Purinergic Receptor-Mediated Cytotoxicity

  • J. Fred Nagelkerke
  • J. Paul Zoeteweij


Mitochondria are vitally important for maintaining cellular integrity. Calcium is considered a mediator of necrosis as well as a main cause of damage in isolated mitochondria. Our results show that mitochondrial Ca2+ regulation in hepatocytes is affected when [Ca2+]i is increased; this is followed by mitochondrial dysfunction and irreversible cell injury. Mitochondrial free [Ca2+] is indicated as a key parameter in this process, and phosphate is indicated as a possible important regulator of [Ca2+]mito. In addition, we suggest a role for mitochondrial Ca2+ deposits, which present only in cells killed by high [Ca2+]i.

The mechanisms underlying Ca2+-induced mitochondrial damage are rapidly elucidated; it remains to be seen whether, in intact cells, opening of a large membranous pore, opening of small ion channels, or nonspecific mitochondrial membrane destruction is involved. Our results suggest at least a small permeability change of the mitochondrial inner membrane, allowing, for example, K+ fluxes.

Future issues include the question of what happens after mitochondrial failure. Several processes, such as extreme mitochondrial swelling, mitochondrial NAD(P)H depletion, and release of mitochondrial components must be considered as critical consequences of mitochondrial dysfunction.


Cell Injury Mitochondrial Permeability Transition Mitochondrial Damage Mitochondrial Accumulation Lethal Injury 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Albano, E., Carini, R., Parola, M., Bellomo, G., Goria-Gatti, L., Poll, G., and Dianzani, M. U., 1989, Effects of carbon tetrachloride on calcium homeostasis: A critical reconsideration, Biochem. Pharmacol. 38:2719–2725.CrossRefPubMedGoogle Scholar
  2. Altschuld, R. A., Hohl, C. M., Castillo, L. C., Garleb, A. A., Starling, R. C. and Brierley, G. P., 1992, Cyclosporin inhibits mitochondrial calcium efflux in isolated adult rat ventricular cardiomyocytes, Am. J. Physiol. 262:H1699–H1704.PubMedGoogle Scholar
  3. Beatrice, M. C., Palmer, J. W, and Pfeiffer, D. R., 1980, The relationship between mitochondrial membrane permeability, membrane potential, and the retention of Ca2+ by mitochondria, J. Biol. Chem. 255:8663–8671.PubMedGoogle Scholar
  4. Backer, G. L., 1980, Steady-state regulation of extramitochondrial Ca2+ by rat liver mitochondria: Effects of Mg2+ and ATP, Biochim. Biophys. Acta 591:234–239.Google Scholar
  5. Berke, G., 1989, The cytolytic T lymphocyte and its mode of action, Immunol. Lett. 20:169–178.PubMedGoogle Scholar
  6. Bernardi, P., 1992, Modulation of the mitochondrial cyclosporin A-sensitive permeability transition pore by the proton electrochemical gradient: Evidence that the pore can be opened by membrane depolarization, J. Biol. Chem. 267:8834–8839.PubMedGoogle Scholar
  7. Boobis, A. R., Seddon, C. E., Nasseri-Sina, P., and Davies, D. S., 1990, Evidence for a direct role of intracellular calcium in paracetamol toxicity, Biochem. Pharmacol. 39:1277–1281.CrossRefPubMedGoogle Scholar
  8. Broekemeier, K. M., Carpenter-Deyo, L., Reed, D. J., and Pfeiffer, D. R., 1992, Cyclosporin A protects hepatocytes subjected to high Ca2+ and oxidative stress, FEBS Lett. 304:192–194.PubMedGoogle Scholar
  9. Bygrave, F. L., Lenton, L., Altin, J. G., Setchell, B. A., and Karjalainen, A., 1990, Phosphate and calcium uptake by mitochondria and by perfused rat liver induced by the synergistic action of glucagon and vasopressin, Biochem. J. 267:69–73.PubMedGoogle Scholar
  10. Campbell, P I., and al Nasser, I. A., 1995, Dexamethasone inhibits inorganic phosphate stimulated Ca2+-dependent damage of isolated rat liver and renal cortex mitochondria, Comp. Biochem. Physiol. C. Pharmacol. Toxicol. Endocrinol. 111:221–225.PubMedGoogle Scholar
  11. Canga, L., Levi, R., and Rifkind, A. B., 1988, Heart as a target organ in 2,3,7,8-tetrachlorodibenzo-P-dioxin toxicity: Decreased beta-adrenergic responsiveness and evidence of increased intracellular calcium, Proc. Natl. Acad. Sci. USA 85:905–909.PubMedGoogle Scholar
  12. Cannon, J. R., Harvison, P. J., and Rush, G. F., 1991, The effects of fructose on adenosine triphosphate depletion following mitochondrial dysfunction and lethal cell injury in isolated rat hepatocytes, Toxicol. Appl. Pharmacol. 108:407–416.CrossRefPubMedGoogle Scholar
  13. Chacon, E., Ulrich, R., and Acosta, D., 1992, A digitized-fluorescence-imaging study of mitochondrial Ca2+ increase by doxorubicin in cardiac myocytes, Biochem. J. 281:871–878.PubMedGoogle Scholar
  14. Charest, R., Blackmore, P. F., and Exton, J. H., 1985, Characterization of responses of isolated rat hepatocytes to ATP and ADP, J. Biol. Chem. 260:15789–15794.PubMedGoogle Scholar
  15. Chavez, E., Moreno-Sanchez, R., Zazueta, C., Reyes-Vivas, H., and Arteaga, D., 1991, Intramitochondrial K+ as activator of carboxyatractyloside-induced Ca2+ release, Biochim. Biophys. Acta 1070:461–466.PubMedGoogle Scholar
  16. Crompton, M., and Costi, A., 1988, Kinetic evidence for a heart mitochondrial pore activated by Ca2+, inorganic phosphate, and oxidative stress: A potential mechanism for mitochondrial dysfunction during cellular Ca2+ overload, Eur. J. Biochem. 178:489–501.CrossRefPubMedGoogle Scholar
  17. Di Virgilio, F, 1995, The P2Z purinoceptor: An intriguing role in immunity, inflammation, and cell death, Immunol. Today 16:524–528.PubMedGoogle Scholar
  18. Di Virgilio, F., Chiossszzi P., Falzoni S., Ferrari D., Sanz, J. M., Venketaraman, V, and Baricordi, O. R., 1998, Cytolytic P2x purinoceptors, Cell Death Diffr. 5:191–199.Google Scholar
  19. El Moatassim, C., Dornand, J., and Mani, J. C., 1992, Extracellular ATP and cell signalling, Biochim. Biophys. Acta 1134:31–45.PubMedGoogle Scholar
  20. Farber, J. L., 1982, Biology of disease: Membrane injury and calcium homeostasis in the pathogenesis of coagulative necrosis, Lab. Invest. 47:114–123.PubMedGoogle Scholar
  21. Fariss, M. W., and Reed, D. J., 1985, Mechanism of chemical-induced toxicity: II. Role of extracellular calcium, Toxicol. Appl. Pharmacol. 79:296–306.PubMedGoogle Scholar
  22. Forman, H. J., Dorio, R. J., and Skelton, D. C., 1987, Hydroperoxide-induced damage to alveolar macrophage function and membrane integrity: Alterations in intracellular free Ca2+ and membrane potential, Arch. Biochem. Biophys. 259:457–465.CrossRefPubMedGoogle Scholar
  23. Gasbarrini, A., Borle, A. B., Farghali, H., Bender, C., Krancavilla, A., and Van Thiel, D., 1992, Effect of anoxia on intracellular ATP, Na1+.Ca12+ Mg12+, and Cytotoxicity in rat hepatocytes [published erratum appears in 1992, J. Biol. Chem. 267: 13114], J. Biol Chem. 267:6654–6663.PubMedGoogle Scholar
  24. Gores, G. J., Nieminen, A.-L., Fleishman, K. E., Dawson, T. L., Herman, B., and Lemasters, J. J., 1988, Extracellular acidosis delays onset of cell death in ATP-depleted hepatocytes, Am. J. Physiol. 255:C315–C322.PubMedGoogle Scholar
  25. Grant, R. L., and Acosta, D., Jr, 1994, A digitized fluorescence imaging study on the effects of local anesthetics on cytosolic calcium and mitochondrial membrane potential in cultured rabbit corneal epithelial cells, Toxicol. Appl. Pharmacol. 129:23–35.CrossRefPubMedGoogle Scholar
  26. Griffiths, E. J., and Halestrap, A. P., 1991, Further evidence that cyclosporin A protects mitochondria from calcium overload by inhibiting a matrix peptidyl-prolyl cis-trans isomerase: Implications for the immuno-suppressive and toxic effects of cyclosporin, Biochem. J. 274:611–614.PubMedGoogle Scholar
  27. Gunter, T. E., and Pfeiffer, D. R., 1990, Mechanisms by which mitochondria transport calcium. Am. J. Physiol. 258:C755–C786.PubMedGoogle Scholar
  28. Halestrap, A. P., 1989, The regulation of the matrix volume of mammalian mitochondria in vivo and in vitro and its role in the control of mitochondrial metabolism, Biochim. Biophys. Acta 973:355–382.PubMedGoogle Scholar
  29. Halestrap, A. P., 1991, Calcium-dependent opening of a non-specific pore in the mitochondrial inner membrane is inhibited at pH values below 7: Implications for the protective effect of low pH against chemical and hypoxic cell damage, Biochem. J. 278:715–719.PubMedGoogle Scholar
  30. Horstman, D. A., Tennes, K. A., and Putney, J. W., Jr, 1986, ATP-induced calcium mobilization and inositol 1,4,5-triphosphate formation in H-35 hepatoma cells, FEBS Lett. 204:189–192.CrossRefPubMedGoogle Scholar
  31. Imberti, R., Nieminen, A.-L., Herman, B., and Lemasters, J. J., 1992, Synergism of cyclosporin A and phospholipase inhibitors in protection against lethal injury to rat hepatocytes from oxidant chemicals, Rex. Commun. Chem. Pathol. Pharmacol. 78:27–38.Google Scholar
  32. Jiang, T., Grant, R. L., and Acosta, D., 1993, A digitized fluorescence imaging study of intracellular free calcium, mitochondrial integrity and Cytotoxicity in rat renal cells exposed to ionomycin, a calcium ionophore, Toxicology 85:41–65.CrossRefPubMedGoogle Scholar
  33. Jiang, T., Acosta, D., Jr, 1995, Mitochondrial Ca2+ overload in primary cultures of rat renal cortical epithelial cells by cytotoxic concentrations of cyclosporine: A digitized fluorescence imaging study, Toxicology 95:155–166.CrossRefPubMedGoogle Scholar
  34. Johnson, J. D., Conroy, W. G., and Isom, G. E., 1987, Alteration of cytosolic calcium levels in PC12 cells by potassium cyanide, Toxicol. Appl. Pharmacol. 217–224.Google Scholar
  35. Judah, J. D., Mchean, A. E., and Mchean, E. K., 1970, Biochemical mechanisms of liver injury. Am. J. Med. 49: 609–616.PubMedGoogle Scholar
  36. Juedes, M. J., Kass G. E. and Orrenius, S., 1992, m-Iodobenzylguanidine increases the mitochondrial Ca2+ pool in isolated hepatocytes, FEBS. Lett. 313:39–42.CrossRefPubMedGoogle Scholar
  37. Kass, G. E., Juedes, M. J., and Orrenius, S., 1992, Cyclosporin A protects hepatocytes against prooxidant-induced cell killing: A study on the role of mitochondrial Ca2+ cycling in Cytotoxicity, Biochem. Pharmacol. 44: 1995–2003.CrossRefPubMedGoogle Scholar
  38. Komulainen, H., and Bondy, S. C., 1988, Increased free intracellular Ca2+ by toxic agents: An index of potential neurotoxicity? Trends Pharmacol. Sci. 9:154–156.CrossRefPubMedGoogle Scholar
  39. Kraus-Friedmann, N., 1990, Calcium sequestration in the liver, Cell Calcium 11:625–640.CrossRefPubMedGoogle Scholar
  40. Kristensen, S. R., 1991, Cell damage caused by ATP depletion is reduced by magnesium and nickel in human fibroblasts: A non-specific calcium antagonism? Biochim. Biophys. Acta 1091:285–293.PubMedGoogle Scholar
  41. Kurita, K., Tanabe, G., Aikou, T., and Shimazu, H., 1993, Ischemic liver cell damage and calcium accumulation in rats, J. Hepatol. 18:196–204.CrossRefPubMedGoogle Scholar
  42. Lee, H. C., Mohabir, R., Smith, N., Franz, M. R., and Clusin, W. T, 1988, Effect of ischemia on calcium-dependent fluorescence transients in rabbit hearts containing indo 1: Correlation with monophasic action potentials and contraction, Circulation 78:1047–1059.PubMedGoogle Scholar
  43. Lemasters, J. J., Nieminen, A.-L., Qian, T., Trost, L. C., Elmore, S. P., Nishimura, Y., Crowe, R. A., Cascio, W. E., Bradham, C. A., Brenner, D. A., and Herman, B., 1998, The mitochondrial permeability transition in cell death: A common mechanism in necrosis, apoptosis, and autophagy, Biochim. Biophys. Acta 1366:177–196.PubMedGoogle Scholar
  44. Long, R. M., and Moore, L., 1986, Elevated cytosolic calcium in rat hepatocytes exposed to carbon tetrachloride, J. Pharmacol. Exp. Ther. 238:186–191.PubMedGoogle Scholar
  45. Masaki, N., Kyle, M. E., Serroni, A., and Farber, J. L., 1989, Mitochondrial damage as a mechanism of cell injury in the killing of cultured hepatocytes by tert-butyl hydroperoxide, Arch. Biochem. Biophys. 270:672–680.CrossRefPubMedGoogle Scholar
  46. Mattson, M. P., Zhang, Y., and Bose, S., 1993, Growth factors prevent mitochondrial dysfunction, loss of calcium homeostasis, and cell injury, but not ATP depletion, in hippocampal neurons deprived of glucose, Exp. Neurol. 121:1–13.CrossRefPubMedGoogle Scholar
  47. Mithofer, K., Sandy, M. S., Smith, M. T., and Di Monte, D., 1992, Mitochondrial poisons cause depletion of reduced glutathione in isolated hepatocytes, Arch. Biochem. Biophys. 295:132–136.CrossRefPubMedGoogle Scholar
  48. Murgia, M., Pizzo, P., Steinberg, T. H., and Di Virgilio, F., 1992, Characterization of the cytotoxic effect of extracellular ATP in J774 mouse macrophages, Biochem. J. 288:897–901.PubMedGoogle Scholar
  49. Murgia, M., Hanau, S., Pizzo, P., Rippa, M., and Di Virgilio, F., 1993, Oxidized ATP: An irreversible inhibitor of the macrophage purinergic P2 receptor, J. Biol. Chem. 268:8199–8203.PubMedGoogle Scholar
  50. Nagelkerke, J. F., Dogterom, P., De Bont, H. J., and Mulder, G. J., 1989, Prolonged high intracellular free calcium concentrations induced by ATP are not immediately cytotoxic in isolated rat hepatocytes: Changes in biochemical parameters implicated in cell toxicity, Biochem. J. 263:347–353.PubMedGoogle Scholar
  51. Newsholme, P., Adogu, A. A., Soos, M. A., and Hales, C. N., 1993, Complement-induced Ca2+ influxin cultured fibroblasts is decreased by the calcium-channel antagonist nifedipine or by some bivalent inorganic cations, Biochem. J. 295:773–779.PubMedGoogle Scholar
  52. Nicotera, P., and Orreniu, S., 1992, Ca2+ and cell death, Ann. NY. Acad. Sci. 648:17–27.PubMedGoogle Scholar
  53. Nicotera, P., Thor, H., and Orrenius, S., 1989, Cytosolic free Ca2+ and cell killing in hepatoma 1 c 1 c 7 cells exposed to chemical anoxia, FASEB. J. 3:59–64.PubMedGoogle Scholar
  54. Nicotera, P., Bellomo, G., and Orrenius, S., 1990, The role of Ca2+ in cell killing, Chem. Rex. Toxicol. 3:484–494.Google Scholar
  55. Nicotera, P., Bellomo, G., and Orrenius, S., 1992, Calcium-mediated mechanisms in chemically induced cell death, Ann. Rev. Pharmacol. Toxicol. 32:449–470.Google Scholar
  56. Nieminen, A.-L., Dawson, T. L., Gores, G. J., Kawanishi, T., Herman, B., and Lemasters, J. J., 1990a, Protection by acidotic pH and fructose against lethal injury to rat hepatocytes from mitochondrial inhibitors, ionophores, and oxidant chemicals, Biochem. Biophys. Res. Commun. 167:600–606.CrossRefPubMedGoogle Scholar
  57. Nieminen, A.-L., Gores, G. J., Dawson, T. L., Herman, B., and Lemasters, J. J., 1990b, Toxic injury from mercuric chloride in rat hepatocytes., J. Biol. Chem. 265(5):2399–2408.PubMedGoogle Scholar
  58. Okuda, M., Lee, H. C., Chance, B., and Kumar, C., 1992, Role of extracellular Ca2+ in ischemia-reperfusion injury in the isolated perfused rat liver, Circ. Shock. 37:209–219.PubMedGoogle Scholar
  59. Orrenius, S., McConkey, D. J., Bellomo G., and Nicotera, P., 1989, Role of Ca2+ in toxic cell killing, Trends. Pharmacol. Sci. 10:281–285.CrossRefPubMedGoogle Scholar
  60. Park, Y., Devlin, T. M., and Jones, D. P., 1992, Protective effect of the dimer of 16,16-diMePGB1 against KCN-induced mitochondrial failure in hepatocytes, Am. J. Physiol. 263:C405–C411.PubMedGoogle Scholar
  61. Pastorino, J. G., Snyder, J. W., Serroni, A., Hoek, J. B., and Farber, J. L., 1993, Cyclosporin and carnitine prevent the anoxic death of cultured hepatocytes by inhibiting the mitochondrial permeability transition, J. Biol. Chem. 268:13791–13798.PubMedGoogle Scholar
  62. Persoon-Rothert, M., Egas-Kenniphaas, J. M., van der Valk-Kokshoorn, E. J., and van der Laarse, A., 1992, Cumene hydroperoxide induced changes in calcium homeostasis in cultured neonatal rat heart cells, Cardiovasc. Rex. 26:706–712.Google Scholar
  63. Petronilli, V, Cola, C., Massari, S., Colonna, R., and Bernardi, P., 1993, Physiological effectors modify voltage sensing by the cyclosporin A-sensitive permeability transition pore of mitochondria, J. Biol. Chem. 268:21939–21945.PubMedGoogle Scholar
  64. Phelps, P. C., Smith, M. W., and Trump, B. F., 1989, Cytosolic ionized calcium and bleb formation after acute cell injury of cultured rabbit renal tubule cells, Lab. Invest. 60:630–642.PubMedGoogle Scholar
  65. Rassendren, F., Buell, G. N., Virginio C., Collo, G., North, R. A., and Surprenant, A., 1997, The permeabilizing ATP receptor P2X7: Cloning and expression of a human cDNA, J. Biol. Chem. 272:5482–5486.PubMedGoogle Scholar
  66. Redegeld, F. A., Moison, R. M., Koster, A. S., and Noordhoek, J., 1992, Depletion of ATP but not of GSH affects viability of rat hepatocytes, Eur. J. Pharmacol. 228:229–236.PubMedGoogle Scholar
  67. Richelmi, P., Mirabelli, F., Salis, A., Finardi, G., Berte, F., and Bellomo, G., 1989, On the role of mitochondria in cell injury caused by vanadate-induced Ca2+ overload, Toxicology 57:29–44.CrossRefPubMedGoogle Scholar
  68. Richter, C., and Schlegel, J., 1993, Mitochondrial calcium release induced by prooxidants, Toxicol. Lett. 67:119–127.CrossRefPubMedGoogle Scholar
  69. Rizzuto, R., Brini, M., Bastianutto, C., Marsault, R., and Pozzan, T., 1995, Photoprotein-mediated measurement of calcium ion concentration in mitochondria of living cells, Methods Enzymol. 260:417–428.PubMedGoogle Scholar
  70. Saxena, K., Henry, T. R., Solem, L. E., and Wallace, K. B., 1995, Enhanced induction of the mitochondrial permeability transition following acute menadione administration, Arch. Biochem. Biophys. 317:79–84.CrossRefPubMedGoogle Scholar
  71. Schanne, F. A., Kane, A. B., Young, E. E., and Farber, J. L., 1979, Calcium dependence of toxic cell death: A final common pathway, Science 206:700–702.PubMedGoogle Scholar
  72. Siegmund, B., Zude, R., and Piper, H. M., 1992, Recovery of anoxic-reoxygenated cardiomyocytes from severe Ca2+ overload, Am. J. Physiol. 263:H1262–H1269PubMedGoogle Scholar
  73. Smith, M. T., Thor, H., and Orrenius, S., 1981, Toxic injury to isolated hepatocytes is not dependent on extracellular calcium, Science 213:1257–1259.PubMedGoogle Scholar
  74. Smith, M. W., Phelps, P. C., and Trump, B. F., 1991, Cytosolic Ca2+ deregulation and blebbing after HgC12 injury to cultured rabbit proximal tubule cells as determined by digital imaging microscopy, Proc. Natl. Acad. Sci. USA 88:4926–4930.PubMedGoogle Scholar
  75. Snyder, J. W., Pastorino, J. G., Thomas, A. P., Hoek, J. B., and Farber, J. L., 1993, ATP synthase activity is required for fructose to protect cultured hepatocytes from the toxicity of cyanide, Am. J. Physiol. 264:C709–C714.PubMedGoogle Scholar
  76. Snyder, J. W., Serroni, A., Savory, J., and Farber, J. L., 1995, The absence of extracellular calcium potentiates the killing of cultured hepatocytes by aluminium maltolate, Arch. Biochem. Biophys. 316:434–442.CrossRefPubMedGoogle Scholar
  77. Solem, L. E., and Wallace, K. B., 1993, Selective activation of the sodium-independent, cyclosporin A-sensitive calcium pore of cardiac mitochondria by doxorubicin, Toxicol. Appl. Pharmacol. 121:50–57.CrossRefPubMedGoogle Scholar
  78. Solem, L. E., Henry, T. R., and Wallace, K. B., 1994, Disruption ofmitochondrial calcium homeostasis following chronic doxorubicin administration, Toxicol. Appl. Pharmacol. 129:214–222.CrossRefPubMedGoogle Scholar
  79. Somlyo, A. P., Bond, M., and Somlyo, A. V., 1985, Calcium content of mitochondria and endoplasmic reticulum in liver frozen rapidly in vivo, Nature 314:622–625.CrossRefPubMedGoogle Scholar
  80. Starke, P. E., Hoek, J. B., and Farber, J. L., 1986, Calcium-dependent and calcium-independent mechanisms of irreversible cell injury in cultured hepatocytes, J. Biol. Chem. 261:3006–3012.PubMedGoogle Scholar
  81. Steenbergen, C., Murphy, E., Watts, J. A., and London, R. E., 1990, Correlation between cytosolic free calcium, contracture, ATP, and irreversible ischemic injury in perfused rat heart, Cric. Res. 66:135–146.Google Scholar
  82. Stromski, M. E., Cooper, K., Thulin, G., Gaudio, K. M., Siegel, N. J. and Shulman, R. G., 1986, Chemical and functional correlates of postischemic renal ATP levels, Proc. Natl. Acad. Sci. USA, 83:6142–6145.PubMedGoogle Scholar
  83. Surprenant, A., Rassendren, F., Kawashima, E., North, R. A., and Buell, G., 1996, The cytolytic P2 receptor for extracellular ATP identified as a P2x receptor (P2x7), Science 272:735–738.PubMedGoogle Scholar
  84. Tani, M., 1990, Mechanisms of Ca2+ overload in reperfused ischemic myocardium, Ann. Rev. Physiol. 52:543–559.Google Scholar
  85. Thomas, C. E and Reed, D. J., 1988, Effect of extracellular Ca+ omission on isolated hepatocytes: 1. Induction of oxidative stress and cell injury, J. Pharmacol. Exp. Ther., 245:493–500.PubMedGoogle Scholar
  86. Thor, H., Hartzell, P., and Orrenius, S., 1984, Potentiation of oxidative cell injury in hepatocytes which have accumulated Ca2+, J. Biol. Chem. 259:6612–6615.PubMedGoogle Scholar
  87. Tolleshaug, H., and Seglen, P. O., 1985, Autophagic-lysosomal and mitochondrial sequestration of [I4C] sucrose: Density gradient distribution of sequestered radioactivity, Eur. J. Biochem. 153:223–229.CrossRefPubMedGoogle Scholar
  88. Tolleshaug, H., Gordon, P. B., Solheim, A. E., and Seglen, P. O., 1984, Trapping of electro-injected [14C] sucrose by hepatocyte mitochondria: A mechanism for cellular autofiltration? Biochem. Biophys. Res. Commun. 119:955–961.CrossRefPubMedGoogle Scholar
  89. Trollinger, D. R., Cascio, W. E., and Lemasters, J. J., 1997, Selective loading ofRhod 2 into mitochondria shows mitochondrial Ca2+ transients during the contractile cycle in adult rabbit cardiac myocytes, Biochem. Biophys. Res. Commun. 236:738–742.CrossRefPubMedGoogle Scholar
  90. Tsubokawa H., Oguro, K., Robinson, H. P., Masuzawa, T., Kirino, T., and Kawai, N., 1992, Abnormal Ca2+ homeostasis before cell death revealed by whole cell recording of ischemic CA1 hippocampal neurons, Neuroscience 49:807–817.CrossRefPubMedGoogle Scholar
  91. Valera, S., Hussy, N., Evans, R. J., Adami, N., North, R. A., Surprenant, A., and Buell, G., 1994, A new class of ligand-gated ion channel defined by P2x receptor for extracellular ATP [see comments], Nature 371:516–519.CrossRefPubMedGoogle Scholar
  92. van de Water, B., Zoeteweij, J. P., de Bont, H. J., Mulder, G. J., and Nagelkerke, J. F., 1994, Role of mitochondrial Ca2+ in the oxidative stress-induced dissipation of the mitochondrial membrane potential: Studies in isolated proximal tubular cells using the nephrotoxin 1,2-dichlorovinyl-L-cysteine, J. Biol. Chem. 269:14546–14552.PubMedGoogle Scholar
  93. Van de Water, B., Zoeteweij, J. P., de Bont, H. J., and Nagelkerke, J. F., 1995, Inhibition of succinate: Ubiquinone reductase and decrease of ubiquinol in nephrotoxic cysteine S-conjugate-induced oxidative cell injury, Mol. Pharmacol. 48:928–937.PubMedGoogle Scholar
  94. Weinberg, J. M., Davis, J. A., Abarzua, M., and Kiani, T., 1989, Relationship between cell adenosine triphosphate and glutathione content and protection by glycine against hypoxic proximal tubule cell injury, J. Lab. Clin. Med. 113:612–622.PubMedGoogle Scholar
  95. Zoeteweij, J. P., van de Water, B., de Bont, H. J., Mulder, G. J., and Nagelkerke, J. F., 1992, Involvement of intracellular Ca2+ and K+ in dissipation of the mitochondrial membrane potential and cell death induced by extracellular ATP in hepatocytes, Biochem J. 288:207–213.PubMedGoogle Scholar
  96. Zoeteweij, J. P., van de Water, B., de Bont, H. J., Mulder, G. J., and Nagelkerke, J. F., 1993, Calcium-induced cytotoxicity in hepatocytes after exposure to extracellular ATP is dependent on inorganic phosphate: Effects on mitochondrial calcium, J. Biol. Chem. 268:3384–3388.PubMedGoogle Scholar
  97. Zoeteweij, J. P., van de Water, B., de Bont, H. J., and Nagelkerke, J. F., 1994, Mitochondrial K+ as modulator of Ca2+-dependent cytotoxicity in hepatocytes: Novel application of the K+-sensitive dye PBF1 K+-binding benzofuran isophthalate) to assess free mitochondrial K+ concentrations, Biochem. J. 299:539–543.PubMedGoogle Scholar
  98. Zoeteweij, J. P., van de Water, B., de Bont, H. J., and Nagelkerke, J. F., 1996, The role of a purinergic P2z receptor in calcium-dependent cell killing of isolated rat hepatocytes by extracellular ATP, Hepatology, 23:858–865.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • J. Fred Nagelkerke
    • 1
  • J. Paul Zoeteweij
    • 1
  1. 1.Department of ToxicologyLeiden-Amsterdam Center for Drug Research, Sylvius LaboratoriesLeidenThe Netherlands

Personalised recommendations