Skip to main content

The Condensed Matrix of Mature Chromaffin Granules

The Soluble Form of Dopamine β-Hydroxylase Is Catalytically Inactive

  • Chapter

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 482))

Conclusions

The important finding in the present study is not the latency per se (Fig. 1) but that the latency was highly dependent on the granule protein concentration and essentially absent at a granule concentration of 2 mg protein/mL (Fig. 2). The lack of latency at high granule protein concentration most likely reflects the decrease in homospecific DBH activity by increasing matrix protein concentration as shown in Fig. 3. As the matrix- dependent inhibition is present in an extensively dialysed matrix fraction containing molecules ≥30 kDa (defined by the preparation procedure), even after heat-treatment, we conclude that the heat-stable acidic matrix glycoproteins (chromogranins) are responsible for the inhibition. A matrix fraction largely free of chromogranin A (precipitated by 35 mM Ca2+ at pH 5.5) as well as a preparation of redissolved precipitated matrix proteins (enriched in chromogranin A) also inhibited sDBH. This indicates that the matrix-dependent inhibition of sDBH results from the combined effect of several proteins identified in the matrix (Fischer-Colbrie et al., 1987). As the matrix-dependent inhibition of sDBH was largely overcome by high salt concentration (Fig. 4), we suspect that electrostatic interactions between sDBH and the chromogranins (Hogue-Angeletti 1977; Helle et al., 1978) inhibit the sDBH by an unknown mechanism. It should be noted that the mechanism behind the anion-activation of purified sBDH is also unknown (Craine et al., 1973).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahn, N. G., and Klinman, J. P., 1987, Activation of dopamine β-monooxygenase by external and internal electron donors in resealed chromaffin granule ghosts. J. Biol. Chem. 262: 1485–1492.

    PubMed  CAS  Google Scholar 

  • Belpaire, F., and Laduron, P., 1968, Tissue frationation and catecholamines. I-Latency and activation properties ofdopamine-b-hydroxylase in adrenal medulla. Biochem. PharmacoI. 17: 411–421.

    CAS  Google Scholar 

  • Blakeborough, P., Louis, C. F., and Turner, A. J., 1981, The structure and organization of dopamine-β-hydroxylase in the chromaffin granule membrane. Biochim. Biophys. Acta 669: 33–38.

    PubMed  CAS  Google Scholar 

  • Bradford, M. M., 1976, A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of proteindye binding. Anal. Biochem. 72: 248–254.

    Article  PubMed  CAS  Google Scholar 

  • Buckland, R. M., Radda, G.K., and Wakefield, L. M., 1981, The role of phospholipids in the modulation of enzyme activities in the chromaffin granule membrane. Biochim. Biophys. Acta 643: 363–375.

    PubMed  CAS  Google Scholar 

  • Chidsey, C. A., Sonnenblick, E. H., Morrow, A. G. and Braunwald, E., 1966, Norepinephrine stores and contractile force of papillary muscle from the failing human heart. Circulation 33: 43–51.

    PubMed  CAS  Google Scholar 

  • Corcoran, J. J., and Kirshner, N., 1990, Synthesis of chromogranin A, dopamine β-hydroxylase, and chromaffin vesicles. Am. J. Physiol. 259: C161–C168.

    PubMed  CAS  Google Scholar 

  • Craine, J. E., Daniels, G. H., and Kaufman, S., 1973, Dopamine-β-hydroxylase. The subunit structure and anion activation of the bovine adrenal enzyme. J. Biol. Chem. 248: 7838–7844.

    PubMed  CAS  Google Scholar 

  • Daniels, A. J., Williams, R. J. P., and Wright, P. E., 1978, The character of the stored molecules in chromaffin granules of the adrenal medulla: A nuclear magnetic resonance study. Neuroscience 3: 573–585.

    Article  PubMed  CAS  Google Scholar 

  • Dhariwal, K. R., Washko, P., Hartzell, W. O., and Levine, M., 1989, Ascorbic acid within chromaffin granules. In situ kinetics of norepinephrine biosynthesis. J. Biol. Chem. 264: 15404–15409.

    PubMed  CAS  Google Scholar 

  • Fischer-Colbrie, R., Hagn, C., and Schober, M., 1987, Chromogranins A, B, and C: widespread constituents ofsecretory vesicles. Ann. New York Acad. Sci. 493: 120–134.

    CAS  Google Scholar 

  • Flatmark, T., Skotland, T., Ljones, T., and Ingebretsen, 0. C., 1978, Fluorimetric detection of octopamine in high-performance liquid chromatography and its application to the assay of dopamine β-monooxygenase in human serum. J. Chromat. 146: 433–438.

    CAS  Google Scholar 

  • Flatmark, T., Ingebretsen, 0. C., and Granberg, M., 1982, The dopamine β-monooxygenase system of the bovine adrenal chromaffin granules. In Izumi, F., Oka, M., and Kumakura, K., Synthesis, storage and secretion of adrenal catecholamines. Advances in the biosciences 36: 225–232.

    Google Scholar 

  • Flatmark, T., 2000, Catecholamine biosynthesis and physiological regulation in neuroendocrine cells. Acta Physiol. Scand. 168:xx–xx

    Article  Google Scholar 

  • Foldes, A., Jeffrey, P. L., Preston, B. N., and Austin, L., 1972, Dopamine β-hydroxylase of bovine adrenal medullae. A rapid purification procedure. Biochem. J. 126: 1209–1217.

    PubMed  CAS  Google Scholar 

  • Gerdes, H., Rosa, P., Phillips, E., Baeuerle, P. A., Frank, R., Argos, P., and Huttner, W. B., 1989, The primary structure of human secretogranin II, a widespread tyrosine-sulfated secretory granule protein that exhibits low pH-and calcium-induced aggregation. J. Biol. Chem. 264: 12009–12015.

    PubMed  CAS  Google Scholar 

  • Gorr, S., Shioi, J., and Cohn, D. V., 1989, Interaction of calcium with porcine adrenal chromogranin A (secretory protein-I) and chromogranin B (secretogranin I) Am. J. Physiol. 257: E247–E254.

    PubMed  CAS  Google Scholar 

  • Haigh, J. R., Parris, R., and Phillips, J. H., 1989, Free concentrations of sodium, potassium and calcium in chromaffin granules. Biochem. J. 259: 485–491.

    PubMed  CAS  Google Scholar 

  • Helle, K. B., Serck-Hanssen, G., and Bock, E., 1978, Complexes of chromogranin A and dopamine β-hydroxylase among the chromogranins of the bovine adrenal medulla Biochim. Biophys. Acta 533: 396–407.

    PubMed  CAS  Google Scholar 

  • Herman, H. H., Wimalasena, K., Fowler, L. C., Beard, C. A., and May, S. W., 1988, Demonstration of the ascorbate dependence of membrane-bound dopamine β-monooxygenase in adrenal chromaffin granule ghosts. J. Biol. Chem. 263: 666–672.

    PubMed  CAS  Google Scholar 

  • Hogue-Angeletti, R. A., 1977, Nonidentity of chromogranin A and dopamine betamonooxygenase. Arch. Biocehm. Biophys. 184: 364–372.

    CAS  Google Scholar 

  • Huyghe, B. G., and Klinman, J. P., 1991, Activity of membranous dopamine β-monooxygenase within chromaffin granule ghosts. Interaction with ascorbate. J. Biol. Chem. 266: 11544–11550.

    PubMed  CAS  Google Scholar 

  • Knoth, J., Peabody, J. O., Huettl, P., and Njus, D., 1984, Kinetics of tyramine transport and permeation across chromaffin-vesicle membranes. Biochemistry 23: 2011–2016.

    Article  PubMed  CAS  Google Scholar 

  • Levin, E. Y., and Kaufman, S., 1961. Studies on the enzyme catalyzing the conversion of 3,4-dihydroxyphenylethylamine to norepinephrine. J. Biol. Chem. 236: 2043–2049.

    PubMed  CAS  Google Scholar 

  • Levine, M., Hartzell, W., and Bdolah, A., 1988, Ascorbic acid and Mg-ATP co-regulate dopamine β-monooxygenase activity in intact chromaffin granules. J. Biol. Chem. 263: 19353–19362.

    PubMed  CAS  Google Scholar 

  • Ljones, T., Skotland, T., and Flatmark, T., 1976, Purification and characterization of dopamine β-hydroxylase from bovine adrenal medulla. Eur. J. Biochem. 61: 525–533.

    Article  PubMed  CAS  Google Scholar 

  • Njus, D., Kelley, P. M., and Hamadek, G. J., 1986, Bioenergetics of secretory vesicles. Biochim. Biophys. Acta 853: 237–265.

    PubMed  CAS  Google Scholar 

  • Oki, H., Inoue, S., Makishima, N., ’Takeyama, Y., and Shiokawa, A., 1994, Cardiac sympathetic innervation in patients with dilated cardiomyopathy — Immunohistochemical study using anti-tyrosine hydroxylase antibody-. Jpn. Circ. J. 58: 389–394.

    PubMed  CAS  Google Scholar 

  • Phillips, J. H., Allison, Y. P., and Moms, S. J., 1977, The distribution ofcalcium, magnesium, copper and iron in the bovine adrenal medulla. Neuroscience 2: 147–152.

    Article  PubMed  CAS  Google Scholar 

  • Sen, R., and Sharp, R. R., 1982, Molecular mobilities and the lowered osmolatity of the chromaffin granule aqueous phase. Biochim. Biphys. Acta 721: 70–82.

    CAS  Google Scholar 

  • Siltanen, P., Penttiä, O., Merikallio, E., Ky00F6;sola, K., Klinge, E., and Pispa, J., 1982, Myocardial catecholamines and their biosynthetic enzymes in various human heart diseases. Acta Med. Scand. (Suppl.) 660: 24–33.

    CAS  Google Scholar 

  • Skotland, T., and Flatmark, T., 1979, On the amphiphilic and hydrophilic forms of dopamine β-mono-oxygenase in bovine adrenal medulla. J. Neurochem. 32: 1861–1863.

    PubMed  CAS  Google Scholar 

  • Sole, M. J., Helke, C. J., and Jacobowitz, D. M., 1982, Increased dopamine in the failing hamster heart: Transvesicular transport of dopamine limits the rate of norepinephrine synthesis. Am, J. Cardiol, 49: 1682–1690.

    Article  CAS  Google Scholar 

  • Stjärne, L., 1971, Preferential secretion of newly formed catecholamines: comparison between sympathetic nerves and adrenal medulla. Prog. Brain Res. 34: 259–267.

    Google Scholar 

  • Swedberg, K., Viquerat, C., Rouleau, J., Roizen, M., Atherton, B., Parmley, W. W., and Chatterjee, K., 1984, Comparison of myocardial catecholamine balance in chronic congestive heart failure and in angina pectoris without failure. Am. J. Cardiol. 54: 783–786.

    Article  PubMed  CAS  Google Scholar 

  • Terland, O., and Flatmark, T., 1973, NADH(NADPH):(acceptor) oxidoreductase activities of the bovine adrenal chromaffin granules. Biochim. Biophys. Acta 305: 206–218.

    PubMed  CAS  Google Scholar 

  • Terland, O., and Flatmark, T., 1975, Ascorbate as a natural constituent of chromaffin granules from the bovine adrenal medulla. FEBS Lett. 59: 52–56.

    Article  PubMed  CAS  Google Scholar 

  • Terland, O., and Flatmark, T., 1980, Oxidoreductase activities of chromaffin granule ghosts isolated from the bovine adrenal medulla. Biochim. Biophys. Acta 597: 318–330.

    PubMed  CAS  Google Scholar 

  • Terland, O., Slinde, E., Skotland, T., and Flatmark, T., 1977, Inhibition ofdopamine β-mono-oxygenase by non-ionic detergents of the Triton X-series. FEBS Lett. 76: 86–90.

    Article  PubMed  CAS  Google Scholar 

  • Terland, O., Flatmark, T., and Kryvi, H., 1979, Isolation and characterization of noradrenalin storage granules of bovine adrenal medulla. Biochim. Biophys. Acta 553: 460–468.

    PubMed  CAS  Google Scholar 

  • Terland, O., Flatmark, T., Tangerås, A., and Gronberg, M., 1997, Dopamine oxidation generates an oxidative stress mediated by dopamine semiquinone and unrelated to reactive oxygen species. J. Mol. Cell. Cardiol. 29: 1731–1738.

    Article  PubMed  CAS  Google Scholar 

  • Tooze, S. A., Flatmark, T., Tooze, J., and Huttner, W. B., 1991, Characterization of the immature secretory granule, an intermediate in granule biogenesis. J. Cell. Biol. 115: 1491–1503.

    PubMed  CAS  Google Scholar 

  • Tooze, S. A., Biogensis of secretory granules in the trans-Gogli network of neuroendocrine and endocrine cells. Biochim. Biophys. Acta 1404: 231–244.

    Google Scholar 

  • Wimalasena, K., and Wimalasena, D. S., 1995, The reduction of membrane-bound dopamine β-monooxygenase in resealed chromaffin granule ghosts. Is intragranular ascorbic acid a mediator for extragranular reducing equivalents? J. Biol. Chem. 270: 27516–27524.

    Article  PubMed  CAS  Google Scholar 

  • Winkler, H., and Westhead, E., 1980, The molecular organization of adrenal chromaffin granules. Neuroscience 5: 1803–1823.

    Article  PubMed  CAS  Google Scholar 

  • Yoo, S. H., and Albanesi, J. P., 1990, Ca2+-induced conformational change and aggregation of chromogranin A. J. Biol. Chem. 265: 14414–1442.

    PubMed  CAS  Google Scholar 

  • Yoo, S. H., 1996, pH-and Ca2+-dependent aggregation properties of secretory vesicle matrix proteins and the potential role of chromogranins A and B in secretory vesicle biogenesis. J. Biol. Chem. 271: 1558–565.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

Terland, O., Flatmark, T. (2002). The Condensed Matrix of Mature Chromaffin Granules. In: Helle, K.B., Aunis, D. (eds) Chromogranins. Advances in Experimental Medicine and Biology, vol 482. Springer, Boston, MA. https://doi.org/10.1007/0-306-46837-9_4

Download citation

  • DOI: https://doi.org/10.1007/0-306-46837-9_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-46446-1

  • Online ISBN: 978-0-306-46837-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics