Skip to main content

Inositol 1,4,5-Trisphosphate Receptor and Chromogranins A and B in Secretory Granules

Co-localization and Functional Coupling

  • Chapter

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 482))

Conclusions

It has been shown previously that CGA in different conformations exhibits different Ca2+-binding capacity and affinity (Yoo and Albanesi 1990b, 1991). In light of these observations, it is natural to think that the conformational changes of the IP3R that occur as a result of IP3 binding (Mignery and Südhof 1990) will be transmitted instantly to the coupled CGA and CGB in the secretory granules, causing their conformational changes. It may then be assumed that the resulting conformational changes in CGA and CGB will concomitantly result in lowering the affinity of chromogranins for Ca2+, thus freeing some Ca2+ from the proteins and making them available for release through the IP3 channel to the cytoplasm.

In view of the fact that the secretory granules contain up to 40 mM Ca2+ and most (>99.9%) of it stay bound to chromogranins in the secretory granule (Bulenda and Gratzl 1985), the coupling of calcium storage proteins to the IP3R/Ca2+ channel appears to reflect the efficient and intricate structural organization of an intracellular Ca2+ store whose Ca2+ storage/release function should be strictly and subtly controlled. Given the physiological needs of cells to tightly control the cellular Ca2+, the physical coupling of Ca2+ storage proteins to Ca2+ channels seemed to be a natural consequence. Despite the seemingly intricate structural organization inside the IP3-sensitive Ca2+ stores, the amounts of Ca2+ released in response to a fixed amount of IP3 vary widely in the cells (Muallem et al 1989, Meyer and Stryer 1990, Bootman et al 1992), probably due to multiple reasons, in the case of secretory granules, the amount of Ca2+ to be released in response to IP3 will be determined by a combination of several factors, i.e. the IP3 concentration introduced, the nature of tetrameric IP3R channels formed, the types of chromogranins coupled to the IP3R channel, and the Ca2+ charge states of coupled chromogranins.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bootman, M.D., Berridge, M.J., and Taylor, C.W., 1992, All-or-nothing Ca2+ mobilization from the intracellular stores of single histamine-stimulated HeLa cells. J. Physiol. (London) 450: 163–178.

    CAS  Google Scholar 

  • Bulenda, D., and Gratzl, M., 1985, Matrix free Ca2+ in isolated chromaffin vesicles. Biochemistry 24: 7760–7765.

    Article  PubMed  CAS  Google Scholar 

  • Chadwick, C.C., Saito, A., and Fleischer, S., 1990, Isolation and characterization of the inositol trisphosphate receptor from smooth muscle. Proc. Natl. Acad. Sci. U. S. A. 87: 2132–2136.

    PubMed  CAS  Google Scholar 

  • Gerasimenko, O.V., Gerasimenko, J.V., Belan, P.V., and Petersen, O.H., 1996, Inositol trisphosphate and cyclic ADP-ribose-mediated release of Ca2+ from single isolated pancreatic zymogen granules. Cell 84: 473–480.

    Article  PubMed  CAS  Google Scholar 

  • Joseph, S.K., Lin, C., Pierson, S., Thomas, A.P., and Maranto, A.R., 1995, Heteroligomers of type-I and type-I11 inositol trisphosphate receptors in WB rat liver epithelial cells. J. Biol. Chem. 270: 23310–23316.

    PubMed  CAS  Google Scholar 

  • Kang, Y.K., and Yoo, S.H., 1997, Identification of the secretory vesicle membrane binding region of chromogranin A. FEBS Lett. 404: 87–90.

    Article  PubMed  CAS  Google Scholar 

  • Khan, A.A., Steiner, J.P., Klein, M.G., Schneider, M.F., and Snyder, S.H., 1992, IP3 receptor: localization to plasma membrane of T cells and cocapping with the T cell receptor. Science 257: 815–818.

    PubMed  CAS  Google Scholar 

  • Maeda, N., Niinobe, M., and Mikoshiba, K., 1990, A cerebellar Purkinje cell marker P400 proteinis an inositol1,4,5-trisphosphatereceptor(InsP3)protein. Purification and characterization of InsP3 receptor complex. EMBO J. 9: 61–67.

    PubMed  CAS  Google Scholar 

  • Matter, N., Ritz, M. F., Freyermuth, S., Rogue, P., and Malviya, A., 1993, Stimulation of nuclear protein kinase C leads to phosphorylation of nuclear inositol 1,4,5-trisphosphate receptor and accelerated calcium release by inositol 1,4,5-trisphosphate from isolated rat liver nuclei. J. Biol. Chem. 268: 732–736.

    PubMed  CAS  Google Scholar 

  • Meyer, T., and Stryer, L., 1990, Transient calcium release induced by successive increments of inositol 1,4,5-trisphosphate. Proc. Natl. Acad. Sci. U. S. A. 87: 3841–3845.

    PubMed  CAS  Google Scholar 

  • Mignery, G.A., and Siidhof, T.C., 1990, The ligand binding site and transduction mechanism in the inositol 1,4,5-trisphosphate receptor. EMBOJ. 9: 3893–3898.

    CAS  Google Scholar 

  • Mignery, G.A., Siidhof, T.C., Takei, K., and DeCamilli, P., 1989, Putative receptor for inositol 1,4,5-trisphosphate similar to ryanodine receptor. Nature (London) 342: 192–195.

    Article  CAS  Google Scholar 

  • Miyakawa, T., Maeda, A., Yamazawa, T., Hirose, K., Kurosaki, T., and Iino, M., 1999, Encoding of Ca2+ signals by differential expression of IP3 receptor subtypes. EMBO J. 18: 1303–1308.

    Article  PubMed  CAS  Google Scholar 

  • Monkawa, T., Miyawaki, A., Sugiyama, T., Yoneshima, H., Yamamoto-Hino, M., Furuich, T., Saruta, T., Hasegawa, M., and Mikoshiba, K., 1995, Heterotetrameric complex formation of inositol 1,4,5-trisphosphate receptor subunits. J. Biol.Chem. 270: 14700–14707.

    PubMed  CAS  Google Scholar 

  • Muallem, S., Pandol, S.J., and Beeker, T.G., 1989, Hormone-evoked calcium release from intracellular stores is a quantal process. J. Biol. Chem. 264: 205–212.

    PubMed  CAS  Google Scholar 

  • Nguyen, T., Chin, W.C., and Verdugo, P., 1998, Role of Ca2+/K+ ion exchange in intracellular storage and release of Ca2+. Nature (London) 395: 908–912.

    CAS  Google Scholar 

  • Supattapone, S., Worley, P.F., Baraban, J.M., and Snyder, S.H., 1988, Solubilization, purification, and characterization of an inositol trisphosphate receptor. J. Biol. Chem. 263: 1530–1534.

    PubMed  CAS  Google Scholar 

  • Thiele, C., and Huttner, W.B., 1998, The disulfide-bonded loop of chromogranins, which is essential for sorting to secretory granules, mediates homodimerization. J. Biol. Chem. 273: 1223–1231.

    Article  PubMed  CAS  Google Scholar 

  • Yoo, S.H., 1994, pH-dependent interaction of chromogranin A with integral membrane proteins of secretory vesicle including 260-kDa protein reactive to inositol 1,4,5-trisphosphate receptor antibody. J. Biol. Chem. 269: 12001–12006.

    PubMed  CAS  Google Scholar 

  • Yoo, S.H., and Albanesi, J.P., 1990a, Inositol 1,4,5-trisphosphate-triggered Ca2+ release from bovine adrenal medullary secretory vesicles. J. Biol. Chem. 265: 13446–13448.

    PubMed  CAS  Google Scholar 

  • Yoo, S.H., and Albanesi, J.P., 1990b, Ca2+-induced conformational change and aggregation of chromogranin A. J. Biol. Chem. 265: 14414–14421.

    PubMed  CAS  Google Scholar 

  • Yoo, S.H., and Albanesi, J.P., 1991, High capacity, low affinity Ca2+ binding of chromogranin A. Relationship between the pH-induced conformational change and Ca2+ binding property. J. Biol. Chem. 266: 7740–7745.

    PubMed  CAS  Google Scholar 

  • Yoo, S.H., and Kang, Y.K., 1997, Identification of the secretory vesicle membrane binding region of chromogranin B. FEBS Lett. 404: 259–262.

    Google Scholar 

  • Yoo, S.H., and Lewis, M.S., 1992, The effects of pH and Ca2+ on monomerdimer and monomer-tetramer equilibria of chromogranin A. J. Biol. Chem. 267: 11236–11241.

    PubMed  CAS  Google Scholar 

  • Yoo, S.H., and Lewis, M.S., 1995, Thermodynamic study of the pH-dependent interaction of chromogranin A with an intraluminal loop peptide of the inositol 1,4,5-trisphosphate receptor. Biochemistry 34: 632–638.

    PubMed  CAS  Google Scholar 

  • Yoo, S.H., and Lewis, M.S., 1996, Effects of pH and Ca2+ on heterodimer and heterotetramer formation by chromogranin A and chromogranin B. J. Biol. Chem. 271: 17041–17046.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

Yoo, S.H. et al. (2002). Inositol 1,4,5-Trisphosphate Receptor and Chromogranins A and B in Secretory Granules. In: Helle, K.B., Aunis, D. (eds) Chromogranins. Advances in Experimental Medicine and Biology, vol 482. Springer, Boston, MA. https://doi.org/10.1007/0-306-46837-9_6

Download citation

  • DOI: https://doi.org/10.1007/0-306-46837-9_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-46446-1

  • Online ISBN: 978-0-306-46837-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics