Advertisement

Control of Mitochondrial Metabolism by Calcium-Dependent Hormones

  • Paul Burnett
  • Lawrence D. Gaspers
  • Andrew P. Thomas
Chapter
  • 154 Downloads

Conclusions

It is becoming clear that mitochondria are intimately involved in cellular Ca2+ signaling pathways. Mitochondria’s role may be two-fold: First, the capacity of mitochondria to accumulate Ca2+, coupled with the strategic localization of Ca2+ release channels with mitochondrial Ca2+ uptake sites, enables mitochondria to modulate hormone-induced [Ca2+]c oscillation properties. Mitochondria can discriminate between [Ca2+]c changes resulting from leaks or other effectors of Ca2+ cellular homeostasis and InsP3-dependent Ca2+ signaling. Second, hormone-induced oscillations in [Ca2+]m are within the physiological range for activation of Ca2+-sensitive mitochondrial dehydro-genases (McCormack et al., 1990; Robb-Gaspers et al., 1998a, 1998b; Rutter et al., 1996) and therefore provide a mechanism for coordinated regulation of mitochondrial oxidative metabolism by Ca2+. The relatively slow decay of active PDH level in CHO. T cells (Rutter et al., 1996) and of mitochondrial NADH and proton motive force in hepatocytes, following a [Ca2+]m transient, results in a sustained increase in these parameters as the frequency of [Ca2+]m oscillations increases. Hajnóczky et al. (1995) demonstrated that [Ca2+]m oscillation frequencies greater than 0.5 per second elicit sustained increases in NADH. Thus, mitochondria are able to integrate oscillating Ca2+ signals into a graded metabolic output.

Keywords

Respiratory Chain Pyruvate Dehydrogenase Mitochondrial Matrix Heart Mitochondrion Mitochondrial Metabolism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akerman, K. E. O., Wilkstrom, M.K.E., and Saris, N.-E., 1977, Effect of inhibitors on the sigmoidicity of the calcium ion transport kinetics in rat liver mitochondria, Biochim. Biophy. Acta 464:287–294.Google Scholar
  2. Alonso, M.T., Barrero, M.J., Michelena, P., Carnicero, E., Cuchillo, I., Garciá, A. G., Garciá-Sancho, J., Montero, M., and Alvarez, J., 1999, Ca2+-induced Ca2+ release in chromaffin cells seen from the inside the ER with targeted aequorin, J. Cell Biol. 144:241–254.CrossRefPubMedGoogle Scholar
  3. Babcock, D.F., Herrington, J., Goodwin, P.C., Park, Y. B., and Hille, B., 1997, Mitochondrial participation in the intracellular Ca2+ network, J. Cell Biol. 136:833–844.CrossRefPubMedGoogle Scholar
  4. Balaban, R. S., 1990, Regulation of oxidative phosphorylation in the mammalian cell, Am. J. Physiol. 258:C377–C389.PubMedGoogle Scholar
  5. Baysal, K., Brierley, G. P., Novgorodov, S., and Jung, D. W., 1991, Regulation of the mitochondrial Na+/Ca2+ antiport by matrix pH, Arch. Biochem. Biophys. 291:383–389.CrossRefPubMedGoogle Scholar
  6. Berridge, M. J., 1993, Cell signaling: A tale of two messengers, Nature 361:315–325.CrossRefPubMedGoogle Scholar
  7. Berridge, M. J., 1995, Capacitative calcium entry, Biochem. J. 312:1–11.PubMedGoogle Scholar
  8. Berridge, M. J., 1997, Elementary and global aspects of calcium signaling, J. Physiol. 499:291–306.PubMedGoogle Scholar
  9. Berridge, M.J., Galione, A., 1988, Cytosolic calcium oscillators, FASEB J. 2:3074–3082.PubMedGoogle Scholar
  10. Berridge, M. J., Cobbold, P. H., and Cuthbertson, K. S., 1988, Spatial and temporal aspects of cell signaling, Philos. Trans. R. Soc. Lond. Ser. A B320:325–343.Google Scholar
  11. Bernardi, P., 1996, The permeability transition pore: Control points of a cyclosporin A-sensitive mitochondrial channel involved in cell death, Biochim. Biophys. Acta 1275:5–9.PubMedGoogle Scholar
  12. Bernardi, P., and Azzone, G. F., 1979, delta pH induced calcium fluxes in rat liver mitochondria, Eur. J. Biochem. 102:555–562.CrossRefPubMedGoogle Scholar
  13. Bragadin, M., Pozzan, T., and Azzone, G.F., 1979, Kinetics of Ca2+ carrier in rat liver mitochondria, Biochemistry 18:5972–5978.CrossRefPubMedGoogle Scholar
  14. Brand, M.D., 1995, The stoichiometry of the exchange catalyzed bythemitochondrialcalcium/sodium antiporter, Biochem. J. 229:161–166.Google Scholar
  15. Brand, M. D., and Murphy, M. P., 1987, Control of electron flux through the respiratory chain in mitochondria and cells, Biol. Rev. Cambridge Philos. Soc. 62:141–193.Google Scholar
  16. Brown, G. C., Lakin-Thomas, P. L., Brand, M. D., 1990, Control of respiration and oxidative phosphorylation in isolated rat liver cells, Eur. J. Biochem. 192:355–362.CrossRefPubMedGoogle Scholar
  17. Chiesi, M., Rogg, H., Eichenberger, K., Gazzotti, P., and Carafoli, E., 1987, Stereospecific action of diltiazem on the mitochondrial Na-Ca exchange system and on sarcolemmal Ca channels, Biochem.Pharmacol. 36:2735–2740.CrossRefPubMedGoogle Scholar
  18. Clapham, D. E., 1995, Calcium signaling, Cell 80:259–268.CrossRefPubMedGoogle Scholar
  19. Cobbold, P.H., and Lee, J. A. C.,1991, Aequorin measurements of cytoplasmic free calcium, in Cellular Calcium. A Practical Approach (J. G. Mc Cormack and P. H. Cobbold, Eds.), Oxford University Press, pp. 55–82.Google Scholar
  20. Crompton, M., 1990, in Intracellular Calcium Regulation. (F. Branner), Ed. R. Liss, New York, pp. 181–209.Google Scholar
  21. Crompton, M., and Roos, I., 1985, On the hormonal control of heart mitochondrial Ca2+, Biochem. Soc. Trans. 13:667–669.PubMedGoogle Scholar
  22. Crompton, M., Künzi, M., and Carafoli, E.,1977, The calcium-induced and sodium-induced effluxes of calcium from heart mitochondria: Evidence for a sodium-calcium carrier, Eur. J. Biochem. 79:549–558.Google Scholar
  23. Crompton, M., Moser, R., Lüdi, H., and Carafoli, E., 1978, The interrelations between the transport of sodium and calcium in mitochondria of various mammalian tissues, Eur. J. Biochem. 82:25–31.CrossRefPubMedGoogle Scholar
  24. Crompton, M., Heid, I., and Carafoli, E.,1980, The activation by potassium of the sodium-calcium carrier of cardiac mitochondria, FEEBS Lett. 115:257–259.Google Scholar
  25. Csordás, G., Thomas, A. P., and Hajnóczky, G.,1999, Quasi-synaptic calcium signal transmission between the endoplasmic reticulum and mitochondria, EMBO J. 18:96–108.Google Scholar
  26. Denton, R. M., and Halestrap, A. P., 1979, Regulation of pyruvate metabolism in mammalian tissues, Essays Biochem. 15:37–77.PubMedGoogle Scholar
  27. Denton, R. M., and Mc Cormack, J. G.,1980, On the role of the calcium transport cycle in heart and other mammalian mitochondria, FEBS Lett. 119:1–8.Google Scholar
  28. Denton, R. M., and Mc Cormack, J. G., 1989, Ca2+ as a second messenger within mitochondria of the heart and other tissues, Annu. Rev. Physiol. 52:451–466.Google Scholar
  29. Denton, R. M., and Mc Cormack, J. G., 1995, Fuel selection at the level of mitochondria in mammalian tissues, Proc. Nutr. Soc. 54:11–22.CrossRefPubMedGoogle Scholar
  30. Denton, R. M., Randle, P. J., and Martin, B. R., 1972, Stimulation by calcium ions of pyruvate dehydrogenase phosphate phosphatase, Biochem. J. 128:161–163.PubMedGoogle Scholar
  31. Denton, R. M., Richards, D. A., and Chin, R. J., 1978, Calcium ions and the regulation of NAD+-linked isocitrate dehydrogenase from the mitochondria of rat heart and other tissues, Biochem. J. 176:899–906.PubMedGoogle Scholar
  32. Denton, R. M., Mc Cormack, J.G., and Edgell, N.J., 1980, Role of calciumionsin the regulation of intramitochondrial metabolism. Effects of Na+, Mg2+ and ruthenium red on the Ca2+-stimulated oxidation of oxoglutarate and on pyruvate dehydrogenase activity in intact rat heart mitochondria, Biochim. Biophy. Acta 190:107–117.Google Scholar
  33. Denton, R. M., Mc Cormack, J. G., Rutter, G. A., Burnett, P., Edgell, N. J., Moule, S. K., and Diggle, T. A., 1996, The hormonal regulation of pyruvate dehydrogenase complex, Adv. Enzyme Regul. 36:183–198.PubMedGoogle Scholar
  34. Duchen, M. R., 1992, Ca+2)-dependent changes in the mitochondrial energetics in single dissociated mouse sensory neurons, Biochem. J. 283:41–50.PubMedGoogle Scholar
  35. Erecinska, M., and Wilson, D. F., 1982, Regulation of cellular energy metabolism, J. Membr. Biol. 70:1–14.PubMedGoogle Scholar
  36. Exton, J. H., 1980, Mechanisms involved in alpha-adrenergic phenomena: Role of calcium ions in actions of catecholamines in liver and other tissues, Am. J. Physiol. 238:E3–E12.PubMedGoogle Scholar
  37. Exton, J. H., 1981, Molecular mechanisms involved in alpha-adrenergic responses, Mol. Cell. Endocrinol. 23:233–264.CrossRefPubMedGoogle Scholar
  38. Fiskum, G., and Lehninger, A. L., 1979, Regulated release of Ca2+ from respiring mitochondria by Ca2+/H+ antiport, J. Biol. Chem. 254:6236–6239.PubMedGoogle Scholar
  39. Fiskum, G., and Lehninger, A. L., 1982, in Calcium and Cell Function (W. Y. Cheung, Ed.) Academic, New York, pp. 39–80.Google Scholar
  40. Garlid, K. D., 1988, in Integration of Mitochondrial Function, Plennum, New York, pp. 257–276.Google Scholar
  41. Groen, A. K., Wanders, R. J., Westerhoff, R., van der Meer, J., and Tage, J. M., 1982, Quantification of the contribution of various steps to the control of mitochondrial respiration, J. Biol. Chem. 257:2754–2762.PubMedGoogle Scholar
  42. Gunter, K. K., and Gunter, T. E., 1994, Transport ofcalcium by mitochondria, J. Bioenerg. Biomembr. 26:471–485.PubMedGoogle Scholar
  43. Gunter, T. E., and Pfeiffer, D. R.,1990, Mechanisms by which mitochondria transport calcium, Am. J. Physiol. 258:C755–C786.Google Scholar
  44. Gunter, K. K., Zuscik, M. J., and Gunter, T. E., 1991, The Na(+)-independent Ca2+ efflux mechanism of liver mitochondria is not a passive Ca2+/H+ exchanger, J. Biol. Chem. 266:21640–21648.PubMedGoogle Scholar
  45. Gunter, T. E., Buntinas, L., Sparagna, G. C., and Gunter, K. K., 1998, The Ca2+ transport mechanisms of mitochondria and Ca2+ uptake from physiological-type Ca2+ transients, Biochim. Biophys. Acta 1366:5–15.PubMedGoogle Scholar
  46. Hajnóczky, G., Lin, C., and Thomas, A. P., 1994, Luminal communication between intracellular calcium stores modulated by GTP and the cytoskeleton, J. Biol. Chem. 269:10280–10287.PubMedGoogle Scholar
  47. Hajnóczky, G., Robb-Gaspers, L. D., Seitz, M. B., and Thomas, A.P., 1995, Decoding of cytosolic calcium oscillations in the mitochondria, Cell 82:415–424.PubMedGoogle Scholar
  48. Hajnóczky, G., Hager, R., and Thomas, A. P., 1999, Mitochondria suppress local feedback activation of inositol 1,4,5-trisphosphate receptors by Ca2+, J. Biol. Chem. 274:14157–14162.PubMedGoogle Scholar
  49. Hak, J. B., van Beek, G. M., Eijgelshoven, M. H., and Westerhof, N., 1993, Mitochondrial dehydrogenase activity affects adaptation of cardiac oxygen consumption to demand, Am. J. Physiol. 264:H448–H453.PubMedGoogle Scholar
  50. Halestrap, A. P., 1989, The regulation of the matrix volume of mammalian mitochondria in vivo and in vitro and its role in the control of mitochondrial metabolism, Biochim. Biophys. Acta 973:355–382.PubMedGoogle Scholar
  51. Halestrap, A. P., 1994, Regulation ofmitochondrial metabolism through changes in matrix volume, Biochem. Soc. Trans. 22:522–529.PubMedGoogle Scholar
  52. Halestrap, A. M., Kerr, P. M, Javadov, S., and Woodfield, K.-Y., 1998, Elucidating the molecular mechanism of the permeability transition pore and its role in reperfusion injury of the heart, Biochim. Biophys. Acta 1366: 79–94.PubMedGoogle Scholar
  53. Hansford, R. G., 1991, Dehydrogenase activation by Ca2+ in cells and tissues, J. Bioenerg. Biomembr. 23: 823–830.CrossRefPubMedGoogle Scholar
  54. Hansford, R. G., 1994, Physiological role of mitochondrial Ca2+ transport, J. Bioenerg. Biomembr. 26: 495–508.CrossRefPubMedGoogle Scholar
  55. Hayat, L. H., and Crompton, M., 1987, The effects of Ca2+ and adenine nucleotides on the sensitivity of the heart mitochondrial Na2+ Ca2+ carrier to extramitochondrial Ca2+: A study using arsenazo III-loaded mitochondria, Biochem. J. 244: 533–538.PubMedGoogle Scholar
  56. Hoth, M., Fanger, C. M., and Lewis, R. S., 1997, Mitochondrial regulation of store-operated calcium signaling in T lymphocytes, J. Cell Biol. 137: 633–648.CrossRefPubMedGoogle Scholar
  57. Ichas, F., and Mazat, J. P., 1998, From calcium signalling to cell death: Two conformations for the mitochondrial permeability transition pore. Switching from low-to high-conductance state, Biochim. Biophys. Acta 1366: 33–50.PubMedGoogle Scholar
  58. Ichas, F., Jouaville, L. S., Sidash, S. S., Mazat, J. P., and Holmuhamedov, E. L., 1994, Mitochondrial calcium spiking: A transduction mechanism based on calcium-induced permeability transition involved in cell calcium signalling, FEBS Lett. 348: 211–215.CrossRefPubMedGoogle Scholar
  59. Ichas, F., Jouaville, L. S., and Mazat, J. P., 1997, Mitochondria are excitable organelles capable of generating and conveying electrical and calcium signals, Cell 89: 1145–1153.CrossRefPubMedGoogle Scholar
  60. Jacob, R., 1990, Calcium oscillations in electrically non-excitable cells, Biochim. Biophys. Acta 1052: 427–448.PubMedGoogle Scholar
  61. Jouaville, L. S., Ichas, F., Holmuhamedov, E. L., Camacho, P., and Lechleiter, J. D., 1995, Synchronization of calcium waves by mitochondrial substrates in Xenopus laevis oocytes, Nature 377: 600–602.CrossRefGoogle Scholar
  62. Jouaville, L. S., Ichas, F., and Mazat, J. P., 1998, Modulation of cell calcium signals by mitochondria, Mol. Cell. Biochem. 184: 371–376.CrossRefPubMedGoogle Scholar
  63. Jung, D. W., Baysal, K., and Brierley, G. P., 1995, The sodium-calcium antiport of heart mitochondria is not electroneutral, J. Biol. Chem. 270: 672–678.PubMedGoogle Scholar
  64. Kadenbach, B., 1986, Regulation of respiration and ATP synthesis in higher organisms: Hypothesis, J. Bioenerg. Biomembr. 18: 39–54.CrossRefPubMedGoogle Scholar
  65. Katz, L. A., Koretsky, A. P., and Balaban, R. S., 1987, Respiratory control in the glucose-perfused heart: A 31P NMR and NADH fluorescence study1, FEBS Lett. 221: 270–276.CrossRefPubMedGoogle Scholar
  66. Katz, L. A., Swain, J. A., Portman, M. A., and Balaban, R. S., 1989, Relation between phosphate metabolites and oxygen consumption of heart in vivo, Am. J. Physiol. 256: H265–H274.PubMedGoogle Scholar
  67. Kimura, S., Suzaki, T., Abe, K., Ogata, E., and Kobayashi, T., 1984, Effects of glucagon on the redox states of cytochromes in mitochondria in situ in perfused rat liver, Biochem. Biophys. Res. Commun. 119: 212–219.PubMedGoogle Scholar
  68. Landolfi, B., Curci, S., Debellis, L., Pozzan, T., and Hofer, A. M., 1998, Ca2+ homeostasis in the agonist-sensitive internal store: functional interactions between mitochondria and the ER measured in situ in intact cells, J. Cell Biol. 142: 1235–1243.CrossRefPubMedGoogle Scholar
  69. Lawlis, V. B., and Roche, T. E., 1981, Inhibition of bovine kidney alpha-ketoglutarate dehydrogenase complex by reduced nicotinamide adenine dinucleotide in the presence or absence ofcalcium ion, and effect of adenosine 5′-diphosphate on reduced nicotinamide adenine dinucleotide inhibition, Biochemistry 20: 2523–2527.Google Scholar
  70. Lawrie, A. M., Rizzuto, R., Pozzan, T., and Simpson, A. W. M., 1996, A role for calcium influx in the regulation of mitochondrial calcium in endothelial cells, J. Biol. Chem. 271: 10753–10759.PubMedGoogle Scholar
  71. Lawson, J. E., Niu, X., Browning, K. S., Trong, H. L., Yan, J., and Reed, L. J., 1993, Molecular cloning and expression of the catalytic subunit of bovine pyruvate dehydrogenase phosphatase and sequence similarity with protein phosphatase 2C, Biochemistry 32: 8987–8993.CrossRefPubMedGoogle Scholar
  72. Lawson, J. E., Park, S. H., Mattison, A. R., Yan, J., and Reed, L. J., 1997, Cloning, expression, and properties of the regulatory subunit of bovine pyruvate dehydrogenase phosphatase, J. Biol. Chem. 272: 31625–31629.CrossRefPubMedGoogle Scholar
  73. Li, W., Shariat-Madar, Z., Powers, M., Sun, X., Lane, R.D., and Garlid, K. D., 1992, Reconstitution, identification, purification, and immunological characterization of the110-kDa Na2+ Ca2+ antiporter from beef heart mitochondria, J. Biol. Chem. 267: 7983–17989.Google Scholar
  74. Lukacs, G. L., and Kapus, A., 1987, Measurement of the matrix free Ca2+ concentration in heart mitochondria by entrapped fura-2 and quin2, Biochem. J. 248: 609–613.PubMedGoogle Scholar
  75. Marban, E., Rink, T. J., Tsien, R. W., and Tsien, R. Y., 1980, Free calcium in heart muscle at rest and during contraction measured with Ca2+-sensitive microelectrodes, Nature 286: 845–850.CrossRefPubMedGoogle Scholar
  76. Matlib, M. A., Zhow, Z., Knight, S., Ahmed, S., Choi, K. M., Krause-Bauer, J., Phillips, R., Altshuld, R., Katsube, Y., Sperelakis, N., and Bers, D. M., 1998, Oxygen-bridged dinuclear ruthenium amine complex specifically control of Mitochondrial Metabolism by Calcium-Dependent Hormones inhibits Ca2+ uptake into mitochondria in vitro and in situ in single cardiac myocytes, J. Biol. Chem. 273: 10223–10231.CrossRefPubMedGoogle Scholar
  77. Mc Cormack, J. G., 1985, Evidence that adrenaline activates key oxidative enzymes in rat liver by increasing intramitochondrial [Ca2+], FEBS Lett. 180: 259–264.Google Scholar
  78. Mc Cormack, J. G., and Denton, R. M., 1979, The effects of calcium ions and adenine nucleotides on the activity of pig heart 2-oxoglutarate dehydrogenase complex, Biochem. J. 180: 533–544.Google Scholar
  79. Mc Cormack, J. G., and Denton, R. M., 1984, Role of Ca2+ ions in the regulation of intramitochondrial metabolism in rat heart: Evidencefrom studies with isolated mitochondria that adrenaline activates the pyruvate dehydrogenase and 2-oxoglutarate dehydrogenase complexes by increasing the intramitochondrial concentration of Ca2+, Biochem. J. 218: 235–247.Google Scholar
  80. Mc Cormack, J. G., and Denton, R. M.,1994, Signal transduction by intramitochondrial Ca2+ in mammalian energy metabolism, NIPS 9: 71–76.Google Scholar
  81. Mc Cormack, J. G., and England, P.J., 1983, Ruthenium red inhibits the activation of pyruvate dehydrogenase caused by positive inotropic agents in the perfused rat heart, Biochem. J. 214: 581–585.Google Scholar
  82. Mc Cormack, J. G., Browne, H. M., and Dawes, H. J., 1989, Studies on mitochondrial Ca2+-transport and matrix Ca2+ using fura-2-loaded rat heart mitochondria, Biochim. Biophys. Acta 973: 420–427.Google Scholar
  83. Mc Cormack, J. G., Halestrap, A. P., and Denton, R. M., 1990, Role of calcium ions in regulation of mammalian intramitochondrial metabolism, Physiol. Rev. 70: 391–425.Google Scholar
  84. Mignery, G. A., and Südhof, T. C., 1990, The ligand binding site and transduction mechanism in the inositol-1,4,5-triphosphate receptor, EMBO J. 9: 3893–3898.PubMedGoogle Scholar
  85. Miyata, H., Silverman, H. S., Sollott, S. J., Lakatta, E. G., Stern, M. D., and Hansford, R. G., 1991, Measurement of mitochondrial free Ca2+ concentration in living single rat cardiac myocytes, Am. J. Physiol. 261: H1123–H1134.PubMedGoogle Scholar
  86. Moreno-Sanchez, R., and Hansford, R. G., 1988, Dependence of cardiac mitochondrial pyruvate dehydrogenase activity on intramitochondrial free Ca2+ concentration, Biochem. J. 256: 403–412.PubMedGoogle Scholar
  87. Moreno-Sanchez, R., and Torres-Mȧrquez, M. E., 1991, Control of oxidative phosphorylation in mitochondria, cells, and tissues, Int. J. Biochem. 23: 1163–1174.PubMedGoogle Scholar
  88. Murphy, A. N., and Fiskum, G., 1988, Abnormal Ca2+ transport characteristics of hepatoma mitochondria and endoplasmic reticulum, Adv. Exp. Med. Biol. 232: 139–150.PubMedGoogle Scholar
  89. Nichols, B.J., and Denton, R.M.,1995, Toward the molecular basis for the regulation of mitochondrial dehydrogenases by calcium ions, Mol. Cell. Biochem. 149/150: 203–212.Google Scholar
  90. Nicholls, D.G.,1978, Theregulation of extramitochondrialfreecalcium ionconcentration byratliver mitochondria, Biochem. J. 176: 463–474.Google Scholar
  91. Nicholls, D. G., and Akerman, K. E. O., 1984, Mitochondrial Ca2+ transport, Biochim. Biophys. Acta. 683: 57–88.Google Scholar
  92. Petersen, C. C., Toescu, E. C., and Petersen, O. H., 1991, Different patterns of receptor-activated cytoplasmic Ca2+ oscillations in single pancreatic acinar cells: Dependence on receptor type, agonist concentration, and intracellular Ca2+ buffering, EMBO J. 10: 527–533.PubMedGoogle Scholar
  93. Pozzan, T., Rizzuto, R., Volpe, P., and Meldolesi, J.,1994, Molecular and cellular physiology of intracellular calcium stores, Physiol. Rev. 74: 595–636.Google Scholar
  94. Prentki, M., Glennon, M. C., Thomas, A. P., Moms, R. L., Matschinsky, F. M., and Corkey, B. E., 1988, Cell specific patterns of oscillating free Ca2+ in carbamylcholine-stimulated insulinoma cells, J. Biol. Chem. 263: 11044–11047.PubMedGoogle Scholar
  95. Puskin, J. S., Gunter, T. E., Gunter, K. K., and Russel, P. R., 1976, Evidence for more than one Ca2+ transport mechanism in mitochondria, Biochemistry 15: 3834–3842.CrossRefPubMedGoogle Scholar
  96. Putney, J. W., Jr., and Bird, G. St. J., 1993a, The signal for capacitative calcium entry, Cell 75: 199–201.PubMedGoogle Scholar
  97. Putney, J. W., Jr., and Bird, G. St. J., 1993b, The inositol phosphate-calcium signaling system in nonexcitable cells, Endocrine Rev. 14: 610–631.CrossRefGoogle Scholar
  98. Quinlan, P. T., and Halestrap, A. P., 1986, The mechanism of the hormonal activation of respiration in isolated hepatocytes and its importance in the regulation of gluconeogenesis, Biochem. J. 236: 789–800.PubMedGoogle Scholar
  99. Quinlan, P. T., Thomas, A. P., Armston, A. E., and Halestrap, A. P., 1983, Measurement of the intramitochondrial volume in hepatocytes without cell disruption and its elevation by hormones and valinomycin, Biochem. J. 214: 395–404.PubMedGoogle Scholar
  100. Randle, P. J., 1986, Fuel selection in animals, Biochem. Soc. Trans. 14: 799–806.PubMedGoogle Scholar
  101. Reed, K. C., and Bygrave, F. L., 1974a, Accumulation of lanthanum by rat liver mitochondria, Biochem. J. 138: 239–252.PubMedGoogle Scholar
  102. Reed, K. C., and Bygrave, F. L., 1974b, The inhibition of mitochondrial calcium transport by lanthanides and ruthenium red, Biochem. J. 140: 143–155.PubMedGoogle Scholar
  103. Reed, L. J., and Yeaman, S. J., 1987, in The Enzymes, Vol. 18, (P. D. Boyer and E. G. Krebs Eds.) Academic Press, New York, pp 77–96.Google Scholar
  104. Renard-Rooney, D. C., Hajnóczky, G., Seitz, M. B., Schneider, T. G., and Thomas, A. P.,1993, Imaging of inositol 1, 4, 5-trisphosphate-induced Ca2+ fluxes in single permeabilized hepatocytes: Demonstration of both quantal and nonquantal patterns of Ca2+ release, J. Biol. Chem. 268: 23601–23610.Google Scholar
  105. Rhee, S. G., and Bae, Y. S., 1997, Regulation of phosphoinositide-specific phospholipase C isozymes, J. Biol. Chem. 272: 15045–15048.PubMedGoogle Scholar
  106. Rizzuto, R., Bernadi, P., Favaron, M., and Azzone, G.F.,1987, Pathways for Ca2+ efflux in heart and liver mitochondria, Biochem. J. 246: 271–277.Google Scholar
  107. Rizzuto, R., Simpson, A. W. M., Brini, M., and Pozzan, T., 1992, Rapid changes ofmitochondrial Ca2+ revealed by specifically targeted recombinant aequorin, Nature 358: 325–327.CrossRefPubMedGoogle Scholar
  108. Rizzuto, R., Brini, M., Murgia, M., and Pozzan, T, 1993, Microdomains with high Ca2+ close to IP3-sensitiv channels that are sensed by neighboring mitochondria, Science 262: 744–747.PubMedGoogle Scholar
  109. Rizzuto, R, Bastianutto, C., Brini, M., Murgia, M., and Pozzan, T., 1994, Mitochondrial Ca2+ homeostasis in intact cells, J. Cell Biol. 126: 1183–1194.CrossRefPubMedGoogle Scholar
  110. Rizzuto, R., Pinton, P., Carrington, W., Fay, F. S., Fogarty, K. E., Lifshitz, L. M., Tuft, R. A., and Pozzan, T., 1998, Close contacts with the endoplasmic reticulum as determinants of mitochondrial calcium responses, Science 280: 1763–1766.PubMedGoogle Scholar
  111. Robb-Gaspers, L. D., and Thomas, A. P., 1995, Coordination of Ca2+ signaling by intercellular propagation of Ca2+ waves in the intact liver. J. Biol. Chem. 270: 8102–8107.PubMedGoogle Scholar
  112. Robb-Gaspers, L. D., Burnett, P., Rutter, G. A., Denton, R. M., Rizzuto, R., and Thomas, A. P., 1998a, Integrating cytosolic calcium signals into mitochondrial metabolic responses, EMBO J. 17: 4987–5000.CrossRefPubMedGoogle Scholar
  113. Robb-Gaspers, L. D., Rutter, G. A., Burnett, P., Hajnóczky, G., Denton, R. M., and Thomas, A. P., 1998b, Couplingbetween cytosolicand mitochondrialcalciumoscillations: Roleinthe regulation of hepatic metabolism, Biochim. Biophys. Acta 1366: 17–32.PubMedGoogle Scholar
  114. Roche, T. E., and Reed, L. J., 1974, Monovalent cation requirement for ADP inhibition of pyruvate dehydrogenase kinase, Biochem. Biophys. Res. Commun. 59: 1341–1346.CrossRefPubMedGoogle Scholar
  115. Rooney, T.A.,and Thomas, A.P.,1993, Intracellular calciumwavesgeneratedbyIns(l,4,5)P3-dependent mechanisms. Cell Calcium 14: 674–690.Google Scholar
  116. Rooney, T. A., and Thomas, A. P., 1994, Organization of intracellular calcium signals generated by inositol lipid-dependen thormones,in International Encyclopedia of Pharmacology and Therapeutics, Section139: Intracellular messengers, (C. W. Taylor, Ed.) Pergammon, Elmsford, NY, pp 407–421.Google Scholar
  117. Rooney, T. A., Sass, E. J., and Thomas, A. P., 1989, Characterization of cytosolic calcium oscillations induced by phenylephrine and vasopressin in single fura-2-loaded hepatocytes, J. Biol. Chem. 264: 17131–17141.PubMedGoogle Scholar
  118. Rooney, T. A., Sass, E., and Thomas, A. P., 1990, Agonist-induced cytosolic calcium oscillations originate from a specific locus in single hepatocytes, J. Biol. Chem. 265: 10792–10796.PubMedGoogle Scholar
  119. Rooney, T. A., Renard, D. C., Sass, E., and Thomas, A. P., 1991, Oscillatory cytosolic calcium waves independent of stimulated inositol 1, 4, 5-trisphosphate formation in hepatocytes, J. Biol. Chem. 266: 12272–12282.PubMedGoogle Scholar
  120. Rosier, R. N, Tucker, D.A., Meerdink, S., Jain, I., and Gunter, T.E., 1981, Ca2+ transport againstits electrochemicalgradient incytochromeoxidasevesiclesreconstitutedwithmitochondrialhydrophobic proteins, Arch. Biochem. Biophys. 210: 549–564.CrossRefPubMedGoogle Scholar
  121. Rutter, G. A., 1990, Ca2+-binding to citrate cycle dehydrogenases, Int. J. Biochem. 22: 1081–1088.CrossRefPubMedGoogle Scholar
  122. Rutter, G. A., and Denton, R. M., 1988, Regulationof NAD+=linked isocitrate dehydrogenase and 2-oxoglurarate dehydrogenase by Ca2+ ions within toluene permeabilized rat heart mitochondria. Interactions with regulation by adenine nucleotides and NADH/NAD ratios, Biochem J. 252: 181–189.PubMedGoogle Scholar
  123. Rutter, G. A., Midgley, P. J. W., and Denton, R. M., 1989, Regulation of the pyruvate dehydrogenase complex by Ca2+ within toluene-permeabilized heart mitochondria, Biochim. Biophys. Acta 1014: 263–270.PubMedGoogle Scholar
  124. Rutter, G. A., Theler, J.-M., Murgia, M., Wollheim, C. B., Pozzan, T., and Rizzuto, R., 1993, Stimulated Ca2+ influx raises mitochondrial free Ca2+ to supramicromolar levels in a pancreatic beta-cell line: Possible role in glucose and agonist-induced insulin secretion, J. Biol. Chem. 268: 22385–22390.PubMedGoogle Scholar
  125. Rutter, G. A., Burnett, P., Rizzuto, R., Brini, M., Murgia, M., Pozzan, T., Tavaré, J. M., and Denton, R. M., 1996, Subcellular imaging of intramitochondrial Ca2+ with recombinant targeted aequorin: Significance for the regulation of pyruvate dehydrogenase activity, Proc. Natl. Acad. Sci. USA 93: 5489–5494.CrossRefPubMedGoogle Scholar
  126. Scarpa, A., and Azzone, G. F., 1970, The mechanism of ion translocation in mitochondria: Coupling of K+ efflux with Ca2+ uptake, Eur. J. Biochem. 12: 328–335.CrossRefPubMedGoogle Scholar
  127. Selivanov, V. A., Ichas, F., Holmuhamedov, E. L., Jouaville, L. S., Evtodienko, Y. V, and Mazat, J. P., 1998, A model of mitochondrial calcium-induced calcium release stimulating the calcium oscillations and spikes generated by mitochondria, Biophys. Chem. 72: 111–121.CrossRefPubMedGoogle Scholar
  128. Severson, D. L., Denton, R. M., Bridges, B. J., and Randle, P. J., 1976, Exchangeable and total calcium pools in mitochondria of ratepididymal fatpadsand isolatedfatcells: Rolein theregulation of pyruvate dehydrogenase activity, Biochem. J. 154: 209–233.PubMedGoogle Scholar
  129. Simpson, P. B., and Russel, J. T., 1996, Mitochondria support inositol 1,4,5-trisphosphate-mediated Ca2+ waves in cultured oligodendrocytes, J. Biol. Chem. 271: 33493–33501.CrossRefPubMedGoogle Scholar
  130. Simpson, P. B., Mehotra, S., Lange, D. G., and Russel, J. T.,1997, High density distribution of endoplasmic reticulum proteins and mitochondria at specialized Ca2+ release sites in oligodendrocyte processes, J. Biol. Chem. 272: 22654–22661.Google Scholar
  131. Slater, E. C., 1987, The mechanism of the conservation of energy of biological oxidations, Eur. J. Biochem. 166: 489–504.CrossRefPubMedGoogle Scholar
  132. Soboll, S., and Bunger, R., 1981, Compartmentaligation of adenine nucleotides in the isolated working guinea pig heart stimulated by noradrenaline, Physiol. Chem. 232: 125–132.Google Scholar
  133. Soboll, S., Sietz, H. J., Sies, H., Ziegler, B., and Scholtz, R., 1984, Effect of long-chain fatty acyl-CoA on mitochondrial and cytosolic ATP/ADP ratios in the intact liver cell, Biochem. J. 220: 371–376.PubMedGoogle Scholar
  134. Somlyo, A. P., Bond, M., and Somlyo, A. L., 1985, Calcium content of mitochondria and endoplasmic reticulum in liver frozen rapidly in vivo, Nature 314: 622–625.CrossRefPubMedGoogle Scholar
  135. Sparagna, G.C., Gunter, K.K, Sheu, S., and Gunter, T.E.,1995, Mitochon drialcalcium uptake from physiological-type pulses of calcium: A description of the rapid uptake mode, J. Biol. Chem. 270: 27510–27515.Google Scholar
  136. Streb, H., Irvine, R.F., Berridge, M. J., and Schultz, I., 1983, Release of Ca2+ from a non mitochondrial intracellular store in pancreatic acinar cells by inositol-1,4,5-trisphophate, Nature 306: 67–69.CrossRefPubMedGoogle Scholar
  137. Takamatsu, T., and Wier, W. G., 1990, Calcium waves in mammalian heart: Quantification of origin, magnitude, waveform, and velocity, FASEB J. 4: 1519–1525.PubMedGoogle Scholar
  138. Thomas, A.P., Diggle, T.A., and Denton, R.M., 1986, Sensitivity of pyruvate dehydrogenase phosphate phosphatase to magnesium ions: Similar effects of spermine and insulin, Biochem. J. 238: 83–91.PubMedGoogle Scholar
  139. Thomas, A. P., Bird, G. St. J., Hajnóczky, G., Robb-Gaspers, L. D., and Putney, J. W, Jr., 1996, Spatial and temporal aspects of cellular calcium signaling, FASEB J. 10: 1505–1517.PubMedGoogle Scholar
  140. Tordjmann, T., Berthon, B., Jaquemin, E., Clair, C., Stelly, N., Guillon, G., Claret, M., and Combettes, L., 1998, Receptor-oriented intercellular calcium waves evoked by vasopressin in rat hepatocytes, EMBO J. 17: 4695–4703.CrossRefPubMedGoogle Scholar
  141. Unitt, J. E, Mc Cormack, J. G., Reid, D., MacLachlan, L. K., and England, P. J., 1989, Direct evidence for a role of intramitochondrial Ca2+ in the regulation of oxidative phosphorylation in the stimulated rat heart: Studies using 3IP n.m.r. and ruthenium red, Biochem. J. 262: 293–301.PubMedGoogle Scholar
  142. Vinogradov, A., and Scarpa, A., 1973, The initial velocities of calcium uptake by rat liver mitochondria, J. Biol. Chem. 248: 5527–5531.PubMedGoogle Scholar
  143. Williamson, J. R., Cooper, R. H., and Hoek, J. B., 1981, Role of calcium in the hormonal regulation of liver metabolism, Biochim. Biophys. Acta 639: 243–295.PubMedGoogle Scholar
  144. Wingrove, D. E., Amatruda, J. M., and Gunter, T. E., 1984, Glucagon effects on the membrane potential and calcium uptake rate of rate liver mitochondria, J. Biol. Chem. 259: 9390–9394.PubMedGoogle Scholar
  145. Wolkowicz, P. E., Michael, L. H., Lewis, R. M., and Mc Millin-Wood, S., 1983, Sodium-calcium exchange in dog heart mitochondria: Effects of ischemia and verapamil, Am. J. Physiol. 244: H644–H651.PubMedGoogle Scholar
  146. Woods, N. M., Cuthbertson, K. S. R., and Cobbold, P. H., 1986, Repetitive transient rises in cytoplasmic free calcium in hormone-stimulated hepatocytes, Nature 319: 600–602.PubMedGoogle Scholar
  147. Yan, J., Lawson, J. E., and Reed, L. J., 1996, Role of the regulatory subunit of bovine pyruvate dehydrogenase phosphatase, Proc. Natl. Acad. Sci. USA 93: 4953–4956.PubMedGoogle Scholar
  148. Zoratti, M., and Szabó, I., 1995, The mitochondrial permeability transition, Biochim. Biophys. Acta 1241: 139–176.PubMedGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • Paul Burnett
    • 1
  • Lawrence D. Gaspers
    • 1
  • Andrew P. Thomas
    • 1
  1. 1.Department of Pharmacology and PhysiologyUniversity of Medicine and Dentistry of New JerseyNewerk

Personalised recommendations