Advertisement

The Permeability Transition Pore in Myocardial Ischemia and Reperfusion

  • Andrew P. Halestrap
  • Paul M. Kerr
  • Sabzali Javadov
  • M-Saadah Suleiman
Chapter
  • 149 Downloads

Conclusions

Opening of the permeability transition pore converts mitochondria from organelles whose supply of ATP sustains then in their normal function into organells of death. Conditions during reperfusion after ischemia are optimal for inducing this transition and thus may play a critical role in determining whether the cell recovers. From an understanding of the properties and mechanism of the MPTP, one can devise perfusion protocols that minimize pore opening and improve heart recovery following ischemia. This should lead to better cardioplegia during open-heart surgery. It remains to be established whether the short-term protection of isolated perfused heart, where damage is primarily necrotic, will also be reflected in longer-term recovery, where apoptosis may also play an important role.

Keywords

Reperfusion Injury Ischemic Precondition Mitochondrial Permeability Transition Mitochondrial Permeability Transition Pore Permeability Transition Pore 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alien, S. P., Stone, D., and McCormack, J. G., 1992, The loading of Fura-2 into mitochondria in the intact perfused rat heart and its use to estimate matrix Ca2+ under various conditions, J.Mol. Cell. Cardiol. 24: 765–773.Google Scholar
  2. Bartling, B., Holtz, J., and Darmer, D., 1998, Contribution of myocyte apoptosis to myocardial infarction? Basic Res. Cardiol. 93: 71–84.CrossRefPubMedGoogle Scholar
  3. Behling, R.W., and Malone, H.J., 1995, K-ATP-channel openers protect against increased cytosolic calcium during ischaemia and reperfusion, J.Mol. Cell. Cardiol. 27: 1809–1817.CrossRefPubMedGoogle Scholar
  4. Benzi, R.H., and Lerch, R., 1992, Dissociation betweencontractile function and oxidative metabolism in postischemic myocardium: Attenuation by ruthenium red administered during reperfusion, Circ. Res. 71: 567–576.PubMedGoogle Scholar
  5. Bernardi, P., 1992, Modulation of the mitochondrial Cyclosporin-A-sensitive permeability transition pore by the proton electrochemical gradient: Evidence that the pore can be opened by membrane depolarization, J. Biol. Chem. 267: 8834–8839.PubMedGoogle Scholar
  6. Bernardi, P., Broekemeier, K..M., and Pfeiffer, D.R., 1994, Recent progress on regulation of the mitochondrial permeability transition pore: A cyclosporin-sensitive pore in the inner mitochondrial membrane, J. Bioenerg. Biomemhr. 26: 509–517.Google Scholar
  7. Bernardi, P., Vassanelli, S., Veronese, P., Colonna, R., Szabo, I., and Zoratti, M., 1992, Modulation of the mitochondrial permeability transition pore: Effect of protons and divalent cations, J. Biol. Chem. 267: 2934–2939.PubMedGoogle Scholar
  8. Black, S. C., Huang, J. Q., Rezaiefar, P., Radinovic, S., Eberhart, A., Nicholson, D. W., and Rodger, I. W., 1998, Co-localization of the cysteine protease caspase-3 with apoptotic myocytes after in vivo myocardial ischemia and reperfusion in the rat, J. Mol. Cell. Cardiol. 30: 733–742.CrossRefPubMedGoogle Scholar
  9. Bond, J. M., Chacon, E., Herman, B., and Lemasters, J. J., 1993, Intracellular pH and Ca2+ homeostasis in the pH paradox of reperfusion injury to neonatal rat cardiac myocytes, Am. J. Physiol. 265: C129–C137.PubMedGoogle Scholar
  10. Borle, A. B., and Stanko, R. T., 1996, Pyruvate reduces anoxic injury and free radical formation in perfused rat hepatocytes, Am. J. Physiol. 270: G535–G540.PubMedGoogle Scholar
  11. Boveris, A., Cadenas, E., and Stoppani, A.O.M., 1976, Role of ubiquinone in the mitochondrial generation of hydrogen peroxide, Biochem. J. 156: 435–444.PubMedGoogle Scholar
  12. Branca, D., Vincenti, E., and Scutari, G., 1995, Influence of the anesthetic 2,6-diisopropylphenol (propofol) on isolated rat heart mitochondria, Comp. Biochem. Physiol. 110: 41–45.Google Scholar
  13. Bromme, H. J., and Holtz, J., 1996, Apoptosis in the heart: When and why? Mol. Cell. Biochem. 164: 261–275.Google Scholar
  14. Bryson, H. M., Fulton, B. R., and Faulds, D., 1995, Propofol: an update of its use in anesthesia and conscious sedation, Drugs 50: 513–559.PubMedGoogle Scholar
  15. Buljubasic, N., Marijic, J., Berczi, V, Supan, D.F., Kampine, J. P., and Bosnjak, Z. J., 1996, Differential effects of etomidate, propofol, and midazolam on calcium and potassium channel currents in canine myocardial cells, Anesthesiology 85: 1092–1099.PubMedGoogle Scholar
  16. Bunger, R., Mallet, R. T., and Hartman, D. A., 1989, Pyruvate-enhanced phosphorylation potential and inotropism in normoxic and post-ischemic isolated working heart, Eur. J. Biochem. 180: 221–233.CrossRefPubMedGoogle Scholar
  17. Chernyak, B. V, and Bernardi, P., 1996, The mitochondrial permeability transition pore is modulated by oxidative agents through both pyridine nucleotides and glutathione at two separate sites, Eur. J. Biochem. 238: 623–630.CrossRefPubMedGoogle Scholar
  18. Cicalese, L., Lee, K., Schraut, W., Watkins, S., Borle, A., and Stanko, R., 1996a, Pyruvate prevents ischemia reperfusion mucosal injury of rat small intestine, Am. J. Surg. 171: 97–100.CrossRefPubMedGoogle Scholar
  19. Cicalese, L., Rastellini, C., Rao, A.S., and Stanko, R.T., 1996b, Pyruvate prevents mucosal reperfusion injury, oxygen free-radical production, and neutrophil infiltration after rat small bowel preservation and transplantation, Transplant. Proc. 28: 2611–2611.PubMedGoogle Scholar
  20. Cleveland, J.C., Meldrum, D.R., Cain, B.S., Banerjee, A., and Harken, A. H., 1997, Oralsulfonylurea hypoglycemic agents prevent ischemic preconditioning in human myocardium: Two paradoxes revisited, Circulation 96: 29–32.PubMedGoogle Scholar
  21. Cockshott, I.D., 1985, Propofol (“Diprivan”) pharmacokinetics and metabolism: an overview, Postgrad. Med. J. 61(Suppl 3): 45–50.PubMedGoogle Scholar
  22. Coetzee, A., 1996, Comparison of the effects of propofol and halothane on acute myocardial ischaemia and myocardial reperfusion injury, S. Afr. Med. J. 86(Suppl 2): C85–C90.PubMedGoogle Scholar
  23. Connern, C. P., and Halestrap, A.P., 1994, Recruitment of mitochondrial cyclophilin to the mitochondrial inner membrane under conditions of oxidative stress that enhance the opening of a calcium-sensitive nonspecific channel, Biochem. J. 302: 321–324.PubMedGoogle Scholar
  24. Connern, C. P., and Halestrap, A. P., 1996, Chaotropic agents and increased matrix volume enhance binding of mitochondrial cyclophilin to the inner mitochondrial membrane and sensitize the mitochondrial permeability transition to [Ca2+]. Biochemistry 35: 8172–8180.CrossRefPubMedGoogle Scholar
  25. Costantini, P., Chernyak, B. V, Petronilli, V., and Bernardi, P., 1996, Modulation of the mitochondrial permeability transition pore by pyridine nucleotides and dithiol oxidation at two separate sites, J. Biol. Chem. 271: 6746–6751.PubMedGoogle Scholar
  26. Crestanello, J. A., Lingle, D. M., Millili, J., and Whitman, G. J., 1998, Pyruvate improves myocardial tolerance to reperfusion injury by acting as an antioxidant: A chemiluminescence study, Surgery 124: 92–99.PubMedGoogle Scholar
  27. Crompton, M., 1990, The role of Ca2+ in the function and dysfunction of heart mitochondria, in Calcium and the Heart (G. A. Langer, Ed.), Raven, New York. pp. 167–198.Google Scholar
  28. Crompton, M., and Costi, A., 1990, A heart mitochondrial Ca2+-dependent pore of possible relevance to reperfusion-induced injury. Evidence that ADP facilitates pore interconversion between the closed and open states, Biochem. J. 266: 33–39.PubMedGoogle Scholar
  29. Crompton, M., Costi, A., and Hayat, L., 1987, Evidence for the presence of a reversible Ca2+-dependent pore activated by oxidative stress in heart mitochondria, Biochem. J. 245: 915–918.PubMedGoogle Scholar
  30. Cross, H. R., Clarke, K., Opie, L. H., and Radda, G. K., 1995, Is lactate-induced myocardial ischaemic injury mediated by decreased pH or increased intracellular lactate? J. Mol. Cell. Cardiol 27: 1369–1381.CrossRefPubMedGoogle Scholar
  31. Deboer, L. W. V, Bekx, P. A., Han, L. H., and Steinke, L., 1993, Pyruvate enhances recovery of rat hearts after ischemia and reperfusion by preventing free radical generation. Am. J. Physiol. 265: H1571–H1576.PubMedGoogle Scholar
  32. DeLaCruz, J. P., Villalobos, M. A., Sedeno, G., and DeLaCuesta, F. S., 1998, Effect of propofol on oxidative stress in an in vitro model of anoxia-reoxygenation in the rat brain, Brain Res. 800: 136–144.Google Scholar
  33. Delcamp, T. J., Dales, C., Ralenkotter, L., Cole, P. S., and Hadley, R. W., 1998, Intramitochondrial [Ca2+] and membrane potential in ventricular myocytes exposed to anoxia-reoxygenation, Am. J. Physiol. 275: H484–H494.PubMedGoogle Scholar
  34. Dennis, S. C., Gevers, W., and Opie, L. H., 1991, Protons in ischemia:Where do they come from; where do they go to? J. Mol. Cell. Cardiol. 23: 1077–1086.CrossRefPubMedGoogle Scholar
  35. DiLisa, F., Blank, P. S., Colonna, R., Gambassi, G., Silverman, H. S., Stern, M. D., and Hansford, R. G., 1995, Mitochondrial membrane potential in single living adult rat cardiac myocytes exposed to anoxia or metabolic inhibition, J. Physiol. (London) 486: 1–13.Google Scholar
  36. Duan, J. M., and Karmazyn, M., 1992, Protective effects of amiloride on the ischemic reperfused rat heart: Relation to mitochondrial function, Eur. J. Pharmacol. 210: 149–157.CrossRefPubMedGoogle Scholar
  37. Duchen, M. R., McGuinness, O., Brown, L. A., and Crompton, M., 1993, On the involvement of a Cyclosporin-A sensitive mitochondrial pore in myocardial reperfusion injury, Cardiovasc. Res. 27: 1790–1794.PubMedGoogle Scholar
  38. Dutoit, E.F., and Opie, L. H., 1992, Modulation of severity of reperfusion stunning in the isolated rat heart by agents altering calcium flux at onset of reperfusion, Circ. Res. 70: 960–967.Google Scholar
  39. Eriksson, O., 1991, Effects of the general anaesthetic Propofol on the Ca2+-induced permeabilization of rat liver mitochondria, FEBS Lett. 279: 45–48.CrossRefPubMedGoogle Scholar
  40. Eriksson, O., Pollesello, P., and Saris, N. E., 1992, Inhibition of lipid peroxidation in isolated rat liver mitochondria by the general anaesthetic propofol, Biochem. Pharmacol. 44: 391–393.CrossRefPubMedGoogle Scholar
  41. Figueredo, V. M., Dresdner, K. P. Jr., Wolney, A. C., and Keller, A. M., 1991, Postischaemic reperfusion injury in the isolated rat heart: Effect of ruthenium red, Cardiovasc. Res. 25: 337–342.PubMedGoogle Scholar
  42. Fliss, H., and Gattinger, D., 1996, Apoptosis in ischemic and reperfused rat myocardium, Circ. Res. 79: 949–956.PubMedGoogle Scholar
  43. Folbergrova, J., Li, P. A., Uchino, H., Smith, M. L., and Siesjo, B.K., 1997, Changes in the bioenergetic state of rat hippocampus during 2.5min of ischemia, and prevention of cell damage by cyclosporin A in hyperglycemic subjects, Exp. Brain Res. 114: 44–50.PubMedGoogle Scholar
  44. Friberg, H., Ferrand-Drake, M., Bengtsson, F., Halestrap, A. P., and Wieloch, T., 1998, Cyclosporin A, but not FK 506, protects mitochondria and neurons against hypoglycemic damage and implicates the mitochondrial permeability transition in cell death, J. Neurosci. 18: 5151–5159.PubMedGoogle Scholar
  45. Galat, A., and Metcalfe, S. M., 1995, Peptidylproline cis trans isomerases, Prog. Biophys. Mol. Biol. 63: 67–118.PubMedGoogle Scholar
  46. Garlid, K. D., Paucek, P., YarovYarovoy, V, Murray, H. N., Darbenzio, R. B., D’Alonzo, A. J., Lodge, N. J., Smith, M. A., and Grover, G. J., 1997, Cardioprotective effect of diazoxide and its interaction with mitochondrial ATP-sensitive K+ channels: Possible mechanism of cardioprotection, Circ. Res. 81: 1072–1082.PubMedGoogle Scholar
  47. Gatewood, L. B., Larson, D. F, Bowers, M. C., Bond, S., Cardy, A., Sethi, G. K., and Copeland, J. G., 1996, A novel mechanism for cyclosporine: Inhibition of myocardial ischemia and reperfusion injury in a heterotopic rabbit heart transplant model, J. Heart Lung Transplant 15: 936–947.PubMedGoogle Scholar
  48. Gottlieb, R. A., Burleson, K. O., Kloner, R. A., Babior, B. M., and Engler, R. L., 1994, Reperfusion injury induces apoptosis in rabbit cardiomyocytes, J. Clin. Invest. 94: 1621–1628.PubMedGoogle Scholar
  49. Green, D. and Kroemer, G., 1998, The Central executioners of apoptosis: Caspases or mitochondria? Trends Cell Biol. 8: 267–271.PubMedGoogle Scholar
  50. Green, D. R., and Reed, J. C., 1998, Mitochondria and apoptosis, Science 281: 1309–1312.PubMedGoogle Scholar
  51. Green, T. R., Bennett, S. R., and Nelson, V. M., 1994, Specificity and properties of propofol as an antioxidant free radical scavenger, Toxicol. Appl. Pharmacol. 129: 163–169.CrossRefPubMedGoogle Scholar
  52. Griffiths, E. J., and Halestrap, A. P., 1993, Protection by Cyclosporin A of ischemia reperfusion-induced damage in isolated rat hearts, J. Mol. Cell. Cardiol. 25: 1461–1469.CrossRefPubMedGoogle Scholar
  53. Griffiths, E. J., and Halestrap, A. P., 1995, Mitochondrial nonspecific pores remain closed during cardiac ischaemia, but open upon reperfusion, Biochem. J. 307: 93–98.PubMedGoogle Scholar
  54. Griffiths, E. J., Stern, M. D., and Silverman, H. S., 1997, Measurement of mitochondrial calcium in single living cardiomyocytes by selective removal of cytosolic Indo 1, Am. J. Physiol. 273: C37–C44.PubMedGoogle Scholar
  55. Griffiths, E. J., Ocampo, C. J., Savage, J. S., Rutter, G. A., Hansford, R. G., Stern, M. D., and Silverman, H. S., 1998, Mitochondrial calcium transporting pathways during hypoxia and reoxygenation in single rat cardiomyocytes, Cardiovasc. Res. 39: 423–433.CrossRefPubMedGoogle Scholar
  56. Grover, G. J., Dzwonczyk, S., and Sleph, P. G., 1990, Ruthenium red improves postischemic contractile function in isolated rat hearts, J. Cardiovasc. Pharmacol. 16: 783–789.PubMedGoogle Scholar
  57. Gutteridge, J. M. C., and Halliwell, B., 1990, Reoxygenation injury and antioxidant protection: A tale of two paradoxes, Arch. Biochem. Biophys. 283: 223–226.CrossRefPubMedGoogle Scholar
  58. Haigney, M. C., Miyata, H., Lakatta, E. G., Stern, M. D., and Silverman, H. S., 1992, Dependence of hypoxic cellular calcium loading on Na+-Ca2+ exchange, Circ. Res. 71: 547–557.PubMedGoogle Scholar
  59. Halestrap, A. P., 1982, The nature of the stimulation of the respiratory chain of rat liver mitochondria by glucagon pretreatment of animals, Biochem. J.204: 37–47.Google Scholar
  60. Halestrap, A. P., 1991, Calcium-dependent opening of a non-specific pore in the mitochondrial inner membrane is inhibited at pH values below 7: Implication for the protective effect of low pH against chemical and hypoxic cell damage, Biochem. J. 278: 715–719.PubMedGoogle Scholar
  61. Halestrap, A. P., 1994, Interactions between oxidative stress and calcium overload on mitochondrial function, in Mitochondria: DNA, Proteins, and Disease (V. Darley-Usmar, and A. H. V. Schapira, Eds.) Portland Press, London,pp.113–142.Google Scholar
  62. Halestrap, A. P., Griffiths, E. J., and Connern, C. P., 1993, Mitochondrial calcium handling and oxidative stress, Biochem. Soc. Trans. 21: 353–358.PubMedGoogle Scholar
  63. Halestrap, A. P., Connern, C. P., Griffiths, E. J., and Kerr, P. M., 1997a, Cyclosporin A binding to mitochondrial cyclophilin inhibits the permeability transition pore and protects hearts from ischaemia/reperfusion injury, Mol. Cell. Biochem. 174: 167–172.CrossRefPubMedGoogle Scholar
  64. Halestrap, A. P., Wang, X. M., Poole, R. C., Jackson, V. N., and Price, N. T., 1997b, Lactate transport in heart in relation to myocardial ischemia, Am. J. Cardiol. 80: A17–A25.Google Scholar
  65. Halestrap, A. P., Woodfield, K. Y, and Connern, C. P., 1997c, Oxidative stress, thiol reagents, and membrane potential modulate the mitochondrial permeability transition by affecting nucleotide binding to the adenine nucleotide translocase, J. Biol. Chem. 272: 3346–3354.CrossRefPubMedGoogle Scholar
  66. Halestrap, A. P., Kerr, P. M., Javadov, S., and Woodfield, K. Y., 1998, Elucidating the molecular mechanism of the permeability transition pore and its role in reperfusion injury of the heart, Biochim. Biophys. Acta 1366: 79–94.PubMedGoogle Scholar
  67. Haworth, R. A., and Hunter, D. S., 1979, The Ca2+-induced membrane transition in mitochondria: II. Nature of the Ca2+ trigger site, Arch. Biochem. Biophys. 195: 460–467.CrossRefPubMedGoogle Scholar
  68. Javadov, S. A., Lim, K. H. H., Kerr, P. M., Suleiman, M-S., Angelini, G. D. and Halestrap, A. P., 2000, Protection of hearts from reperfusion injury by propofol is associated with inhibition of the mitochondrial permeability transition. Cardiovascular Research 45: 360–369.CrossRefPubMedGoogle Scholar
  69. Karmazyn, M., Ray, M., and Haist, J. V., 1993, Comparative effects of Na+/H+ exchange inhibitors against cardiacinjury produced by ischemia/reperfusion, hypoxia/reoxygenation, and the calcium paradox, J. Cardiovasc. Pharmacol. 21: 172–178.PubMedGoogle Scholar
  70. Kerr, P. M., Suleiman, M.-S., and Halestrap, A. P., 1999, Reversal of the mitochondrial permeability transition during recovery of hearts from ischemia and its enhancement by pyruvate, Am. J. Physiol., In Press.Google Scholar
  71. Kluck, R. M., Bossy-Wetzel, E., Green, D. R., and Newmeyer, D. D., 1997, The release of cytochrome c from mitochondria: A primary site for Bcl-2 regulation of apoptosis, Science 275: 1132–1136.CrossRefPubMedGoogle Scholar
  72. Ko, S. H., Yu, C. W., Choe, H., Chung, M. J., Kwak, Y. G., Chae, S. W., and Song, H. S., 1997, Propofol attenuates ischaemic-reperfusion injury in the isolated rat heart, Anesth. Analg. 85: 719–724.PubMedGoogle Scholar
  73. Kokita, N., and Hara, A., 1996, Propofol attenuates hydrogen-peroxide induced mechanical and metabolic derangements in the isolated rat heart, Anesthesiol. 84: 117–127.Google Scholar
  74. Kokita, N., Hara, A., Abiko, Y., Arakawa, J., Hashizume, H., and Namiki, A., 1998, Propofol improves functional and metabolic recovery in ischemic reperfused isolated rat hearts, Anesth. Analg. 86: 252–258.PubMedGoogle Scholar
  75. Kroemer, G., Dallaporta, B., and Resche-rigon, M., 1998, The mitochondrial death/life regulator in apoptosis and necrosis, Annu. Rev. Physiol. 60: 619–642.CrossRefPubMedGoogle Scholar
  76. Kurokawa, T., Kobayashi, H., Nonami, T., Harada, A., Nakao, A., Sugiyama, S., Ozawa, T, and Takagi, H., 1992, Beneficial effects of cyclosporine on postischemic liver injury in rats, Transplantation 53: 308–311.PubMedGoogle Scholar
  77. Ladilov, Y. V, Siegmund, B., and Piper, H. M., 1995, Protection of reoxygenated cardiomyocytes against hypercontracture by inhibition of Na+/H+ exchange, Am. J. Physiol. 268: H1531–H1539.PubMedGoogle Scholar
  78. Lazdunski, M., Frelin, C., and Vigne, P., 1985, The sodium/hydrogen exchange system in cardiac cells: Its biochemical and pharmacological properties and its role in regulating internal concentrations of sodium and internal pH, J. Mol Cell. Canliol. 17: 1029–1042.Google Scholar
  79. Leist, M., and Nicotera, P., 1997, The shape of cell death, Biochem. Biophys. Res.Commun. 236: 1–9.CrossRefPubMedGoogle Scholar
  80. Lemasters, J. 1, and Thurman, R. G., 1995, The many facets of reperfusion injury, Gastroenterology 108: 1317–1320.CrossRefPubMedGoogle Scholar
  81. Lemasters, J. J., Chacon, E., Ohata, H., Harper, I. S., Nieminen, A.-L., Tesfai, S. A., and Herman, B., 1995, Measurement of electrical potential, pH, and free calcium ion concentration in mitochondria of living cells by laser scanning confocal microscopy, Methods Enzymol. 260: 428–444.PubMedGoogle Scholar
  82. Lemasters, J. J., Nieminen, A.-L., Qian, T., Trost, L. C., and Herman, B., 1997, The mitochondrial permeability transition in toxic, hypoxic, and reperfusion injury, Mol. Cell. Biochem. 174: 159–165.CrossRefPubMedGoogle Scholar
  83. Lemasters, J. J., Nieminen, A. L., Qian, T., Trost, L. C., Elmore, S. P., Nishimura, Y., Crowe, R. A., Cascio, W. E., Bradham, C. A., Brenner, D. A., and Herman, B., 1998, The mitochondrial permeability transition in cell death: A common mechanism in necrosis, apoptosis, and autophagy, Biochim. Biophys. Acta 1366: 177–196.PubMedGoogle Scholar
  84. Li, P. A., Uchino, H., Elmer, E., and Siesjo, B. K., 1997a, Amelioration by cyclosporin A of brain damage following 5 or lOmin of ischemia in rats subjected to preischemic hyperglycemia. Brain Res. 753: 133–140.CrossRefPubMedGoogle Scholar
  85. Li, Y. C., Ridefelt, P., Wiklund, L., and Bjerneroth, G., 1997b, Propofol induces a lowering of free cytosolic calcium in myocardial cells, Acta Anaesthesiol. Scand. 41: 633–638.PubMedGoogle Scholar
  86. Liang, B. T., 1996, Direct preconditioning of cardiac ventricular myocytes via adenosine A(l) receptor and K-ATP channel, Am J. Physiol. 271: H1769–H1777.PubMedGoogle Scholar
  87. Liu, X., Kim, C. N., Yang, J., Jemmerson, R., and Wang, X., 1996, Induction of apoptotic program in cell-free extracts: Requirement for dATP and cytochrome c. Cell 86: 147–157.PubMedGoogle Scholar
  88. Liu, Y. G., Sato, T, O’Rourke, B., and Marban, E., 1998, Mitochondrial ATP-dependent potassium channels: Novel effectors of cardioprotection? Circulation 97: 2463–2469.PubMedGoogle Scholar
  89. Martinou, J. C., Duboisdauphin, M., Staple, J. K., Rodriguez, I., Frankowski, H., Missotten, M., Albertini, P., Talabot, D., Catsicas, S., Pietra, C., and Huarte, J., 1994, Overexpression of BCL-2 in transgenic mice protects neurons from naturally occurring cell death and experimental ischemia, Neuron 13: 1017–1030.CrossRefPubMedGoogle Scholar
  90. Massoudy, P., Becker, B. K, Seligmann, C., and Gerlach, E., 1995, Preischaemic as well as postischaemic application of a calcium antagonist affords cardioprotection in the isolated guinea pig heart, Cardiovasc. Res. 29: 577–582.CrossRefPubMedGoogle Scholar
  91. Maulik, N., Watanabe, M., Zu, Y. L., Huang, C. K.., Cordis, G. A., Schley, J. A., and Das, D. K., 1996, Ischemic preconditioning triggers the activation of MAP kinases and MAPKAP kinase 2 in rat hearts, FEBS Lett. 396: 233–237.CrossRefPubMedGoogle Scholar
  92. Mayer, N., Legat, K., Weinstabl, C., and Zimpfer, M., 1993, Effects of propofol on the function of normal, collateral-dependent, and ischemic myocardium, Anesth, Anatg. 76: 33–39.Google Scholar
  93. Meldrum, D. R., Cleveland, J. C., Mitchell, M. B., Sheridan, B. C., Gambon-Robertson, F., Harken, A. H., and Banerjee, A., 1996, Protein kinase C mediates Ca2+-induced cardioadaptation to ischemia-reperfusion injury, Am. J. Physiol. 271: R718–R726.PubMedGoogle Scholar
  94. Metivier, D., Dallaporta, B., Zamzami, N., Larochette, N., Susin, S. A., Marzo, I., and Kroemer, G., 1998, Cytofluorometric detection of mitochondrial alterations in early CD95/Fas/APO-l-triggered apoptosis of Jurkat T lymphoma cells: Comparison of seven mitochondrion-specific fluorochromes, Immunol. Lett. 61: 157–163.PubMedGoogle Scholar
  95. Millar, C. G., Baxter, G. F., and Thiemermann, C., 1996, Protection of the myocardium by ischaemic preconditioning: Mechanisms and therapeutic implications, Pharmacol.Ther. 69: 143–151.PubMedGoogle Scholar
  96. Misao, J., Hayakawa, Y, Ohno, M., Kato, S., Fujiwara, T., and Fujiwara, H., 1996, Expression of bcl-2 protein, an inhibitor of apoptosis, and Bax, an accelerator of apoptosis, in ventricular myocytes of human hearts with myocardial infarction, Circulation 94: 1506–1512.PubMedGoogle Scholar
  97. Miyata, H., Lakatta, E. G., Stern, M. D., and Silverman, H. S., 1992, Relation of mitochondrial and cytosolic free calcium to cardiac myocyte recovery after exposure to anoxia, Circ. Res. 71: 605–613.PubMedGoogle Scholar
  98. Mizukami, Y., and Yoshida, K., 1997, Mitogen-activatedprotein kinasetranslocatestothenucleus during ischaemia and is activated during reperfusion, Biochem. J. 323: 785–790.PubMedGoogle Scholar
  99. Murphy, P. G., Myers, D. S., Davies, W. J., and Webster, N. R. J. J. G., 1992, The antioxidant potential of propofol (2,6-diisopropylphenol), Br. J. Anaesth. 68: 616–618.Google Scholar
  100. Murphy, P. G., Bennett, J. R., Myers, D. S., Davies, M. J., and Jones, J. G., 1993, The effect of propofol anaesthesia on free radical-induced lipid peroxidation in rat liver microsomes, Eur. J. Anaesthes. 10: 261–266.Google Scholar
  101. Nazareth, W., Yafei, N., and Crompton, M., 1991, Inhibition of anoxia-induced injury in heart myocytes by cyclosporin-A, J. Mot. Cell. Cardiol. 23: 1351–1354.Google Scholar
  102. Nieminen, A.-L., Saylor, A. K., Tesfai, S. A., Herman, B., and Lemasters, J. J., 1995, Contribution of the mitochondrial permeability transition to lethal injury after exposure of hepatocytes to t-butylhydroperoxide, Biochem. J. 307: 99–106.PubMedGoogle Scholar
  103. Nieminen, A.-L., Petrie, T. G., Lemasters, J. J., and Selman, W. R., 1996, Cyclosporin A delays mitochondrial depolarization induced by N-methyl-D-aspartate in cortical neurons: Evidence of the mitochondrial permeability transition, Neuroscience 75: 993–997.PubMedGoogle Scholar
  104. Nieminen, A. L., Byrne, A. M., Herman, B., and Lemasters, J. J., 1997, Mitochondrial permeability transition in hepatocytes induced by t-BuOOH: NAD(P)H and reactive oxygen species. Am. J. Physiol. 271: C1286–C1294.Google Scholar
  105. Nishino, T., 1994, The conversion of xanthine dehydrogenase to xanthine oxidase and the role of the enzyme in reperfusion injury, J. Biochem. (Tokyo) 116: 1–6.Google Scholar
  106. Olivetti, G., Abbi, R., Quaini, F., Kajstura, J., Cheng, W., Nitahara, J. A., Ouaini, E., DiLoreto, C., Beltrami, C. A., Krajewski, S., Reed, J. C., and Anversa, P., 1997, Apoptosis in the failing human heart, N. Engl. J. Med. 336: 1131–1141.CrossRefPubMedGoogle Scholar
  107. Omar, B., McCord, J., and Downey, J., 1991, Ischaemia-reperfusion, in Oxidative Stress: Oxidants and Antioxidants (H. Sies, Ed.), Academic, San Diego, pp. 493–527.Google Scholar
  108. Opie, L., 1992, Myocardial stunning: A Role for calcium antagonists during reperfusion, Curdiovasc. Res. 26: 20–24.Google Scholar
  109. Peng, C. F., Kane, J. J., Straus, K. D., and Murphy, M. L., 1980, Improvement of mitochondrial energy production in ischaemic myocardium by in vivo infusion of ruthenium red, J. CanJiovasc. Pharmacol. 2: 45–54.Google Scholar
  110. Petronilli, V, Cola, C., Massari, S., Colonna, R., and Bernardi, P., 1993, Physiological effectors modify voltage sensing by the Cyclosporin A-sensitive permeability transition pore of mitochondria, J. Biol. Chem. 268: 21939–21945.PubMedGoogle Scholar
  111. Petronilli, V, Costantini, P., Scorrano, L., Colonna, R., Passamonti, S., and Bernardi, P., 1994, The voltage sensor of the mitochondrial permeability transition pore is tuned by the oxidation-reduction state of vicinal thiols: Increase of the gating potential by oxidants and its reversal by reducing agents, J. Biol. Chem. 269: 16638–16642.PubMedGoogle Scholar
  112. Piper, H. M., 1997, Mechanism of myocardial injury during acute reperfusion, News Physiol. Sci. 12: 53–54.Google Scholar
  113. Piper, H. M., Noll, T., and Siegmund, B., 1994, Mitochondrial function in the oxygen depleted and reoxygenated myocardial cell, Curdiovasc. Res. 28: 1–15.Google Scholar
  114. Qian, T., Nieminen, A.-L., Herman, B., and Lemasters, J. J., 1997, Mitochondrial permeability transition in pH-dependent reperfusion injury to rat hepatocytes, Am. J. Physiol. 273: C1783–C1792.PubMedGoogle Scholar
  115. Reed, J. C., 1997, Cytochrome c: Can’tlive with it: Can’t livewithout it, Cell 91: 559–562.CrossRefPubMedGoogle Scholar
  116. Reimer, K. A., and Jennings, R. B., 1992, Myocardial ischemia, hypoxia, and infarction, in The Heart and Cardovascular System, 2nd ed. (H. A. Fozzard, R. B. Jennings, E. Huber, A. M. Katz, and H. E. Morgan, Eds.), Raven, New York, pp. 1875–1973.Google Scholar
  117. Reimer, M. A., Murry, C. E., and Richard, V. J., 1989, The role of neutrophils and free radicals in the ischemic-reperfused heart: Why the confusion and controversy? J. Mol. Cell. Cardiol. 21: 1225–1239.CrossRefPubMedGoogle Scholar
  118. Rigoulet, M., Devin, A., Averet, N., Vandais, B., and Guerin, B., 1996, Mechanisms of inhibition and uncoupling of respiration in isolated rat liver mitochondria by the generalanesthetic 2,6-diisopropylphenol, Eur. J. Biochem. 241: 280–285.PubMedGoogle Scholar
  119. Sack, S., Mohri, M., Schwarz, E. R., Arras, M., Schaper, J., Ballagipordany, G., Scholz, W., Lang, H. J., Scholkens, B. A., and Schaper, W., 1994, Effects of a new Na+/H+ antiporter inhibitor on postischemic reperfusion in pig heart, J. Cardiovasc. Pharmacol. 23: 72–78.PubMedGoogle Scholar
  120. Salvioli, S., Ardizzoni, A., Franceschi, C., and Cossarizza, A., 1997, JC-1, but not DiOC(6)(3) or rhodamine 123, is a reliable fluorescent probe to assess Delta Psi changes in intact cells: Implications for studies on mitochondrial functionality during apoptosis, FEBS Lett. 411: 77–82.CrossRefPubMedGoogle Scholar
  121. Schreiber, S., L., 1991, Chemistry and biology of theimmunophilins and their immunosuppressive ligands, Science 251:283–287.PubMedGoogle Scholar
  122. Schultz, J. E. J., Yao, Z. H., Cavero, I., and Gross, G. J., 1997a, Glibenclamide-induced blockade of ischemic preconditioning is time dependent in intact rat heart, Am. J. Physiol. 272: H2607–H2615.PubMedGoogle Scholar
  123. Schultz, J. J., Hsu, A. K., and Gross, G. J., 1997b, Ischemic preconditioning is mediated by a peripheral opioid receptor mechanism in the intact rat heart, J. Mol. Cell. Cardiol. 29: 1355–1362.PubMedGoogle Scholar
  124. Schwarz, E. R., Whyte, W. S., and Kloner, R. A., 1997, Ischemic preconditioning, Curr. Opin. Cardiol. 12: 475–481.PubMedGoogle Scholar
  125. Scorrano, L., Petronilli, V., and Bernardi, P., 1997, On the voltage dependence of the mitochondrial permeability transition pore: A critical appraisal, J. Biol. Chem. 272: 12295–12299.CrossRefPubMedGoogle Scholar
  126. Servin, F., Desmonts, J. M., Haberer, J. P., Cockshott, I. D., Plummer, G. F., and Farinotti, R., 1988, Pharmacokinetics and protein binding of propofol in patients with cirrhosis, Anesthesiology 69: 887–891.PubMedGoogle Scholar
  127. Shiga, Y., Onodera, H., Matsuo, Y., and Kogure, K., 1992, Cyclosporin-A protects against ischemia-reperfusion injury in the brain, Brain Res. 595: 145–148.CrossRefPubMedGoogle Scholar
  128. Shimazaki, K., Ishida, A., and Kawai, N., 1994, Increase in bcl-2 oncoprotein and the tolerance to ischemia-induced neuronal death in the gerbil hippocampus, Neurosci. Res. 20: 95–99.CrossRefPubMedGoogle Scholar
  129. Shimizu, S., Kamiike, W., Hatanaka, N., Miyata, R., Inoue, T., Yoshida, Y., Tagawa, K., and Matsuda, H., 1994, Beneficial effects of cyclosporine on reoxygenation injury in hypoxic rat liver, Transplantation 57: 1562–1566.PubMedGoogle Scholar
  130. Shimizu, S., Eguchi, Y., Kosaka, H., Kamiike, W., Matsuda, H., and Tsujimoto, Y., 1995, Prevention of hypoxia-induced cell death by Bcl-2 and Bcl-xL, Nature 374: 811–813.CrossRefPubMedGoogle Scholar
  131. Silverman, H. S., and Stern, M. D., 1994, Ionic basis of ischaemic cardiac injury: Insights from cellular studies, Cardiovasc. Res. 28: 581–597.PubMedGoogle Scholar
  132. Stone, D., Darley-Usmar, V., Smith, D. R., and O’Leary, V., 1989, Hypoxia-reoxygenation induced increase in cellular Ca2+in myocytes and perfused hearts: The role of mitochondria, J. Mol. Cell. Cardiol. 21: 963–973.CrossRefPubMedGoogle Scholar
  133. Sztark, F., Ichas, F., Ouhabi, R., Dabadie, P., and Mazat, J. P., 1995, Effects of the anaesthetic propofol on the calcium-induced permeability transition of rat heart mitochondria: Direct pore inhibition and shift of the gating potential, FEBS Lett. 368: 101–104.CrossRefPubMedGoogle Scholar
  134. Travis, D. L., Fabia, R., Netto, G. G., Husberg, B. S., Goldstein, R. M., Klintmalm, G. B., and Levy, M. F., 1998, Protection by cyclosporine A against normothermic liver ischemia-reperfusion in pigs, J. Surg. Res. 75: 116–126.CrossRefPubMedGoogle Scholar
  135. Turrens, J. F., Alexandre, A., and Lehninger, A. L., 1985, Ubisemiquinone is the electron donor for superoxide formation by complex III of heart mitochondria, Arch. Biochem. Biophys. 237: 408–414.CrossRefPubMedGoogle Scholar
  136. Ubl, J. J., Chatton, J. Y., Chen, S. H., and Stucki, J. W., 1996, A critical evaluation of in situ measurement of mitochondrial electrical potentials in single hepatocytes, Biochim. Biophys. Acta 1276: 124–132.PubMedGoogle Scholar
  137. Uchino, H., Elmer, E., Uchino, K., Lindvall, O., and Siesjo, B. K., 1995, Cyclosporin A dramatically ameliorates CAI hippocampal damage following transient forebrain ischaemia in the rat, Acta Physiol. Scand 155: 469–471.PubMedGoogle Scholar
  138. Umansky, S. R., and Tomei, L. D., 1997, Apoptosis in the heart, Adv. Pharmacol. 41: 383–407.PubMedGoogle Scholar
  139. Vandenberg, J. I., Metcalfe, J. C., and Grace, A. A., 1993, Mechanisms of intracellular pH recovery following global ischaemia in the perfused heart, Circulation Res. 72: 993–1003.PubMedGoogle Scholar
  140. Vanderheide, R. S., Hill, M. L., Reimer, K. A., and Jennings, R. B., 1996, Effect of reversible ischemia on the activity of the mitochondrial ATPase: Relationship to ischemic preconditioning, J. Mol. Cell. Cardiol. 28: 103–112.Google Scholar
  141. Vuorinen, K., Ylitalo, K., Peuhkurinen, K., Raatikainen, P., Alarami, A., and Hassinen, I. E., 1995, Mechanisms of ischemic preconditioning in rat myocardium: Roles of adenosine, cellular energy state, and mitochondrial F1F0-ATPase, Circulation 91: 2810–2818.PubMedGoogle Scholar
  142. Woodfield, K.-Y., Rück, A., Brdiczka, D., and Halestrap, A. P., 1998, Direct demonstration of a specific interaction between cyclophilin-D and the adenine nucleotide translocase confirms their role in the mitochondrial permeability transition, Biochem. J. 336: 287–290.PubMedGoogle Scholar
  143. Yabe, K., Nasa, Y., Sato, M., Iijima, R., and Takeo, S., 1997, Preconditioning preserves mitochondrial function and glycolytic flux during an early period of reperfusion in perfused rat hearts, Cardiovasc. Res. 33: 677–685.CrossRefPubMedGoogle Scholar
  144. Yamabe, K., Shimizu, S., Kamiike, W., Waguri, S., Eguchi, Y., Hasegawa, J., Okuno, S., Yoshioka, Y., Ito, T., Sawa, Y., Uchiyama, Y., Tsujimoto, Y., and Matsuda, H., 1998, Prevention of hypoxic liver cell necrosis by in vivo human bcl-2 gene transfection, Biochem. Biophys. Res. Commun. 243: 217–223.CrossRefPubMedGoogle Scholar
  145. Yang, J., Liu, X. S., Bhalla, K., Kim, C. N., Ibrado, A. M., Cai, J. Y., Peng, T. I., Jones, D. P., and Wang, X. D., 1997, Prevention of apoptosis by Bcl-2: Release of cytochrome c from mitochondria blocked, Science 275: 1129–1132.CrossRefPubMedGoogle Scholar
  146. Yaoita, H., Ogawa, K., Maehara, K., and Maruyama, Y, 1998, Attenuation of ischemia/reperfusion injury in rats by a caspase inhibitor, Circulation 97: 276–281.PubMedGoogle Scholar
  147. Yoshida, T., Watanabe, M., Engelman, D. T., Engelman, R. M., Schley, J. A., Maulik, N., Ho, Y. S., Oberley, T. D., and Das, D. K., 1996, Transgenic mice overexpressing glutathione peroxidase are resistant to myocardial ischemia reperfusion injury, J. Mol. Cell. Cardiol. 28: 1759–1767.CrossRefPubMedGoogle Scholar
  148. Ytrehus, K., Liu, Y. G., and Downey, J. M., 1994, Preconditioning protects ischemic rabbit heart by protein kinase C activation, Am. J. Physiol. 266: H1145–H1152.PubMedGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • Andrew P. Halestrap
    • 1
  • Paul M. Kerr
    • 1
  • Sabzali Javadov
    • 2
  • M-Saadah Suleiman
    • 1
  1. 1.Department of Biochemistry, Bristol Heart InstituteUniversity of Bristol, British Royal InfirmaryBristolUK
  2. 2.Azerbaijan Medical UniversityBaknAzerbaijan

Personalised recommendations