Skip to main content

Purinergic Receptor-Mediated Cytotoxicity

  • Chapter
  • 188 Accesses

Conclusion

Mitochondria are vitally important for maintaining cellular integrity. Calcium is considered a mediator of necrosis as well as a main cause of damage in isolated mitochondria. Our results show that mitochondrial Ca2+ regulation in hepatocytes is affected when [Ca2+]i is increased; this is followed by mitochondrial dysfunction and irreversible cell injury. Mitochondrial free [Ca2+] is indicated as a key parameter in this process, and phosphate is indicated as a possible important regulator of [Ca2+]mito. In addition, we suggest a role for mitochondrial Ca2+ deposits, which present only in cells killed by high [Ca2+]i.

The mechanisms underlying Ca2+-induced mitochondrial damage are rapidly elucidated; it remains to be seen whether, in intact cells, opening of a large membranous pore, opening of small ion channels, or nonspecific mitochondrial membrane destruction is involved. Our results suggest at least a small permeability change of the mitochondrial inner membrane, allowing, for example, K+ fluxes.

Future issues include the question of what happens after mitochondrial failure. Several processes, such as extreme mitochondrial swelling, mitochondrial NAD(P)H depletion, and release of mitochondrial components must be considered as critical consequences of mitochondrial dysfunction.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Albano, E., Carini, R., Parola, M., Bellomo, G., Goria-Gatti, L., Poll, G., and Dianzani, M. U., 1989, Effects of carbon tetrachloride on calcium homeostasis: A critical reconsideration, Biochem. Pharmacol. 38:2719–2725.

    Article  CAS  PubMed  Google Scholar 

  • Altschuld, R. A., Hohl, C. M., Castillo, L. C., Garleb, A. A., Starling, R. C. and Brierley, G. P., 1992, Cyclosporin inhibits mitochondrial calcium efflux in isolated adult rat ventricular cardiomyocytes, Am. J. Physiol. 262:H1699–H1704.

    CAS  PubMed  Google Scholar 

  • Beatrice, M. C., Palmer, J. W, and Pfeiffer, D. R., 1980, The relationship between mitochondrial membrane permeability, membrane potential, and the retention of Ca2+ by mitochondria, J. Biol. Chem. 255:8663–8671.

    CAS  PubMed  Google Scholar 

  • Backer, G. L., 1980, Steady-state regulation of extramitochondrial Ca2+ by rat liver mitochondria: Effects of Mg2+ and ATP, Biochim. Biophys. Acta 591:234–239.

    Google Scholar 

  • Berke, G., 1989, The cytolytic T lymphocyte and its mode of action, Immunol. Lett. 20:169–178.

    CAS  PubMed  Google Scholar 

  • Bernardi, P., 1992, Modulation of the mitochondrial cyclosporin A-sensitive permeability transition pore by the proton electrochemical gradient: Evidence that the pore can be opened by membrane depolarization, J. Biol. Chem. 267:8834–8839.

    CAS  PubMed  Google Scholar 

  • Boobis, A. R., Seddon, C. E., Nasseri-Sina, P., and Davies, D. S., 1990, Evidence for a direct role of intracellular calcium in paracetamol toxicity, Biochem. Pharmacol. 39:1277–1281.

    Article  CAS  PubMed  Google Scholar 

  • Broekemeier, K. M., Carpenter-Deyo, L., Reed, D. J., and Pfeiffer, D. R., 1992, Cyclosporin A protects hepatocytes subjected to high Ca2+ and oxidative stress, FEBS Lett. 304:192–194.

    CAS  PubMed  Google Scholar 

  • Bygrave, F. L., Lenton, L., Altin, J. G., Setchell, B. A., and Karjalainen, A., 1990, Phosphate and calcium uptake by mitochondria and by perfused rat liver induced by the synergistic action of glucagon and vasopressin, Biochem. J. 267:69–73.

    CAS  PubMed  Google Scholar 

  • Campbell, P I., and al Nasser, I. A., 1995, Dexamethasone inhibits inorganic phosphate stimulated Ca2+-dependent damage of isolated rat liver and renal cortex mitochondria, Comp. Biochem. Physiol. C. Pharmacol. Toxicol. Endocrinol. 111:221–225.

    CAS  PubMed  Google Scholar 

  • Canga, L., Levi, R., and Rifkind, A. B., 1988, Heart as a target organ in 2,3,7,8-tetrachlorodibenzo-P-dioxin toxicity: Decreased beta-adrenergic responsiveness and evidence of increased intracellular calcium, Proc. Natl. Acad. Sci. USA 85:905–909.

    CAS  PubMed  Google Scholar 

  • Cannon, J. R., Harvison, P. J., and Rush, G. F., 1991, The effects of fructose on adenosine triphosphate depletion following mitochondrial dysfunction and lethal cell injury in isolated rat hepatocytes, Toxicol. Appl. Pharmacol. 108:407–416.

    Article  CAS  PubMed  Google Scholar 

  • Chacon, E., Ulrich, R., and Acosta, D., 1992, A digitized-fluorescence-imaging study of mitochondrial Ca2+ increase by doxorubicin in cardiac myocytes, Biochem. J. 281:871–878.

    CAS  PubMed  Google Scholar 

  • Charest, R., Blackmore, P. F., and Exton, J. H., 1985, Characterization of responses of isolated rat hepatocytes to ATP and ADP, J. Biol. Chem. 260:15789–15794.

    CAS  PubMed  Google Scholar 

  • Chavez, E., Moreno-Sanchez, R., Zazueta, C., Reyes-Vivas, H., and Arteaga, D., 1991, Intramitochondrial K+ as activator of carboxyatractyloside-induced Ca2+ release, Biochim. Biophys. Acta 1070:461–466.

    CAS  PubMed  Google Scholar 

  • Crompton, M., and Costi, A., 1988, Kinetic evidence for a heart mitochondrial pore activated by Ca2+, inorganic phosphate, and oxidative stress: A potential mechanism for mitochondrial dysfunction during cellular Ca2+ overload, Eur. J. Biochem. 178:489–501.

    Article  CAS  PubMed  Google Scholar 

  • Di Virgilio, F, 1995, The P2Z purinoceptor: An intriguing role in immunity, inflammation, and cell death, Immunol. Today 16:524–528.

    PubMed  Google Scholar 

  • Di Virgilio, F., Chiossszzi P., Falzoni S., Ferrari D., Sanz, J. M., Venketaraman, V, and Baricordi, O. R., 1998, Cytolytic P2x purinoceptors, Cell Death Diffr. 5:191–199.

    Google Scholar 

  • El Moatassim, C., Dornand, J., and Mani, J. C., 1992, Extracellular ATP and cell signalling, Biochim. Biophys. Acta 1134:31–45.

    PubMed  Google Scholar 

  • Farber, J. L., 1982, Biology of disease: Membrane injury and calcium homeostasis in the pathogenesis of coagulative necrosis, Lab. Invest. 47:114–123.

    CAS  PubMed  Google Scholar 

  • Fariss, M. W., and Reed, D. J., 1985, Mechanism of chemical-induced toxicity: II. Role of extracellular calcium, Toxicol. Appl. Pharmacol. 79:296–306.

    CAS  PubMed  Google Scholar 

  • Forman, H. J., Dorio, R. J., and Skelton, D. C., 1987, Hydroperoxide-induced damage to alveolar macrophage function and membrane integrity: Alterations in intracellular free Ca2+ and membrane potential, Arch. Biochem. Biophys. 259:457–465.

    Article  CAS  PubMed  Google Scholar 

  • Gasbarrini, A., Borle, A. B., Farghali, H., Bender, C., Krancavilla, A., and Van Thiel, D., 1992, Effect of anoxia on intracellular ATP, Na +1 .Ca 2+1 Mg 2+1 , and Cytotoxicity in rat hepatocytes [published erratum appears in 1992, J. Biol. Chem. 267: 13114], J. Biol Chem. 267:6654–6663.

    CAS  PubMed  Google Scholar 

  • Gores, G. J., Nieminen, A.-L., Fleishman, K. E., Dawson, T. L., Herman, B., and Lemasters, J. J., 1988, Extracellular acidosis delays onset of cell death in ATP-depleted hepatocytes, Am. J. Physiol. 255:C315–C322.

    CAS  PubMed  Google Scholar 

  • Grant, R. L., and Acosta, D., Jr, 1994, A digitized fluorescence imaging study on the effects of local anesthetics on cytosolic calcium and mitochondrial membrane potential in cultured rabbit corneal epithelial cells, Toxicol. Appl. Pharmacol. 129:23–35.

    Article  CAS  PubMed  Google Scholar 

  • Griffiths, E. J., and Halestrap, A. P., 1991, Further evidence that cyclosporin A protects mitochondria from calcium overload by inhibiting a matrix peptidyl-prolyl cis-trans isomerase: Implications for the immuno-suppressive and toxic effects of cyclosporin, Biochem. J. 274:611–614.

    CAS  PubMed  Google Scholar 

  • Gunter, T. E., and Pfeiffer, D. R., 1990, Mechanisms by which mitochondria transport calcium. Am. J. Physiol. 258:C755–C786.

    CAS  PubMed  Google Scholar 

  • Halestrap, A. P., 1989, The regulation of the matrix volume of mammalian mitochondria in vivo and in vitro and its role in the control of mitochondrial metabolism, Biochim. Biophys. Acta 973:355–382.

    CAS  PubMed  Google Scholar 

  • Halestrap, A. P., 1991, Calcium-dependent opening of a non-specific pore in the mitochondrial inner membrane is inhibited at pH values below 7: Implications for the protective effect of low pH against chemical and hypoxic cell damage, Biochem. J. 278:715–719.

    CAS  PubMed  Google Scholar 

  • Horstman, D. A., Tennes, K. A., and Putney, J. W., Jr, 1986, ATP-induced calcium mobilization and inositol 1,4,5-triphosphate formation in H-35 hepatoma cells, FEBS Lett. 204:189–192.

    Article  CAS  PubMed  Google Scholar 

  • Imberti, R., Nieminen, A.-L., Herman, B., and Lemasters, J. J., 1992, Synergism of cyclosporin A and phospholipase inhibitors in protection against lethal injury to rat hepatocytes from oxidant chemicals, Rex. Commun. Chem. Pathol. Pharmacol. 78:27–38.

    CAS  Google Scholar 

  • Jiang, T., Grant, R. L., and Acosta, D., 1993, A digitized fluorescence imaging study of intracellular free calcium, mitochondrial integrity and Cytotoxicity in rat renal cells exposed to ionomycin, a calcium ionophore, Toxicology 85:41–65.

    Article  CAS  PubMed  Google Scholar 

  • Jiang, T., Acosta, D., Jr, 1995, Mitochondrial Ca2+ overload in primary cultures of rat renal cortical epithelial cells by cytotoxic concentrations of cyclosporine: A digitized fluorescence imaging study, Toxicology 95:155–166.

    Article  CAS  PubMed  Google Scholar 

  • Johnson, J. D., Conroy, W. G., and Isom, G. E., 1987, Alteration of cytosolic calcium levels in PC12 cells by potassium cyanide, Toxicol. Appl. Pharmacol. 217–224.

    Google Scholar 

  • Judah, J. D., Mchean, A. E., and Mchean, E. K., 1970, Biochemical mechanisms of liver injury. Am. J. Med. 49: 609–616.

    CAS  PubMed  Google Scholar 

  • Juedes, M. J., Kass G. E. and Orrenius, S., 1992, m-Iodobenzylguanidine increases the mitochondrial Ca2+ pool in isolated hepatocytes, FEBS. Lett. 313:39–42.

    Article  CAS  PubMed  Google Scholar 

  • Kass, G. E., Juedes, M. J., and Orrenius, S., 1992, Cyclosporin A protects hepatocytes against prooxidant-induced cell killing: A study on the role of mitochondrial Ca2+ cycling in Cytotoxicity, Biochem. Pharmacol. 44: 1995–2003.

    Article  CAS  PubMed  Google Scholar 

  • Komulainen, H., and Bondy, S. C., 1988, Increased free intracellular Ca2+ by toxic agents: An index of potential neurotoxicity? Trends Pharmacol. Sci. 9:154–156.

    Article  CAS  PubMed  Google Scholar 

  • Kraus-Friedmann, N., 1990, Calcium sequestration in the liver, Cell Calcium 11:625–640.

    Article  CAS  PubMed  Google Scholar 

  • Kristensen, S. R., 1991, Cell damage caused by ATP depletion is reduced by magnesium and nickel in human fibroblasts: A non-specific calcium antagonism? Biochim. Biophys. Acta 1091:285–293.

    CAS  PubMed  Google Scholar 

  • Kurita, K., Tanabe, G., Aikou, T., and Shimazu, H., 1993, Ischemic liver cell damage and calcium accumulation in rats, J. Hepatol. 18:196–204.

    Article  CAS  PubMed  Google Scholar 

  • Lee, H. C., Mohabir, R., Smith, N., Franz, M. R., and Clusin, W. T, 1988, Effect of ischemia on calcium-dependent fluorescence transients in rabbit hearts containing indo 1: Correlation with monophasic action potentials and contraction, Circulation 78:1047–1059.

    CAS  PubMed  Google Scholar 

  • Lemasters, J. J., Nieminen, A.-L., Qian, T., Trost, L. C., Elmore, S. P., Nishimura, Y., Crowe, R. A., Cascio, W. E., Bradham, C. A., Brenner, D. A., and Herman, B., 1998, The mitochondrial permeability transition in cell death: A common mechanism in necrosis, apoptosis, and autophagy, Biochim. Biophys. Acta 1366:177–196.

    CAS  PubMed  Google Scholar 

  • Long, R. M., and Moore, L., 1986, Elevated cytosolic calcium in rat hepatocytes exposed to carbon tetrachloride, J. Pharmacol. Exp. Ther. 238:186–191.

    CAS  PubMed  Google Scholar 

  • Masaki, N., Kyle, M. E., Serroni, A., and Farber, J. L., 1989, Mitochondrial damage as a mechanism of cell injury in the killing of cultured hepatocytes by tert-butyl hydroperoxide, Arch. Biochem. Biophys. 270:672–680.

    Article  CAS  PubMed  Google Scholar 

  • Mattson, M. P., Zhang, Y., and Bose, S., 1993, Growth factors prevent mitochondrial dysfunction, loss of calcium homeostasis, and cell injury, but not ATP depletion, in hippocampal neurons deprived of glucose, Exp. Neurol. 121:1–13.

    Article  CAS  PubMed  Google Scholar 

  • Mithofer, K., Sandy, M. S., Smith, M. T., and Di Monte, D., 1992, Mitochondrial poisons cause depletion of reduced glutathione in isolated hepatocytes, Arch. Biochem. Biophys. 295:132–136.

    Article  CAS  PubMed  Google Scholar 

  • Murgia, M., Pizzo, P., Steinberg, T. H., and Di Virgilio, F., 1992, Characterization of the cytotoxic effect of extracellular ATP in J774 mouse macrophages, Biochem. J. 288:897–901.

    CAS  PubMed  Google Scholar 

  • Murgia, M., Hanau, S., Pizzo, P., Rippa, M., and Di Virgilio, F., 1993, Oxidized ATP: An irreversible inhibitor of the macrophage purinergic P2 receptor, J. Biol. Chem. 268:8199–8203.

    CAS  PubMed  Google Scholar 

  • Nagelkerke, J. F., Dogterom, P., De Bont, H. J., and Mulder, G. J., 1989, Prolonged high intracellular free calcium concentrations induced by ATP are not immediately cytotoxic in isolated rat hepatocytes: Changes in biochemical parameters implicated in cell toxicity, Biochem. J. 263:347–353.

    CAS  PubMed  Google Scholar 

  • Newsholme, P., Adogu, A. A., Soos, M. A., and Hales, C. N., 1993, Complement-induced Ca2+ influxin cultured fibroblasts is decreased by the calcium-channel antagonist nifedipine or by some bivalent inorganic cations, Biochem. J. 295:773–779.

    CAS  PubMed  Google Scholar 

  • Nicotera, P., and Orreniu, S., 1992, Ca2+ and cell death, Ann. NY. Acad. Sci. 648:17–27.

    CAS  PubMed  Google Scholar 

  • Nicotera, P., Thor, H., and Orrenius, S., 1989, Cytosolic free Ca2+ and cell killing in hepatoma 1 c 1 c 7 cells exposed to chemical anoxia, FASEB. J. 3:59–64.

    CAS  PubMed  Google Scholar 

  • Nicotera, P., Bellomo, G., and Orrenius, S., 1990, The role of Ca2+ in cell killing, Chem. Rex. Toxicol. 3:484–494.

    CAS  Google Scholar 

  • Nicotera, P., Bellomo, G., and Orrenius, S., 1992, Calcium-mediated mechanisms in chemically induced cell death, Ann. Rev. Pharmacol. Toxicol. 32:449–470.

    CAS  Google Scholar 

  • Nieminen, A.-L., Dawson, T. L., Gores, G. J., Kawanishi, T., Herman, B., and Lemasters, J. J., 1990a, Protection by acidotic pH and fructose against lethal injury to rat hepatocytes from mitochondrial inhibitors, ionophores, and oxidant chemicals, Biochem. Biophys. Res. Commun. 167:600–606.

    Article  CAS  PubMed  Google Scholar 

  • Nieminen, A.-L., Gores, G. J., Dawson, T. L., Herman, B., and Lemasters, J. J., 1990b, Toxic injury from mercuric chloride in rat hepatocytes., J. Biol. Chem. 265(5):2399–2408.

    CAS  PubMed  Google Scholar 

  • Okuda, M., Lee, H. C., Chance, B., and Kumar, C., 1992, Role of extracellular Ca2+ in ischemia-reperfusion injury in the isolated perfused rat liver, Circ. Shock. 37:209–219.

    CAS  PubMed  Google Scholar 

  • Orrenius, S., McConkey, D. J., Bellomo G., and Nicotera, P., 1989, Role of Ca2+ in toxic cell killing, Trends. Pharmacol. Sci. 10:281–285.

    Article  CAS  PubMed  Google Scholar 

  • Park, Y., Devlin, T. M., and Jones, D. P., 1992, Protective effect of the dimer of 16,16-diMePGB1 against KCN-induced mitochondrial failure in hepatocytes, Am. J. Physiol. 263:C405–C411.

    CAS  PubMed  Google Scholar 

  • Pastorino, J. G., Snyder, J. W., Serroni, A., Hoek, J. B., and Farber, J. L., 1993, Cyclosporin and carnitine prevent the anoxic death of cultured hepatocytes by inhibiting the mitochondrial permeability transition, J. Biol. Chem. 268:13791–13798.

    CAS  PubMed  Google Scholar 

  • Persoon-Rothert, M., Egas-Kenniphaas, J. M., van der Valk-Kokshoorn, E. J., and van der Laarse, A., 1992, Cumene hydroperoxide induced changes in calcium homeostasis in cultured neonatal rat heart cells, Cardiovasc. Rex. 26:706–712.

    CAS  Google Scholar 

  • Petronilli, V, Cola, C., Massari, S., Colonna, R., and Bernardi, P., 1993, Physiological effectors modify voltage sensing by the cyclosporin A-sensitive permeability transition pore of mitochondria, J. Biol. Chem. 268:21939–21945.

    CAS  PubMed  Google Scholar 

  • Phelps, P. C., Smith, M. W., and Trump, B. F., 1989, Cytosolic ionized calcium and bleb formation after acute cell injury of cultured rabbit renal tubule cells, Lab. Invest. 60:630–642.

    CAS  PubMed  Google Scholar 

  • Rassendren, F., Buell, G. N., Virginio C., Collo, G., North, R. A., and Surprenant, A., 1997, The permeabilizing ATP receptor P2X7: Cloning and expression of a human cDNA, J. Biol. Chem. 272:5482–5486.

    CAS  PubMed  Google Scholar 

  • Redegeld, F. A., Moison, R. M., Koster, A. S., and Noordhoek, J., 1992, Depletion of ATP but not of GSH affects viability of rat hepatocytes, Eur. J. Pharmacol. 228:229–236.

    CAS  PubMed  Google Scholar 

  • Richelmi, P., Mirabelli, F., Salis, A., Finardi, G., Berte, F., and Bellomo, G., 1989, On the role of mitochondria in cell injury caused by vanadate-induced Ca2+ overload, Toxicology 57:29–44.

    Article  CAS  PubMed  Google Scholar 

  • Richter, C., and Schlegel, J., 1993, Mitochondrial calcium release induced by prooxidants, Toxicol. Lett. 67:119–127.

    Article  CAS  PubMed  Google Scholar 

  • Rizzuto, R., Brini, M., Bastianutto, C., Marsault, R., and Pozzan, T., 1995, Photoprotein-mediated measurement of calcium ion concentration in mitochondria of living cells, Methods Enzymol. 260:417–428.

    CAS  PubMed  Google Scholar 

  • Saxena, K., Henry, T. R., Solem, L. E., and Wallace, K. B., 1995, Enhanced induction of the mitochondrial permeability transition following acute menadione administration, Arch. Biochem. Biophys. 317:79–84.

    Article  CAS  PubMed  Google Scholar 

  • Schanne, F. A., Kane, A. B., Young, E. E., and Farber, J. L., 1979, Calcium dependence of toxic cell death: A final common pathway, Science 206:700–702.

    CAS  PubMed  Google Scholar 

  • Siegmund, B., Zude, R., and Piper, H. M., 1992, Recovery of anoxic-reoxygenated cardiomyocytes from severe Ca2+ overload, Am. J. Physiol. 263:H1262–H1269

    CAS  PubMed  Google Scholar 

  • Smith, M. T., Thor, H., and Orrenius, S., 1981, Toxic injury to isolated hepatocytes is not dependent on extracellular calcium, Science 213:1257–1259.

    CAS  PubMed  Google Scholar 

  • Smith, M. W., Phelps, P. C., and Trump, B. F., 1991, Cytosolic Ca2+ deregulation and blebbing after HgC12 injury to cultured rabbit proximal tubule cells as determined by digital imaging microscopy, Proc. Natl. Acad. Sci. USA 88:4926–4930.

    CAS  PubMed  Google Scholar 

  • Snyder, J. W., Pastorino, J. G., Thomas, A. P., Hoek, J. B., and Farber, J. L., 1993, ATP synthase activity is required for fructose to protect cultured hepatocytes from the toxicity of cyanide, Am. J. Physiol. 264:C709–C714.

    CAS  PubMed  Google Scholar 

  • Snyder, J. W., Serroni, A., Savory, J., and Farber, J. L., 1995, The absence of extracellular calcium potentiates the killing of cultured hepatocytes by aluminium maltolate, Arch. Biochem. Biophys. 316:434–442.

    Article  CAS  PubMed  Google Scholar 

  • Solem, L. E., and Wallace, K. B., 1993, Selective activation of the sodium-independent, cyclosporin A-sensitive calcium pore of cardiac mitochondria by doxorubicin, Toxicol. Appl. Pharmacol. 121:50–57.

    Article  CAS  PubMed  Google Scholar 

  • Solem, L. E., Henry, T. R., and Wallace, K. B., 1994, Disruption ofmitochondrial calcium homeostasis following chronic doxorubicin administration, Toxicol. Appl. Pharmacol. 129:214–222.

    Article  CAS  PubMed  Google Scholar 

  • Somlyo, A. P., Bond, M., and Somlyo, A. V., 1985, Calcium content of mitochondria and endoplasmic reticulum in liver frozen rapidly in vivo, Nature 314:622–625.

    Article  CAS  PubMed  Google Scholar 

  • Starke, P. E., Hoek, J. B., and Farber, J. L., 1986, Calcium-dependent and calcium-independent mechanisms of irreversible cell injury in cultured hepatocytes, J. Biol. Chem. 261:3006–3012.

    CAS  PubMed  Google Scholar 

  • Steenbergen, C., Murphy, E., Watts, J. A., and London, R. E., 1990, Correlation between cytosolic free calcium, contracture, ATP, and irreversible ischemic injury in perfused rat heart, Cric. Res. 66:135–146.

    CAS  Google Scholar 

  • Stromski, M. E., Cooper, K., Thulin, G., Gaudio, K. M., Siegel, N. J. and Shulman, R. G., 1986, Chemical and functional correlates of postischemic renal ATP levels, Proc. Natl. Acad. Sci. USA, 83:6142–6145.

    CAS  PubMed  Google Scholar 

  • Surprenant, A., Rassendren, F., Kawashima, E., North, R. A., and Buell, G., 1996, The cytolytic P2 receptor for extracellular ATP identified as a P2x receptor (P2x7), Science 272:735–738.

    CAS  PubMed  Google Scholar 

  • Tani, M., 1990, Mechanisms of Ca2+ overload in reperfused ischemic myocardium, Ann. Rev. Physiol. 52:543–559.

    CAS  Google Scholar 

  • Thomas, C. E and Reed, D. J., 1988, Effect of extracellular Ca+ omission on isolated hepatocytes: 1. Induction of oxidative stress and cell injury, J. Pharmacol. Exp. Ther., 245:493–500.

    CAS  PubMed  Google Scholar 

  • Thor, H., Hartzell, P., and Orrenius, S., 1984, Potentiation of oxidative cell injury in hepatocytes which have accumulated Ca2+, J. Biol. Chem. 259:6612–6615.

    CAS  PubMed  Google Scholar 

  • Tolleshaug, H., and Seglen, P. O., 1985, Autophagic-lysosomal and mitochondrial sequestration of [I4C] sucrose: Density gradient distribution of sequestered radioactivity, Eur. J. Biochem. 153:223–229.

    Article  CAS  PubMed  Google Scholar 

  • Tolleshaug, H., Gordon, P. B., Solheim, A. E., and Seglen, P. O., 1984, Trapping of electro-injected [14C] sucrose by hepatocyte mitochondria: A mechanism for cellular autofiltration? Biochem. Biophys. Res. Commun. 119:955–961.

    Article  CAS  PubMed  Google Scholar 

  • Trollinger, D. R., Cascio, W. E., and Lemasters, J. J., 1997, Selective loading ofRhod 2 into mitochondria shows mitochondrial Ca2+ transients during the contractile cycle in adult rabbit cardiac myocytes, Biochem. Biophys. Res. Commun. 236:738–742.

    Article  CAS  PubMed  Google Scholar 

  • Tsubokawa H., Oguro, K., Robinson, H. P., Masuzawa, T., Kirino, T., and Kawai, N., 1992, Abnormal Ca2+ homeostasis before cell death revealed by whole cell recording of ischemic CA1 hippocampal neurons, Neuroscience 49:807–817.

    Article  CAS  PubMed  Google Scholar 

  • Valera, S., Hussy, N., Evans, R. J., Adami, N., North, R. A., Surprenant, A., and Buell, G., 1994, A new class of ligand-gated ion channel defined by P2x receptor for extracellular ATP [see comments], Nature 371:516–519.

    Article  CAS  PubMed  Google Scholar 

  • van de Water, B., Zoeteweij, J. P., de Bont, H. J., Mulder, G. J., and Nagelkerke, J. F., 1994, Role of mitochondrial Ca2+ in the oxidative stress-induced dissipation of the mitochondrial membrane potential: Studies in isolated proximal tubular cells using the nephrotoxin 1,2-dichlorovinyl-L-cysteine, J. Biol. Chem. 269:14546–14552.

    PubMed  Google Scholar 

  • Van de Water, B., Zoeteweij, J. P., de Bont, H. J., and Nagelkerke, J. F., 1995, Inhibition of succinate: Ubiquinone reductase and decrease of ubiquinol in nephrotoxic cysteine S-conjugate-induced oxidative cell injury, Mol. Pharmacol. 48:928–937.

    PubMed  Google Scholar 

  • Weinberg, J. M., Davis, J. A., Abarzua, M., and Kiani, T., 1989, Relationship between cell adenosine triphosphate and glutathione content and protection by glycine against hypoxic proximal tubule cell injury, J. Lab. Clin. Med. 113:612–622.

    CAS  PubMed  Google Scholar 

  • Zoeteweij, J. P., van de Water, B., de Bont, H. J., Mulder, G. J., and Nagelkerke, J. F., 1992, Involvement of intracellular Ca2+ and K+ in dissipation of the mitochondrial membrane potential and cell death induced by extracellular ATP in hepatocytes, Biochem J. 288:207–213.

    CAS  PubMed  Google Scholar 

  • Zoeteweij, J. P., van de Water, B., de Bont, H. J., Mulder, G. J., and Nagelkerke, J. F., 1993, Calcium-induced cytotoxicity in hepatocytes after exposure to extracellular ATP is dependent on inorganic phosphate: Effects on mitochondrial calcium, J. Biol. Chem. 268:3384–3388.

    CAS  PubMed  Google Scholar 

  • Zoeteweij, J. P., van de Water, B., de Bont, H. J., and Nagelkerke, J. F., 1994, Mitochondrial K+ as modulator of Ca2+-dependent cytotoxicity in hepatocytes: Novel application of the K+-sensitive dye PBF1 K+-binding benzofuran isophthalate) to assess free mitochondrial K+ concentrations, Biochem. J. 299:539–543.

    CAS  PubMed  Google Scholar 

  • Zoeteweij, J. P., van de Water, B., de Bont, H. J., and Nagelkerke, J. F., 1996, The role of a purinergic P2z receptor in calcium-dependent cell killing of isolated rat hepatocytes by extracellular ATP, Hepatology, 23:858–865.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

Nagelkerke, J.F., Zoeteweij, J.P. (2002). Purinergic Receptor-Mediated Cytotoxicity. In: Lemasters, J.J., Nieminen, AL. (eds) Mitochondria in Pathogenesis. Springer, Boston, MA. https://doi.org/10.1007/0-306-46835-2_24

Download citation

  • DOI: https://doi.org/10.1007/0-306-46835-2_24

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-46433-1

  • Online ISBN: 978-0-306-46835-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics