Advertisement

Physiology of the Permeability Transition Pore

  • Mario Zoratti
  • Francesco Tombola
Chapter
  • 153 Downloads

Keywords

Mitochondrial Membrane Mitochondrial Permeability Transition Mitochondrial Permeability Transition Pore Permeability Transition Pore Pyridine Nucleotide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andreeva, L., Tanveer, A., and Crompton, M., 1995, Evidence for the involvement of a membrane-associated cyclosporin-A binding protein in the Ca2+-activated inner membrane pore of heart mitochondria, Eur. J. Biochem. 230:1125–1132.CrossRefPubMedGoogle Scholar
  2. Antonsson, B., Conti, F., Ciavatta, A., Montessuit, S., Lewis, S., Martinou, I., Bernasconi, L., Bernard, A., Mermod, J.-J., Mazzei, G., Maundrell, K., Gambale, F., Sadoul, R., and Martinou, J.-C., 1997, Inhibition of Bax channel-forming activity by Bcl-2, Science 277:370–372.CrossRefPubMedGoogle Scholar
  3. Ballarin, C., and Sorgato, M. C., 1995, An electrophysiological study of yeast mitochondria: Evidence for two inner membrane anion channels sensitive to ATP, J. Biol. Chem. 270:19262–19268.PubMedGoogle Scholar
  4. Ballarin, C., and Sorgato, M. C., 1996, Anion channels of the inner membrane of mammalian and yeast mitochondria, J. Bioenerg. Biomembr. 28:125–130.CrossRefPubMedGoogle Scholar
  5. Bàthori, G., Szabò, I., Wolff, D., and Zoratti, M., 1996, The high-conductance channels of yeast mitochondrial outer membranes: A planar bilayer study, J. Bioenerg. Biomembr. 28:191–198.CrossRefPubMedGoogle Scholar
  6. Bernardi, P., 1996, The permeability transition pore. Control points of a cyclosporin A-sensitive mitochondrial channel involved in cell death, Biochim. Biophys. Acta 1275:5–9.PubMedGoogle Scholar
  7. Bernardi, P., and Petronilli, V., 1996, The permeability transition pore as a mitochondrial calcium release channel: A critical appraisal, J. Bioenerg. Biomembr. 28:131–138.CrossRefPubMedGoogle Scholar
  8. Bernardi, P., Vassanelli, S., Veronese, P., Colonna, R., Szabò, I., and Zoratti, M., 1992, Modulation of the mitochondrial permeability transition pore: Effect of protons and divalent cations, J. Biol. Chem. 267:2934–2939.PubMedGoogle Scholar
  9. Bernardi, P., Veronese, P., and Petronilli, V., 1993, Modulation of the mitochondrial cyclosporin A-sensitive permeability transition pore: I. Evidence for two separate Me2+ binding sites with opposing effects on the pore open probability, J. Biol. Chem. 268:1005–1010.PubMedGoogle Scholar
  10. Bernardi, P., Broekemeier, K. M., and Pfeiffer, D. R., 1994, Recent progress on regulation of the permeability transition pore, a cyclosporin A-sensitive pore in the mitochondrial inner membrane, J. Bioenerg. Biomembr. 26:509–517.CrossRefPubMedGoogle Scholar
  11. Beutner, G., Ruck, A., Riede, B., Welte, W., and Brdiczka, D., 1996, Complexes between kinases, mitochondrial porin, and adenylate translocator in rat brain resemble the permeability transition pore, FEBS Lett. 396:189–195.CrossRefPubMedGoogle Scholar
  12. Beutner, G., Ruck, A., Riede, B., and Brdiczka, D., 1998, Complexes between porin, hexokinase, mitochondrial creatine kinase, and adenylate translocator display properties ofthe permeability transition pore: Implication for regulation of permeability transition by the kinases, Biochim. Biophys. Acta 1368:7–18.PubMedGoogle Scholar
  13. Bindoli, A., Barzon, E., and Rigobello, M. P., 1995, Inhibitory effect of pyruvate on release of glutathione and swelling of rat heart mitochondria, Cardiovas. Res. 30:821–824.Google Scholar
  14. Bindoli, A., Callegaro, M. T., Barzon, E., Benetti, M., and Rigobello, M. P., 1997, Influence of the redox state of pyridine nucleotides on mitochondrial sulfhydryl groups and permeability transition, Arch. Biochem. Biophys. 342:22–28.CrossRefPubMedGoogle Scholar
  15. Broekemeier, K. M., and Pfeiffer, D. R., 1989, Cyclosporin A-sensitive and insensitive mechanisms produce the permeability transition in mitochondria, Biochem. Biophys. Res. Commun. 163:561–566.CrossRefPubMedGoogle Scholar
  16. Broekemeier, K. M., and Pfeiffer, D. R., 1995, Inhibition of the mitochondrial permeability transition by cyclosporin A during long time-frame experiments: Relationship between pore opening and the activity of mitochondrial phospholipases, Biochemistry 34:16440–16449.CrossRefPubMedGoogle Scholar
  17. Broekemeier, K. M., Dempsey, M. E., and Pfeiffer, D. R., 1989, Cyclosporin A is a potent inhibitor of the inner membrane permeability transition in liver mitochondria, J. Biol. Chem. 264:7826–7830.PubMedGoogle Scholar
  18. Broekemeier, K. M., Klocek, C. K., and Pfeiffer, D. R., 1998, Proton selective substate of the mitochondrial permeability transition pore: Regulation by the redox state of the electron transport chain, Biochemistry 37:13059–13065.CrossRefPubMedGoogle Scholar
  19. Brustovetsky, N., and Klingenberg, M., 1996, Mitochondrial ADP/ATP carrier can be reversibly converted into a large channel by Ca2+, Biochemistry 35:8483–8488.CrossRefPubMedGoogle Scholar
  20. Carbonera, D., and Azzone, G. F., 1988, Permeability of inner mitochondrial membrane and oxidative stress, Biochim. Biophys. Acta 943:245–255.PubMedGoogle Scholar
  21. Castilho, R. F., Kowaltowski, A. J., Meinicke, A. R., Bechara, E. J. and Vercesi, A. E., 1995, Permeabilization of the inner mitochondrial membrane by Ca2+ ions is stimulated by t-butylhydroperoxide and mediated by reactive oxygen species generated by mitochondria, Free Radical Biol. Med. 18:479–486.Google Scholar
  22. Castilho, R. F., Kowaltowski, A. J., and Vercesi, A. E., 1996, The irreversibility of inner mitochondrial membrane permeabilization by Ca2+ plus prooxidants is determined by the extent of membrane protein thiol cross-linking, J. Bioenerg. Biomembr. 28:523–529.CrossRefPubMedGoogle Scholar
  23. Castilho, R. F., Kowaltowski, A. J., and Vercesi, A. E., 1998, 3,5,3′-triiodothyronine induces mitochondrial permeability transition mediated by reactive oxygen species and membrane protein thiol oxidation, Arch. Biochem. Biophys. 354:151–157.CrossRefPubMedGoogle Scholar
  24. Chernyak, B. V., and Bernardi, P., 1996, The mitochondrial permeability transition pore is modulated by oxidative agents through both pyridine nucleotides and glutathione at two separate sites, Eur. J. Biochem. 238:623–630.CrossRefPubMedGoogle Scholar
  25. Chernyak, B. V., Dedov, V. N., and Chernyak, V. Ya., 1995, Ca2+-triggered membrane permeability transition in deenergized mitochondria from rat liver, FEBS Lett. 365:75–78.CrossRefPubMedGoogle Scholar
  26. Connern, C. P., and Halestrap, A. P., 1992, Purification and N-terminal sequencing of peptidyl-prolyl cis-trans-isomerase from rat liver mitochondrial matrix reveals the existence of a distinct mitochondrial cyclophilin, Biochem. J. 284:381–385.PubMedGoogle Scholar
  27. Connern, C. P., and Halestrap, A. P., 1994, Recruitment of mitochondrial cyclophilin to the mitochondrial inner membrane under conditions of oxidative stress that enhance the opening of a calcium-sensitive non-specific channel, Biochem. J. 302:321–324.PubMedGoogle Scholar
  28. Connern, C. P., and Halestrap, A. P., 1996, Chaotropic agents and increased matrix volume enhance binding of mitochondrial cyclophilin to the inner mitochondrial membrane and sensitize the mitochondrial permeability transitionto [Ca2+], Biochemistry 35:8172–8180.CrossRefPubMedGoogle Scholar
  29. Costantini, P., Chernyak, B. V., Petronilli, V., and Bernardi, P.,1995, Selective inhibition of the mitochondrial permeability transition pore at the oxidation-reduction sensitive dithiol by monobromobimane, FEBS Lett. 362:239–242.Google Scholar
  30. Costantini, P., Cernyak, B. V., Petronilli, V., and Bernardi, P., 1996, Modulation of the mitochondrial permeability transition pore by pyridine nucleotides and dithiol oxidation at two separate sites, J. Biol. Chem. 271:6746–6751.PubMedGoogle Scholar
  31. Costantini, P., Colonna, R., and Bernardi, P., 1998, Induction of the mitochondrial permeability transition by N-ethylmaleimide depends on secondary oxidation of critical thiol groups: Potentiation by copper-ortho-phenanthroline without dimerization of adenine nucleotide translocase, Biochim. Biophys. Acta 1365:385–392.PubMedGoogle Scholar
  32. Crompton, M., and Andreeva, L., 1994, On the interaction of Ca2+ and cyclosporin A with a mitochondrial inner membrane pore: A study using cobaltammine complex inhibitors of the Ca2+ uniporter, Biochem. J. 302:181–185.PubMedGoogle Scholar
  33. Crompton, M., Ellinger, H., and Costi, A., 1988, Inhibition by cyclosporin A of a Ca2+-dependent pore in heart mitochondria activated by inorganic phosphate and oxidative stress. Biochem. J. 255:357–360.PubMedGoogle Scholar
  34. Crompton, M., McGuinness, O., and Nazareth, W., 1992, The involvement of cyclosporin A binding proteins in regulating and uncoupling mitochondrial energy transduction, Biochim. Biophys. Acta 1101:214–217.PubMedGoogle Scholar
  35. Eriksson, O., Fontaine, E., Petronilli, V, and Bernardi, P., 1997, Inhibition of the mitochondrial cyclosporin A-sensitive permeability transition pore by the arginine reagent phenylglyoxal, FEBS Lett. 409:361–364.CrossRefPubMedGoogle Scholar
  36. Eriksson, O., Fontaine, E., and Bernardi, P., 1998, Chemical modification of arginines by 2,3-butanedione and phenylglyoxal causes closure of the mitochondrial permeability transition pore, J. Biol. Chem. 273:12669–12674.CrossRefPubMedGoogle Scholar
  37. Fagian, M. M., Pereira-da-Silva, L., Martins, I. S., and Vercesi, A. E., 1990, Membrane protein thiol cross-linking associated with the permeabilization of the inner mitochondrial membrane by Ca2+ plus prooxidants, J. Biol. Chem. 265:19955–19960.PubMedGoogle Scholar
  38. Fontaine, E., Eriksson, O., Ichas, F., and Bernardi, P., 1998a, Regulation of the permeability transition pore in skeletal muscle mitochondria: Modulation by electron flow through the respiratory chain complex I, J. Biol. Chem. 273:12662–12668.PubMedGoogle Scholar
  39. Fontaine, E., Ichas, F., and Bernardi, P., 1998b, A ubiquinone-binding site regulates the mitochondrial permeability transition pore, J. Biol. Chem. 273:25734–25740.PubMedGoogle Scholar
  40. Fournier, N., Ducet, G., and Crevat, A., 1987, Action of cyclosporine on mitochondrial calcium fluxes, J. Bioenerg. Biomembr. 19:297–303.CrossRefPubMedGoogle Scholar
  41. Gogvadze, V., Schweizer, M., and Richter, C., 1996, Control of the pyridine nucleotide-linked Ca2+ release from mitochondria by respiratory substrates, Cell Calcium 19:521–526.CrossRefPubMedGoogle Scholar
  42. Gores, G. J., Miyoshi, H., Botla, R., Aguilar, H. I., and Bronk, S., 1998, Induction of the mitochondrial permeability transition as a mechanism of liver injury during cholestasis: A potential role for mitochondrial proteases, Biochim. Biophys. Acta 1366:167–175.PubMedGoogle Scholar
  43. Gudz, T., Eriksson, O., Kushnareva, Y., Saris, N. E., and Novgorodov, S., 1997, Effect ofbutylhydroxytoluene and related compounds on permeability of the inner mitochondrial membrane, Arch. Biochem. Biophys. 342:143–156.CrossRefPubMedGoogle Scholar
  44. Gunter, T. E., and Pfeiffer, D. R., 1990, Mechanisms by which mitochondria transport calcium, Am. J. Physiol. 258:C755–C786.PubMedGoogle Scholar
  45. Halestrap, A.P., Woodfield, K.-Y., and Connern, C.P., 1997a, Oxidative stress, thiol reagents, and membrane potential modulate the mitochondrial permeability transition by affecting nucleotide binding to the adenine nucleotide translocase, J. Biol. Chem. 272:3346–3354.CrossRefPubMedGoogle Scholar
  46. Halestrap, A. P., Connern, C. P., Griffiths, E. J., and Kerr, P. M., 1997b, Cyclosporin A binding to mitochondrial cyclophilin inhibits the permeability transition pore and protects hearts from ischemia/reperfusion injury, Mol. Cell. Biochem. 174:167–172.CrossRefPubMedGoogle Scholar
  47. Halestrap, A. P., Kerr, P. M., Javadov, S., and Woodfield, K.-Y., 1998, Elucidating the molecular mechanism of the permeability transition pore and its role in reperfusion injury in the heart, Biochim. Biophys. Acta 1366:79–94.PubMedGoogle Scholar
  48. Haworth, R. A., and Hunter, D. R., 1979, The Ca2+-induced membrane transition in mitochondria: II. Nature of the Ca2+ trigger site, Arch. Biochem. Biophys. 195:460–467.CrossRefPubMedGoogle Scholar
  49. Haworth, R. A., and Hunter, D. R., 1980, Allosteric inhibition of the Ca2+-activated hydrophilic channel of the mitochondrial inner membrane by nucleotides, J. Membr. Biol. 54:231–236.PubMedGoogle Scholar
  50. Henry, J.-P., Juin, P., Vallette, F., and Thieffry, M., 1996, Characterization and function of the mitochondrial outer membrane peptide-sensitive channel, J. Bioenerg. Biomembr. 28:101–108.CrossRefPubMedGoogle Scholar
  51. Herick, K., Kramer, R., and Luhring, H., 1997, Patch clamp investigation into the phosphate carrier from Saccharomyces cerevisiae mitochondria, Biochim. Biophys. Acta 1321:207–220.PubMedGoogle Scholar
  52. Hirsch, T., Decaudin, D., Susin, S. A., Marchetti, P., Larochette, N., Resche-Rigon, M., and Kroemer, G., 1998, PK11195, a ligand of the mitochondrial benzodiazepine receptor, facilitates the induction of apoptosis and reverses Bcl-2 mediated cytoprotection, Exp. Cell Res. 241:426–434.CrossRefPubMedGoogle Scholar
  53. Hunter, D.R., and Haworth, R. A., 1979a, The Ca2+-induced membrane transition in mitochondria: I. The protective mechanism, Arch. Biochem. Biophys. 195:453–459.PubMedGoogle Scholar
  54. Hunter, D. R., and Haworth, R. A., 1979b, The Ca2+-induced membrane transition in mitochondria: III. Transitional Ca2+ release, Arch. Biochem. Biophys. 195:468–477.PubMedGoogle Scholar
  55. Ichas, F., and Mazat, J.-P., 1998, From calcium signaling to cell death: Two conformations for the mitochondrial permeability transition pore: Switching from low-to high-conductance state, Biochim. Biophys. Acta 1366:33–50.PubMedGoogle Scholar
  56. Ichas, F., Jouaville, L. S., Sidash, S. S., Mazat, J.-P., and Holmuhamedov, E. L., 1994, Mitochondrial calcium spiking: A transduction mechanism based on calcium-induced permeability transition involved in cell calcium signalling, FEBS Lett. 348:211–215.CrossRefPubMedGoogle Scholar
  57. Ichas, F., Jouaville, L. S., and Mazat, J.-P., 1997, Mitochondria are excitable organelles capable of generating and conveying electrical and calcium signals, Cell 89:1145–1153.CrossRefPubMedGoogle Scholar
  58. Jung, D. W., and Brierley, G. P., 1981, On the relationship between the uncoupler-induced efflux of к from heart mitochondria and the oxidation-reduction state of pyridine nucleotides, J. Biol. Chem. 256: 10490–10496.PubMedGoogle Scholar
  59. Jung, D. W., Bradshaw, P. C., and Pfeiffer, D. R., 1997, Properties of a cyclosporin-insensitive permeability transition pore in yeast mitochondria, J. Biol. Chem. 272:21104–21112.PubMedGoogle Scholar
  60. Juergensmeier, J. M., Xie, Z., Deveraux, Q., Ellerby, L., Bredesen, D., and Reed, J. C., 1998, Bax directly induces release of cytochrome c from isolated mitochondria, Proc. Natl. Acad. Sci. USA 95:4997–5002.Google Scholar
  61. Kinnally, K. W., Zorov, D. B., Antonenko, Yu. N., and Zorov, D. B., 1992, Modulation of inner mitochondrial membrane channel activity, J. Bioenerg. Biomembr. 24:99–110.CrossRefPubMedGoogle Scholar
  62. Kinnally, K. W., Zorov, D. B., Antonenko, Y. N., Snyder, S. H., McEnery, M. W., and Tedeschi, H., 1993, Mitochondrial benzodiazepine receptor linked to inner membrane ion channels by nanomolar actions of ligands, Proc. Natl. Acad. Sci. USA 90:1374–1378.PubMedGoogle Scholar
  63. Kinnally, K. W., Lohret, T. A., Campo, M. L., and Mannella, C. A., 1996, Perspectives on the mitochondrial multiple conductance channel, J. Bioenerg. Biomembr. 28:115–123.CrossRefPubMedGoogle Scholar
  64. Kowaltowski, A. J., and Castilho, R. F., 1997, Ca2+ acting at the external side of the inner mitochondrial membrane can stimulate mitochondrial permeability transition induced by phenylarsine oxide, Biochim. Biophys. Acta 1322:221–229.PubMedGoogle Scholar
  65. Kowaltowski, A. J., Castilho, R. F., and Vercesi, A. E., 1995, Ca2+-induced mitochondrial membrane permeabilization: Role of coenzyme Q redox state, Am. J. Physiol. 269:C141–C147.PubMedGoogle Scholar
  66. Kowaltowski, A. J., Castilho, R. F., and Vercesi, A. E., 1996a, Opening of the mitochondrial permeability transition pore by uncoupling or inorganic phosphate in the presence of Ca2+ is dependent on mitochondrial-generated reactive oxygen species, FEBS Lett. 378:150–152.CrossRefPubMedGoogle Scholar
  67. Kowaltowski, A. J., Castilho, R. F., Grijalba, M. T., Bechara, E. J., and Vercesi, A. E., 1996b, Effect of inorganic phosphate concentration on the nature of inner mitochondrial membrane alterations mediated by Ca2+ ions: A proposed model for phosphate-stimulated lipid peroxidation, J. Biol. Chem. 271:2929–2934.PubMedGoogle Scholar
  68. Kowaltowski, A. J., Vercesi, A. E., and Castilho, R. F., 1997, Mitochondrial membrane protein thiol reactivity with N-ethylmaleimide or mersalyl is modified by Ca2+ Correlation with mitochondrial permeability transition, Biochim. Biophys. Acta 1318:395–402.PubMedGoogle Scholar
  69. Kunkele, K. P., Heins, S., Dembowski, M., Nargang, F. E., Benz, R., Thieffry, M., Walz, J., Lill, R., Nussberger, S., and Neupert, W., 1998a, The preprotein translocation channel of the outer membrane of mitochondria, Cell 93:1009–1019.CrossRefPubMedGoogle Scholar
  70. Kunkele, K. P., Juin, P., Pompa, C., Nargang, F. E., Henry, J. P., Neupert, W., Lill, R., and Thieffry, M., 1998b. The isolated complex of the translocase of the outer membrane of mitochondria: Characterization of the cation-selective and voltage-gated preprotein-conducting pore, J. Biol. Chem. 273:31032–31039.CrossRefPubMedGoogle Scholar
  71. Lee, A.-C., Zizi, M., and Colombini, M, 1994, NADH decreases the permeability of the mitochondrial outer membrane to ADP by a factor of 6, J. Biol. Chem. 269:30974–30980.PubMedGoogle Scholar
  72. Lee, A.-C., Xu, X., and Colombini, M., 1996, The role of pyridine nucleotides in regulating the permeability of the mitochondrial outer membrane, J. Biol. Chem. 271:26724–26731.PubMedGoogle Scholar
  73. Lehninger, A. L., Vercesi, A., and Bababunmi, E. A., 1978, Regulation of Ca2+ release from mitochondria by the oxidation-reduction state of pyridine nucleotides, Proc. Natl. Acad. Sci. USA 75:1690–1694.PubMedGoogle Scholar
  74. Le Quoc, K., and Le Quoc, D., 1988, Involvement of the ADP/ATP carrier in calcium-induced perturbations of the mitochondrial inner membrane permeability: Importance of the orientation of the nucleotide binding site, Arch. Biochem. Biophys. 265:249–257.PubMedGoogle Scholar
  75. Loew, L. M., Tuft, R. A., Carrington, W., and Fay, F. S., 1993, Imaging in five dimensions: Time-dependent membrane potentials in individual mitochondria, Biophys. J. 65:2396–2407.PubMedGoogle Scholar
  76. Loew, L. M., Carrington, W., Tuft, R. A., and Fay, F. S., 1994, Physiological cytosolic Ca2+ transients evoke concurrent mitochondrial depolarizations, Proc. Natl. Acad. Sci. USA 91:12579–12583.PubMedGoogle Scholar
  77. Lohret, T. A., and Kinnally, K. W., 1995a, Multiple conductance channel activity of wild-type and voltage-dependent anion-selective channel (VDAC)-less yeast mitochondria, Biophys. J. 68:2299–2309.PubMedGoogle Scholar
  78. Lohret, T. A., and Kinnally, K. W., 1995b, Targeting peptides transiently block a mitochondrial channel, J. Biol. Chem. 270:15950–15953.PubMedGoogle Scholar
  79. Lohret, T.A., Murphy, R.C., Drgon, T., and Kinnally, K. W.,1996, Activity of the mitochondrial multiple conductance channel is independent of the adenine nucleotide translocator, J. Biol. Chem. 271:4846–4849.Google Scholar
  80. Lohret, T. A., Jensen, R. E., and Kinnally, K. W., 1997, Tim23, a protein import component of the mitochondrial inner membrane, is required for normal activity of the multiple conductance channel MCC J. Cell Biol. 137:377–386.CrossRefPubMedGoogle Scholar
  81. Majima, E., Ikawa, K., Takeda, M., Hashimoto, M., Shinohara, Y., and Terada, H., 1995, Translocation of loops regulates transport activity of mitochondrial ADP/ATP carrier deduced from formation of a specific intermolecular disulfide bridge catalyzed by copper-o-phenanthroline, J. Biol. Chem. 270: 29548–29554.PubMedGoogle Scholar
  82. Mancini, M., Nicholson, D. W., Roy, S., Thornberry, N. A., Peterson, E. P., Casciola-Rosen, L. A., and Rosen, A., 1998, The caspase-3 precursor has a cytosolic and mitochondrial distribution: Implications for apoptotic signaling. J. Cell Biol. 140:1485–1495.CrossRefPubMedGoogle Scholar
  83. Marzo, I., Brenner, C., Zamzami, N., Susin, S. A., Beutner, G., Brdiczka, D., Remy, R., Xie, Z. H., Reed, J. C., and Kroemer, G. 1998a, The permeability transition pore complex: A target for apoptosis regulation by caspases and bcl-2-related proteins, J Exp. Med. 187:1261–1271.CrossRefPubMedGoogle Scholar
  84. Marzo, I., Susin, S. A., Petit, P. X., Ravagnan, L., Brenner, C., Larochette, N., Zamzami, N., and Kroemer, G., 1998b, Caspases disrupt mitochondrial membrane barrier function, FEBS Lett. 427:198–202.CrossRefPubMedGoogle Scholar
  85. Marzo, I., Brenner, C., Zamzami, N., Juergensmeier, J. M., Susin, S. A., Vieira, H. L., Prevost, M. C., Xie, Z., Matsuyama, S., Reed, J. C., and Kroemer, G., 1998c, Bax and adenine nucleotide translocator cooperate in the mitochondrial control of apoptosis, Science 281:2027–2031.CrossRefPubMedGoogle Scholar
  86. Massari, S., 1997, Kinetic analysis of the mitochondrial permeability transition, J. Biol. Chem. 271:31942–31948.Google Scholar
  87. Minn, A. J., VEIez, P., Schendel, S. L., Liang, H., Muchmore, S. W., Fesik, S. W., Fill, M., and Thompson, C. B., 1997, Bcl-xL forms an ion channel in synthetic lipid membranes. Nature 385:353–357.CrossRefPubMedGoogle Scholar
  88. Nelson, D. R., Lawson, J. E., Klingenberg, M., and Douglas, M. G., 1993, Site-directed mutagenesis of the yeast mitochondrial ADP/ATP translocator: Six arginines and one lysine are essential, J. Mot. Biol. 230:1159–1170.Google Scholar
  89. Nemopuceno, M.F., and Pereira-da-Silva, L., 1993, Effect of cyclosporinA and trifluoperazine on ratliver mitochondria swelling and lipid peroxidation, Braz. J. Med. Biol. Res. 26:1019–1023.Google Scholar
  90. Nicolli, A., Petronilli, V, and Bernardi, P., 1993, Modulation of the mitochondrial cyclosporin A-sensitive permeability transition pore by matrix pH: Evidence that the pore open-closed probability is regulated by reversible histidine protonation. Biochemistry 32:4461–4465.CrossRefPubMedGoogle Scholar
  91. Nicolli, A., Basso, E., Petronilli, V, Wenger, R. M., and Bernardi, P., 1996, Interactions of cyclophilin with the mitochondrial membrane and regulation of the permeability transition pore, a cyclosporin A-sensitive channel, J. Biol. Chem. 271:2185–2192.PubMedGoogle Scholar
  92. Novgorodov, S. A., and Gudz, T. I, 1996, Permeability transition pore of the inner mitochondrial membrane can operate in two open states with different selectivities, J. Bioenerg. Biomemhr. 28:139–146.Google Scholar
  93. Novgorodov, S. A., Gudz, T. I., Milgrom, Y. M., and Brierley, G. P., 1992, The permeability transition in heart mitochondria is regulated synergistically by ADP and cyclosporin A, J. Biol. Chem. 267:16274–16282.PubMedGoogle Scholar
  94. O’Gorman, E., Beutner, G., Dolder, M., Koretsky, A. P., Brdiczka, D., and Walliman, T., 1997, The role of creatine kinase in inhibition of mitochondrial permeability transition, FEBS Lett. 414:253–257.PubMedGoogle Scholar
  95. Petronilli, V, Costantini, P., Scorrano, L., Colonna, R., Passamonti, S., and Bernardi, P., 1994a, The voltage sensor of the mitochondrial permeability transition pore is tuned by the oxidation-reduction state of vicinal thiols: Increase of the gating potential by oxidants and its reversal by reducing agents, J. Biol. Chem. 269:16638–16642.PubMedGoogle Scholar
  96. Petronilli, V, Nicolli, A., Costantini, P., Colonna, R., and Bernardi, P., 1994b, Regulation of the permeability transition pore, a voltage-dependent mitochondrial channel inhibited by cyclosporin A, Biochim. Biophys. Acta 1187:255–259.PubMedGoogle Scholar
  97. Petronilli, V., Miotto, G., Canton, M., Brini, M., Colonna, R., Bernardi, P., and Di Lisa, E., 1999, Transient and long-lasting openings of the mitochondrial permeability transition pore can be monitored directly in intact cells by changes in mitochondrial calcein fluorescence, Biophys. J., 76:725–734.PubMedGoogle Scholar
  98. Pfeiffer, D. R., Gudz, T. I., Novgorodov, S. A., and Erdahl, W. L., 1995, The peptide mastoparan is a potent facilitator of the mitochondrial permeability transition, J. Biol. Chem. 270:4923–4932.PubMedGoogle Scholar
  99. Prpic, V., and Bygrave, F. L., 1980, On the interrelationship between glucagon action, the oxidation-reduction state of pyridine nucleotides, and calcium retention by rat liver mitochondria, J. Biol. Chem. 255:6193–6199.PubMedGoogle Scholar
  100. Reed, D. J., and Savage, M. K., 1995, Influence of metabolic inhibitors on mitochondrial permeability transition and glutathione status, Biochim. Biophys. Acta 1271:43–50.PubMedGoogle Scholar
  101. Reed, J. C., Juergensmeier, J. M., and Matsuyama, S., 1998, Bcl-2 family proteins and mitochondria, Biochim. Biophys. Acta 1366:127–137.PubMedGoogle Scholar
  102. Rigobello, M. P., Toninello, A., Siliprandi, D., and Bindoli, A., 1993, Effect of spermine on mitochondrial glutathione release, Biochem. Biophys. Res. Commun. 194:1276–1281.CrossRefPubMedGoogle Scholar
  103. Rigobello, M. P., Barzon, E., Marin, O., and Bindoli, A., 1995a, Effect of polycation peptides on mitochondrial permeability transition, Biochem. Biophys. Res. Commun. 217:144–149.CrossRefPubMedGoogle Scholar
  104. Rigobello, M. P., Turcato, F., and Bindoli, A., 1995b, Inhibition of rat liver mitochondria permeability transition by respiratory substrates, Arch. Biochem. Biophys. 319:225–230.CrossRefPubMedGoogle Scholar
  105. Rigobello, M. P., Callegaro, M. T, Barzon, E., Benetti, M., and Bindoli, A., 1998, Purification of mitochondrial thioredoxin reductase and its involvement in the redox regulation of membrane permeability, Free Radical Biol. Med. 24:370–376.CrossRefGoogle Scholar
  106. Riparbelli, M. G., Callaini, G., Tripodi, S. A., Cintorino, M., Tosi, P., and Dallai, R., 1995, Localization of the Bcl-2 protein to the outer mitochondrial membrane by electron microscopy, Exp. Cell Res. 221:363–369.CrossRefPubMedGoogle Scholar
  107. Roth, Z., and Dikstein, S., 1982, Inhibition of ruthenium red-insensitive mitochondrial Ca2+ release and its pyridine nucleotide specificity, Biochem. Biophys. Res. Commun. 105:991–996.CrossRefPubMedGoogle Scholar
  108. Rottenberg, H., and Marback, M., 1990, Regulation of Ca2+ transportinratbrainmitochondria: II. The mechanism of the adenine nucleotide enhancement of Ca2+ uptake and retention, Biochim. Biophys. Acta 1016:87–98.PubMedGoogle Scholar
  109. Rueck, A., Dolder, M., Wallimann, T, and Brdiczka, D., 1998, Reconstituted adenine nucleotide translocasc forms a channel for small molecules comparable to the mitochondrial permeability transition pore, FEBS Lett. 426:97–101.Google Scholar
  110. Savage, M. K., and Reed, D. J., 1994, Release of mitochondrial glutathione and calcium by a cyclosporin A-sensitive mechanism occurs without large amplitude swelling, Arch. Biochem. Biophys. 315:142–152.CrossRefPubMedGoogle Scholar
  111. Savage, M. K., Jones, D. P., and Reed, D. J., 1991, Calcium-and phosphate-dependent release and loading of glutathione by liver mitochondria, Arch. Biochem. Biophys. 290:51–56.CrossRefPubMedGoogle Scholar
  112. Schendel, S. L., Xie, Z., Oblatt Montal, M., Matsuyama, S., Montal, M., and Reed, J. C., 1997, Channel formation by antiapoptotic protein Bcl-2, Proc. Natl. Acad. Sci. USA 94:5113–5118.CrossRefPubMedGoogle Scholar
  113. Schlesinger, P. H., Gross, A., Yin, X.-M., Yamamoto, K., Saito, M., Waksman, G., and Korsmeyer, S. J., 1997, Comparison of the ion channel characteristics of proapoptotic BAX and antiapoptotic BCL-2, Proc. Natl. Acad. Sci. USA 94:11357–11362.CrossRefPubMedGoogle Scholar
  114. Schweizer, M., and Richter, C., 1994, Gliotoxin stimulates Ca2+ release from intact rat liver mitochondria, Biochemistry 33:13401–13405.CrossRefPubMedGoogle Scholar
  115. Schweizer, M., and Richter, C., 1996a, Peroxynitrite stimulates the pyridine micleotide-linked Ca2+ release from intact rat liver mitochondria, Biochemistry 35:4524–4528.CrossRefPubMedGoogle Scholar
  116. Schweizer, M., and Richter, C., 1996b, Stimulation of Ca2+ release from rat liver mitochondria by the dithiol reagent alpha-lipoic acid, Biochem. Pharmacol. 52:1815–1820.CrossRefPubMedGoogle Scholar
  117. Schweizer, M., Durrer, P., and Riehter, C., 1994, Phenylarsine oxide stimulates pyridine nucleotide-linked Ca2+ release from rat liver mitochondria, Biochem. Pharmacol. 48:967–973.CrossRefPubMedGoogle Scholar
  118. Scorrano, L., Petronilli, P., and Bernardi, P., 1997a, On the voltage dependence of the mitochondrial permeability transition pore: A critical reappraisal, J. Biol. Chem. 272:12295–12299.CrossRefPubMedGoogle Scholar
  119. Scorrano, L., Nicolli, A., Basso, E., Petronilli, V., and Bernardi, P., 1997b, Two modes of activation of the permeability transition pore: The role of mitochondrial cyclophilin, Mol. Cell. Biochem. 174:181–184.CrossRefPubMedGoogle Scholar
  120. Sokolove, P. M., and Kinnally, K. W., 1996, A mitochondrial signal peptide from Neurospora crassa increases the penneability of isolated rat liver mitochondria, Arch. Biochem. Biophys. 336:69–76.CrossRefPubMedGoogle Scholar
  121. Susin, S. A., Zamzami, N., Castedo, M., Daugas, E., Wang, H.-G., Geley, S., Fassy, F., Reed J. C., and Kroemer, G., 1997, The central executioner of apoptosis: Multiple connections between proteasc activation and mitochondria in Fas/APO-l/CD95-and ceramide-induced apoptosis, J. Exp. Med. 186:25–37.CrossRefPubMedGoogle Scholar
  122. Susin, S. A., Zamzami, N., and Kroemer, G., 1998, Mitochondria as regulators of apoptosis: Doubt no more, Biochim. Biophys. Acta 1366:151–165.PubMedGoogle Scholar
  123. Szabò, I., and Zoratti, M., 1991, The giant channel of the inner mitochondrial membrane isinhibited by cyclosporin A, J. Biol. Chem. 266:3376–3379.PubMedGoogle Scholar
  124. Szabò, I., and Zoratti, M., 1992, The mitochondrial megachannel is the permeability transition pore, J. Bioenerg. Biomembr. 24:111–117.PubMedGoogle Scholar
  125. Szabò, I., and Zoratti, M., 1993, The mitochondrial permeability transition pore may comprise VDAC molecules: I. Binary structure and voltage dependence of the pore, FEBS Lett. 330:205–210.Google Scholar
  126. Szabò, I., Bernardi, P., and Zoratti, M., 1992, Modulation of the mitochondrial megachannel by divalent cations and protons, J. Biol. Chem. 267:2940–2946.PubMedGoogle Scholar
  127. Szabò, I., De Pinto, V., and Zoratti, M., 1993, The mitochondrial permeability transition pore may comprise VDAC molecules: II. The electrophysiological properties of VDAC are compatible with those of the mitochondrial megachannel, FEBS Lett. 330:206–210.PubMedGoogle Scholar
  128. Szahò, I., Bàthori, G., WoIff, D., Starc, T, Cola, C., and Zoratti, M., 1995, The high-conductance channel of porin-less yeast mitochondria, Biochim. Biophys. Ada 1235:115–125.Google Scholar
  129. Tanveer, A., Virji, S., and Andrecva, L., Totty, N. F., Hsuan, J. J., Ward, J. M., and C’rompton, M., 1996. Involvement of cyclophilin D in the activation of a mitochondrial pore by Ca2+ and oxidant stress, Eur: J. Biochem. 238:166–172CrossRefGoogle Scholar
  130. Tikhonova, I. M., and Andreyev, A. Yu., Antonenko, Yu. N., Kaulen, A. D., Komrakov, A. Yu., and Skulachev, V P., 1994, Ion permeability induced in artificial membranes by the ATP/ADP antiporter, FEBS Lett. 337:231–234.CrossRefPubMedGoogle Scholar
  131. Turrens, J. F., Alexandre, A., and Lehninger, A. L., 1985, Ubisemiquinone is the electron donor for superoxide formation by complexIIIof heart mitochondria, Arch. Biochem. Biophys. 237:408–414.CrossRefPubMedGoogle Scholar
  132. Valle, V.G., Fagian, M. M., Parentoni, L. S., Meinicke, A. R., and Vercesi, A. E., 1993, The participation of reactive oxygen species and protein thiols in the mechanism of mitochondrial inner membrane permeabiliza-tion by calcium plus prooxidants. Arch. Biochem. Biophys. 307:1–7.CrossRefPubMedGoogle Scholar
  133. Vercesi, A.E., 1984, Dissociation ofNAD(P)+-stimulated mitochondrial Ca2+ efflux fromswelling and membrane damage. Arch. Biochem. Biophvs. 232:86–91.Google Scholar
  134. Vercesi, A.E., 1987, The participation of NADP, the transmembrane potential, and the energy-linked NAD(P) transhydrogenase in the process of Ca2+ efflux from ratliver mitochondria, Arch. Biochem. Biophys. 252:171–178CrossRefPubMedGoogle Scholar
  135. Woodfield, K.Y., Price, N.T, and Halestrap, A.P., 1997, cDNA cloning of rat mitochondrial cyclophilin, Biochim Biophys Acta 1351:27–30.PubMedGoogle Scholar
  136. Zizi, M., Forte, M., Blachly-Dyson, E., and Colombmi, M., 1994, NADH regulates the gating of VDAC, the mitochondrial outer membrane channel, J. Biol. Chem. 269:1624–1616.Google Scholar
  137. Zoratti, M., and Szabò, I., 1994, Electrophysiology of the inner mitochondrial membrane, J. Bioenerg Biomembr. 26:543–553.CrossRefPubMedGoogle Scholar
  138. Zoratti, M., and Szahò, I., 1995, The mitochondrial permeability transition, Biochim. Biophys. Acta 1241:139–176.PubMedGoogle Scholar
  139. Zorov, D. B., Kinnally, K. W., and Tedeschi, H., 1992, Voltage activation of heart inner mitochondrial membrane channels, J. Bioenerg Biomembr 24:119–124.CrossRefPubMedGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • Mario Zoratti
    • 1
  • Francesco Tombola
    • 1
  1. 1.CNR Unit for Biomembranes, Department of Biomedical SciencesUniversity of PadovaPadovaItaly

Personalised recommendations