Advertisement

Ca2+-Induced Transition in Mitochondria: A Cellular Catastrophe?

  • Robert A. Haworth
  • Douglas R. Hunter
Chapter

Keywords

Adrenal Cortex Permeability Transition Pore Heart Mitochondrion Mitochondrial Calcium Malic Enzyme Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aleksandrowicz, Z., Swierczynski, J., and Wrzolkowa, T., 1973, Protective effect of nupercaine on mitochondrial structure, Biochim. Biophys. Acta 305:59–66.PubMedGoogle Scholar
  2. Allmann, D. W., Wakabayashi, T., Korman, E. F., and Green, D. E., 1970a, Studies on the transition of the cristal membrane from the orthodox to the aggregated configuration: I. Topology of bovine adrenal cortex mitochondria in the orthodox configuration, J. Bioenerg. 1:73–86.PubMedGoogle Scholar
  3. Allmann, D. W., Munroe, J., Wakabayashi, T., Harris, R. A., and Green, D. E., 1970b, Studies on the transition of the cristal membrane from the orthodox to the aggregated configuration: II. Determinants of the orthodox-aggregated transition in adrenal cortex mitochondria, J. Bioenerg. 1:87–107.PubMedGoogle Scholar
  4. Allmann, D, W., Munroe, J., Wakabayashi, T., and Green, D. E., 1970c, Studies on the transition of the cristal membrane from the orthodox to the aggregated configuration: III. Loss of coupling ability of adrenal cortex mitochondria in the orthodox configuration, J. Bioenerg. 1:331–353.PubMedGoogle Scholar
  5. Attschuld, R. A., Hohl, C. M., Castillo, L. C., Garleb, A. A., Starling, R. C., and Brierley, G. P., 1992, Cyclosporin inhibits mitochondrial calcium efflux in isolated adult rat ventricular cardiomyocytes, Am.J.Physiol. 262:H1699–H1704.Google Scholar
  6. Azzi, A., and Azzone, G. F., 1966, Swelling and shrinkage phenomena in liver mitochondria: III. Irreversible swelling induced by inorganic phosphate and Ca2+, Biochim. Biophys. Acta 113:438–444.PubMedGoogle Scholar
  7. Berridge, M. J., 1975, The interaction of cyclic nucleotides and calcium in the control of cellular activity, Adv. Cyclic. Nucleotide. Res. 6:1–98.PubMedGoogle Scholar
  8. Beutner, G., B Beutner, RÜck, A., Riede, B., Welte, W., and Brdiczka, D., 1996, Complexes between kinases, mitochondrial porin, and adenylate translocator in rat brain resemble the permeability transition pore, FEBS Lett. 396:189–195.CrossRefPubMedGoogle Scholar
  9. Binet, A., and Volfin, P., 1975, Regulation by Mg2+ and Ca2+ of mitochondrial membrane integrity: Study of the effects of a cytosolic molecule and Ca2+ antagonists, Arch. Biochem. Biophys. 170:576–586.CrossRefPubMedGoogle Scholar
  10. Blackmore, P. F., Dehaye, J.P., and Exton, J. H., 1979, Studies on alpha-adrenergic activation of hepatic glucose output: The role of mitochondrial calcium release in alpha-adrenergic activation of phosphorylase in perfused rat liver, J. Biol. Chem. 254:6945–6950.PubMedGoogle Scholar
  11. Butow, R. A., Bennett, W. F., Finkelstein, D. B., and Kellems, R. E., 1975, Nuclear-cytoplasmic interactions in the biogenesis of mitochondria in yeast, in Membrane Biogenesis (A. Tzagoloff, Ed.) Plenum, New York and London, pp. 155–199.Google Scholar
  12. Bygrave, F.L., 1966, The effect of calcium ions on the glycolytic activity of Ehrlich ascites-tumour cells, Biochem. J. 101:480–487.PubMedGoogle Scholar
  13. Bygrave, F. L., 1967, The ionic environment and metabolic control, Nature 214:667–671.PubMedGoogle Scholar
  14. Chappell, J. B.,and Crofts, A. R., 1965 Calcium ion accumulation and volume changes of isolated liver mitochondria: Calcium ion-induced swelling, Biochem. J. 95:378–386.PubMedGoogle Scholar
  15. Chen, J. L., Babcock, D. F., and Lardy, H. A., 1978, Norepinephrine, vasopressin, glucagon, and A23187 induce efflux of calcium from an exchangeable pool inisolated rat hepatocytes, Proc.Natl. Acad. Sci. USA 75:2234–2238.PubMedGoogle Scholar
  16. Crofts, A. R., and Chappell, J. B., 1965, Calcium ion accumulation and volume changes of isolated liver mitochondria: Reversal of calcium ion-induced swelling, Biochem. J. 95:387–392.PubMedGoogle Scholar
  17. Crompton, M., Kunzi, M., and Carafoli, E., 1977, The calcium-induced and sodium-induced effluxes of calcium from heart mitochondria: Evidence for a sodium-calcium carrier, Eur. J. Biochem. 79:549–558.CrossRefPubMedGoogle Scholar
  18. Dorman, D. M., Barritt, G. J., and Bygrave, F. L., 1975, Stimulation ofhepatic mitochondrial calcium transport by elevated plasma insulin concentrations, Biochem. J. 150:389–395.PubMedGoogle Scholar
  19. Fletcher, M. J., and Sanadi, D. R., 1961, Turnover of rat liver mitochondria, Biochim. Biophys. Acta 51:356–360.CrossRefPubMedGoogle Scholar
  20. Gross, N. J., Getz, G. S., and Rabinowitz, M., 1969, Apparent turnover of mitochondrial deoxyribonucleic acid and mitochondrial phospholipids in the tissues of the rat, J. Biol. Chem. 244:1552–1562.PubMedGoogle Scholar
  21. Hackenbrock, C. R., and Caplan, A. I., 1969, Ion-induced ultrastructural transformations in isolated mitochondria: The energized uptake of calcium, J. Cell Biol. 42:221–234.CrossRefPubMedGoogle Scholar
  22. Harris, E. J., 1977, The uptake and release of calcium by heart mitochondria, Biochem. J. 168:447–456.PubMedGoogle Scholar
  23. Haworth, R.A., and Hunter, D. R., 1979, The calcium-induced membrane transition in mitochondria: II. Nature of the Ca2+ trigger site, J. Biol. Chem. 195:460–467.Google Scholar
  24. Haworth, R.A., Goknur, A.B., Biggs, A.V., Redon, D., and Potter, K. T., 1998, Ca uptake by heart cells: I. Ca uptake by the sarcoplasmic reticulum of intact heart cells in suspension. Cell Calcium 23:181–198.PubMedGoogle Scholar
  25. Hunter, D. R. and Haworth, R. A., 1979a, The calcium-induced membrane transition in mitochondria: I. The protective mechanisms, Arch. Biochem. Biophys. 195:453–459.PubMedGoogle Scholar
  26. Hunter, D. R., and Haworth, R. A., 1979b, The calcium-induced membrane transition in mitochondria: III. Transitional Ca2+ release, Arch. Biochem. Biophys. 195:468–477.PubMedGoogle Scholar
  27. Hunter, D. R., Haworth, R. A., and Southard, J. H., 1976, The relationship between permeability, configuration, and function in calcium treated mitochondria, J. Biol. Chem. 251:5069–5077.PubMedGoogle Scholar
  28. Kadioglu, D., and Harrison, R. G., 1971 The functional relationships of mitochondria in the rat adrenal cortex, J. Anat. 110:283–296.PubMedGoogle Scholar
  29. Kahri, A. I., 1968, Effects of actinomycin D and puromycin on the ACTH-induced ultrastructural transformation of mitochondria of cortical cells of rat adrenals in tissue culture, J. Cell Biol. 36:181–195.CrossRefGoogle Scholar
  30. Lehninger, A. L., 1959, Reversal of various types of mitochondrial swelling by adenosine triphosphate, J. Biol. Chem. 234:2465.PubMedGoogle Scholar
  31. Lemasters, J. J., Nieminen, A.-L., Qian, T., Trost, L. C., Elmore, S. P., Nishimura, Y., Crowe, R. A., Cascio, W. E., Bradham, C. A., Brenner, D. A., and Herman, B., 1998, The mitochondrial permeability transition in cell death: A common mechanism in necrosis, apoptosis, and autophagy, Biochim. Biophys. Acta 1366:177–196.PubMedGoogle Scholar
  32. Lohret, T. A., and Kinnally, K. W., 1995, Targeting peptides transiently block a mitochondrial channel, J. Biol. Chem. 270:15950–15953.PubMedGoogle Scholar
  33. Mason, M., and Tobes, M. C., 1977, Opposing actions of Ca++ and ATP plus Mg++ in controlling the kynurenine aminotransferase activity of isolated rat kidney mitochondria, Biochem. Biophys. Res. Commun. 75:434–441.PubMedGoogle Scholar
  34. Pfeiffer, D. R., and Tchen, T. T., 1973, The role of Ca2+ in control of malic enzyme activity in bovine adrenal cortex mitochondria, Biochem. Biophys. Res. Commun. 50:807–813.CrossRefPubMedGoogle Scholar
  35. Pfeiffer, D. R., and Tchen, T. T., 1975, The activation of adrenal cortex mitochondrial malic enzyme by Ca2+ and Mg2+, Biochemistry 14:89–96.CrossRefPubMedGoogle Scholar
  36. Pfeiffer, D. R., Kuo, T. H., and Tchen, T. T., 1976, Some effects of Ca2+, Mg2+ on the ultrastructure, light-scattering properties, and malic enzyme activity of adrenal cortex mitochondria, Arch.Biochem. Biophys. 176:556–563.CrossRefPubMedGoogle Scholar
  37. Pozzan, T., Bragadin, M., and Azzone, G. F., 1977, Disequilibrium between steady-state Ca2+ accumulation ratio and membrane potential in mitochondria: Pathway and role of Ca2+ efflux, Biochemistry 16:5618–5625.CrossRefPubMedGoogle Scholar
  38. Puskin, J. S., Gunter, T. E., Gunter, K. K., and Russell, P. R., 1976, Evidence for more than one Ca2+ transport mechanism in mitochondria, Biochemistry 15:3834–3842.CrossRefPubMedGoogle Scholar
  39. Sabatini, D. D., De Robertis, E. D. P., and Bleichman, H. B., 1962, Submicroscopic study of the pituitary action on the adrenocortex of the rat, Endocrinology 70:390–406.PubMedGoogle Scholar
  40. Smith, J. A., and Martin, L., 1973, Do cells cycle? Proc. Natl. Acad. Sci. USA 70:1263–1267.PubMedGoogle Scholar
  41. Szabò, I., and Zoratti, M., 1992, The mitochondrial megachannel is the permeability transition pore, J. Bioenerg. Biomembr. 24:111–117.PubMedGoogle Scholar
  42. Trump, B. F., Croker, B. P., and Mergner, W. J., 1971, The role of energy metabolism, ion, and water shifts in the pathogenesis of cell injury, in Cell Membranes, Biological and Pathological Aspects (G. W. Richter and D. G. Scarpelli, Eds.), Williams and Wilkins, Baltimore, MD, pp. 84–128.Google Scholar
  43. Volk, T. L., and Scarpelli, D. G., 1966 Mitochondrial gigantism in the adrenal cortex following hypophysectomy, Lab. Invest. 15:707–715.PubMedGoogle Scholar
  44. Waite, M., Scherphof, G. L., Boshouwers, F. M., and Deenen, L. L., 1969, Differentiation of phospholipase A in mitochondria and lysosomes of rat liver, J. Lipid Res. 10:411–420.PubMedGoogle Scholar
  45. Wakabayashi, T., Korman, E. F., and Green, D. E., 1971, On the structure of biological membranes: The double-tiered pattern, J. Bioenerg. 2:233–247.PubMedGoogle Scholar
  46. Wrogemann, K., Jacobson, B. E., and Blanchaer, M. C., 1973, On the mechanism of a calcium-associated defect of oxidative phosphorylation in progessive muscular dystrophy, Arch. Biochem. Biophys. 159:267–278.CrossRefPubMedGoogle Scholar
  47. Zamzami, N., Susin, S. A., Marchetti, P., Hirsch, T., Gomez-Monterrey, I., Castedo, M., and Kroemer, G., 1996, Mitochondrial control of nuclear apoptosis, J. Exp. Med. 183:1533–1544.CrossRefPubMedGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • Robert A. Haworth
    • 1
  • Douglas R. Hunter
    • 1
  1. 1.Department of SurgeryUniversity of Wisconsin Clinical Science CenterMadison

Personalised recommendations