput Assist Tomogr 1992; 16:506–513.

    Article  CAS  PubMed  Google Scholar 

  11. DeCoene B, Hajnal JV, Gatehouse P, et al. MR of the brain using fluid-attenuated inversion recovery (FLAIR) pulse sequences. Am J Neuroradiol 1992; 13:1555–1564.

    PubMed  Google Scholar 

  12. DeCoene B, Hajnal JV, Pennock JM, Bydder GM. MRI of the brain stem using fluid attenuated inversion recovery pulse sequences. Neuroradiology 1993; 35:327–331.

    Article  PubMed  Google Scholar 

  13. Rydberg JN, Hammond CA, Grimm RC, et al. Initial clinical experience in MR imaging of the brain with a fast fluid attenuated inversion recovery pulse sequence. Radiolgy 1994; 193:173–180.

    CAS  Google Scholar 

  14. Tanttu JI, Sepponen RE, Lipton MJ, Kuusela T. Synergistic enhancement of MRI with Gd-DTPA and magnetization transfer. J Comput Assist Tomogr 1992; 16:19–24.

    Article  CAS  PubMed  Google Scholar 

  15. Gupta RK, Kathuria MK, Pradhan S. Magnetization transfer MR imaging in CNS tuberculosis. Am J Neuroradiol 1999; 20: 867–875.

    CAS  PubMed  Google Scholar 

  16. Prager JM, Rosenblum JD, Huddle DC, Diamond CK, Metz CE. The magnetization transfer effect in cerebral infarction. Am J Neuroradiol 1994; 15:1497–1500.

    CAS  PubMed  Google Scholar 

  17. Dousset V, Grossman R, Ramer KN, et al. Experimental allergic encephalomyelitis and multiple sclerosis: Lesion characterization with magnetization transfer imaging. Radiology 1992; 182:483–491.

    CAS  PubMed  Google Scholar 

  18. Stejskal EO, Tanner JE. Spin diffusion measurements: Spin echoes in the presence of a time dependent field gradient. J Chem Phys 1965; 42:288–292.

    Article  CAS  Google Scholar 

  19. Stejskal EO, Tanner JE. Use of spin echo in pulsed magnetic field gradient to study anisotropic restricted diffusion and flow. J Chem Phys 1965; 43: 3579–3603.

    Article  Google Scholar 

  20. Kasler F. Quantitative analysis by NMR spectroscopy. New York: Academic Press, 1973.

    Google Scholar 

  21. Chakeres DW, Schmalbrock P. Fundamentals of magnetic resonance imaging. Baltimore: Williams &Wilkins, 1992.

    Google Scholar 

  22. Abraham RJ, Fisher J, Loftus P. Introduction to NMR spectroscopy. New York: Wiley, 1988.

    Google Scholar 

  23. Spisni A. 1D spectrum analysis. In Magnetic resonance spectroscopy in biology and medicine ,JD deCertaines, WMMJ Bovée, F Podo, eds. New York: Pergamon Press, 1992.

    Google Scholar 

  24. Hoult DI. The NMR receiver: A description and analysis of design. Prog NMR Spectrosc 1978; 12: 41–77.

    Article  Google Scholar 

  25. Bovée WIM, Creyghton J. Acquisition and processing of the NMR data. In Magnetic resonance spectroscopy in biology and medicine ,JD deCertaines, WMMJ Bovée, F Podo, eds. New York: Pergamon Press, 1992.

    Google Scholar 

  26. Lindon JC, Ferrige AG. Digitization and data processing in Fourier transform NMR. Prog in NMR Spectrosc 1980; 14:27–66.

    Article  CAS  Google Scholar 

  27. Leibfritz D. Water suppression. In Magnetic resonance spectroscopy in biology and medicine ,JD deCertaines, WMMJ Bovée, F Podo, eds. New York: Pergamon Press, 1992.

    Google Scholar 

  28. Bolinger L, Lenkinski RE. Localization in clinical NMR spectroscopy In Biological magnetic resonance, vol. II. In vivo spectroscopy ,LJ Berliner, J Reuben, eds. New York: Plenum Press, 1992.

    Google Scholar 

  29. Moonen CTW, von Kienlin M, van Zijl PCM, et al. Comparison of single-shot localization methods (STEAM and PRESS) for in vivo proton NMR spectroscopy. NMR Biomed 1989 ,2: 201–208.

    Article  CAS  PubMed  Google Scholar 

  30. Thomas MA, Yue K, Binesh N et al. Localized two-dimensional shift correlated MR spectroscopy of human 11. brain. Magn Reson Med (in press).

    Google Scholar 

  31. Thomas MA, Huda A, Guze B, et al. Cerebral 1H MR spectroscopy and neuropsychological status of patients with hepatic encephalopathy. Am J Roentgenol 1998; 171:1123–1130.

    Article  CAS  Google Scholar 

  32. Koller KJ, Zaczek R, Coyle J. N-Acetyl aspartyl-glutamate: Regional levels in rat brain and the effects of brain lesions as determined by a new HPLC method. J Neurochem 1984; 43: 1136–1142.

    Article  CAS  PubMed  Google Scholar 

  33. Arnold DL, Mathews PM, Francis G, Antel J. Proton magnetic resonance spectroscopy of human brain in vivo in the evaluation of multiple sclerosis: Assessment of the load of disease. Magn Reson Med 1990; 14: 154–159.

    Article  CAS  PubMed  Google Scholar 

  34. Passani L, Tsai G, Slusher BS, Simmons M, Coyle JT. Immunocytochemical co-localization of N-acetylaspartate and N-acetylaspartylglutamate in monkey. Soc Neurosci Abstr 1990; 16: 1190.

    Google Scholar 

  35. Simmons ML, Frondoza C, Coyle JT. Monoclonal antibodies to N-acetyl-aspartate. Soc Neurosci Abstr 1990; 16: 1190.

    Google Scholar 

  36. Rothstein JD, Tsai G, Kuncl RW, et al. Abnormal excitatory aminoacid metabolism in amyotrophic lateral sclerosis. Ann Neurol 1990; 28: 18–25.

    Article  CAS  PubMed  Google Scholar 

  37. Rodwell VW. Conversion of aminoacids to specialized products. In Harper’s review of biochemistry. Los Altos, CA: Lange Medical Publications, 1981.

    Google Scholar 

  38. Miller BL. A review of chemical issues in 1H-NMR spectroscopy: N-acetyl-L-aspartate, creatine, and choline. NMR Biomed 1991; 4: 47–52.

    Article  CAS  PubMed  Google Scholar 

  39. Freeman JJ, Jenden DJ. The source of choline for acetylcholine synthesis in brain. Life Sci 1976; 19: 949–962.

    Article  CAS  PubMed  Google Scholar 

  40. Riedy G, Miller BL. Phosphatidylcholine contributes to the choline peak in 1H-NMR spectroscopy. Bull Clin Neurosci. (in press).

    Google Scholar 

  41. Berridge MJ. Inositol triphosphate and diacylglycerol as second messengers. Biochem J 1984; 220: 345–360.

    CAS  PubMed Central  PubMed  Google Scholar 

  42. Ross BD. Biochemical considerations in 1H spectroscopy. Glutamate and glutamine; myo-inositol and related metabolites. NMR Biomed 1991; 4: 59–63.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Kluwer Academic / Plenum Publishers

About this chapter

Cite this chapter

Sinha, S., Thomas, M.A., Huda, A.S., Lufkin, R.B. (2001). Magnetic Resonance Imaging and Spectroscopic Techniques. In: Gupta, R.K., Lufkin, R.B. (eds) MR Imaging and Spectroscopy of Central Nervous System Infection. Springer, Boston, MA. https://doi.org/10.1007/0-306-46844-1_1

Download citation

  • DOI: https://doi.org/10.1007/0-306-46844-1_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-0573-7

  • Online ISBN: 978-0-306-46844-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics