Advertisement

Mitochondrial Changes after Acute Alcohol Ingestion

  • Hajimi Higuchi
  • Hiromasa Ishii
Chapter
  • 152 Downloads

Conclusion

Active oxidants produced during ethanol metabolism modulate mitochondrial membrane potential and permeability changes in isolated and cultured hepatocytes. These mitochondrial alterations (loss of ΔΨ;the MPT) are now recognized as a key step in programmed cell death. Our fluorographic investigations demonstrate that acute ethanol-induced oxidative stress can induce mitochondrial permeability change, cyto-chrome c release, caspase activation, and apoptosis in cultured hepatocytes. In addition, our investigations implicate endogenous glutathioneglutathione peroxidase as an impor-tant antioxidant with a cytoprotective machinery in hepatocyte mitochondria exposed to ethanol. Oxidative stress is the consequence of an imbalance between oxidant production and antioxidant defense. Development of new and effective strategies to diminish oxidant production, enhance intracellular and extracellular antioxidant defenses, or both, in the liver offers great promise for preventing and treating liver disease.

Keywords

Alcoholic Liver Disease Permeability Transition Pore Ethanol Administration Acute Ethanol Ethanol Metabolism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Antébi, H., Ribière, C., Sinaceur, J., Abu-Murad, C., and Nordmann, R., 1984, Involvement of oxygen radicals in ethanol oxidation and in the ethanol-induced decrease in liver glutathione, in Oxygen Radicals in Chemistry and Biology (W. Bors, M. Saran, and D. Tait, Eds.), Walter de Gruyter, Berlin, New York, pp. 757–760.Google Scholar
  2. Attardi, G., and Schatz, G., 1998, Biogenesis of mitochondria, Annu. Rev. Cell Biol. 4:289–333.Google Scholar
  3. Bautista, A. P., and Spitzer, J. J., 1992, Acute ethanol intoxication stimulates superoxide anion production by in situ perfused rat liver, Hepatology 15:892–898.PubMedGoogle Scholar
  4. Bernardi, P., 1996, The permeability transition pore; Control points of cyclosporin A-sensitive mitochondrial channel involved in cell death, Biochim. Biophys. Acta 1275:5–9.PubMedGoogle Scholar
  5. Beutner, G., Ruck, A., Riede, B., Welte, W., and Brdiczka, D., 1996, Complexes between kinases, mitochondrial porin, and adenylate translocator in rat brain resemble the permeability transition pore, FEBS Lett. 396:189–195.CrossRefPubMedGoogle Scholar
  6. Beutner, G., Ruck, A., Riede, B., and Brdiczka, D., 1998, Complexes between porin, hexokinase, mitochondrial creatine kinase, and adenylate translocator display properties of the permeability transition pore; Implication for regulation of permeability transition by the kinases, Biochim. Biophys. Acta 1368:7–18.PubMedGoogle Scholar
  7. Cook, J. A., Pass, H. I., Russo, A., Type, S., and Mitchell, J. B., 1989, Use of monochlorobimane for glutathione measurements in hamster and human tumor cell lines, Int. J. Radiat. Oncol. Biol. Phys. 16:1321–1324.PubMedGoogle Scholar
  8. Cook, J. A., Pass, H. I., Lype, S. N., Friedman, N., DeGraff, W., Russo, A., and Mitchell, J. B., 1991, Cellular glutathione and thiol measurements from surgically resected human lung tumor and normal lung tissue, Cancer Res. 51:4287–4294.PubMedGoogle Scholar
  9. Costantini, P., Chernyak, B. V, Petronilli, V, and Bernardi, P., 1996, Modulation of the mitochondrial permeability transition pore by pyridine nucleotides and dithiol oxidation at two separate sites, J. Biol. Chem. 271:6746–6751.PubMedGoogle Scholar
  10. Di Luzio, N. R., 1963, Prevention of the acute ethanol-induced fatty liver by antioxidants, Physiologist 6:169–173.Google Scholar
  11. Di Luzio, N. R., and Hartman, A. D., 1967, Role of lipid peroxidation in the pathogenesis of ethanol-induced fatty liver, Fed. Proc. 26:1436–1442.PubMedGoogle Scholar
  12. Garcia-Ruiz, C., Colell, A., Morales, A., Kaplowitz, N., and Fernández-Checa, J., 1995, Role of oxidative stress generated from the mitochondrial electron transport chain and mitochondrial glutathione status in loss of mitochondrial function and activation of transcription factor NF-κB, Mol. Pharmacol. 48:825–834.PubMedGoogle Scholar
  13. Gonzalez-Flecha, B., and Boveris, A., 1995, Mitochondrial sites of hydrogen peroxide production in reperfused rat kidney cortex, Biochim. Biophys. Acta 1243:361–366.PubMedGoogle Scholar
  14. Gonzalez-Flecha, B., Cutrin, J. C., and Boveris, A., 1993, Time course and mechanism of oxidative stress and tissue damage in rat liver subjected to in vivo ischemia-reperfusion, J. din. Invest. 91:456–464.Google Scholar
  15. Goossens, V, Grooten, J., DeVos, K., and Fiers, W., 1995, Direct evidence for tumor necrosis factor-induced mitochondrial reactive oxygen intermediates and their involvement in cytotoxicity, Proc. Natl. Acad. Sci. USA 92:8115–8119.PubMedGoogle Scholar
  16. Guerri, C., and Grisolia, S., 1980, Changes in glutathione in acute and chronic alcohol intoxication, Pharmacol. Biochem. Behav. 13 (Suppl. 1):53–61.PubMedGoogle Scholar
  17. Handler, J. A., and Thurman, R. G., 1990, Redox interactions between catalase and alcohol dehydrogenase pathways of ethanol metabolism in the perfused rat liver, J. Biol. Chem. 265:1510–1515.PubMedGoogle Scholar
  18. Hunter, D. R., Haworth, R. A., and Southard, J. H., 1976, Relationship between configulation, function, and permeability in calcium-treated mitochondria, J. Biol. Chem. 251:5069–5077.PubMedGoogle Scholar
  19. Ichas, F., Jouavill, L. S., and Mazat, J. P., 1997, Mitochondria are excitable organelles 19 capable of generating and conveying electrical and calcium signals, Cell 89:1145–1153.CrossRefPubMedGoogle Scholar
  20. Ishii, H., Kurose, I., and Kato, S., 1997, Pathogenesis of alcoholic liver disease with paticular emphasis on oxidative stress, J. Gastroenterol. Hepatol. 12(Suppl.):S272–S282.PubMedGoogle Scholar
  21. Israel, Y., and Orrego, H., 1984, Hypermetabolic state and hypoxic liver damage, in Recent Developments in Alcoholism, Plenum, New York, pp. 119–133.Google Scholar
  22. Kaplowitz, N., and Tsukamoto, H., 1996, Oxidative stress and liver disease, Prog. Liver Dis. 14:131–159.PubMedGoogle Scholar
  23. Kera, Y, Kiriyama, T., and Komura, S., 1985, Conjugation of acetaldehyde with cysteinylglycine, the first metabolite in glutathione breakdown by γ-glutamyltranspeptidase, Agents Actions 17:48–52.CrossRefPubMedGoogle Scholar
  24. Kinnally, K. W., Lohret, T. A., Campo, M. L., and Mannella, C. A., 1996, Perspectives on the mitochondrial multiple conductance channel, J. Bioenerg. Biomembi. 28:115–123.Google Scholar
  25. Kroemer, G., Zamzami, N., and Susin, S. A., 1997, Mitochondrial control of apoptosis, Immunol. Today 18:44–51.CrossRefPubMedGoogle Scholar
  26. Kurose, I., Higuchi, H., Kato, S., Miura, S., Watanabe, N., Kamegaya, Y, Tomita, K., Takaishi, M., Horie, Y., Fukuda, M., Mizukami, K., and Ishii, H., 1997a, Oxidative stress on mitochondria and cell membrane of cultured rat hepatocytes and perfused liver exposed to ethanol, Gastroenterology 112:1331–1343.CrossRefPubMedGoogle Scholar
  27. Kurose, I., Higuchi, H., Miura, S., Saito, H., Watanabe, N., Hokari, R., Hirokawa, M., Takaishi, M., Zeki, S., Nakamura, T., Ebinuma, H., Kato, S., and Ishii, H., 1997b, Oxidative stress-mediated apoptosis of hepatocytes exposed to acute ethanol intoxication, Hepatology 25:368–378.PubMedGoogle Scholar
  28. Liu, X., Kim, C. N., Yang, J., Jemmerson, R., and Wang, X., 1996, Induction of apoptotic program in cell-free extracts: Requirement for dATP and cytochrome c. Cell 86:147–157.Google Scholar
  29. Liu, X., Zou, H., Alaughter, C., and Wang, X., 1997, DFF, a heterodimeric protein that functions downstream of caspase-3 to trigger DNA fragmentation during apoptosis, Cell 89:175–184.PubMedGoogle Scholar
  30. Müller, A., and Sies, H., 1987, Alcohol, aldehydes, and lipid peroxidation: Current notions, Alcohol Alcoholism. (Suppl.) 1:67–74.Google Scholar
  31. Nair, S., Singh, S. V, and Krishan, A., 1992, Flow cytometric monitoring of glutathione content and anthracycline retention in tumor cells, Cytometry 12:336–342.Google Scholar
  32. Nicolli, A., Basso, E., Petronilli, V, Wagner, R. M., and Bernardi, P., 1996, Interactions of cyclophilin with the mitochondrial inner membrane and regulation of the permeability transition pore, and cyclosporin A-sensitive channel, J. Biol. Chem. 271:2185–2192.PubMedGoogle Scholar
  33. Nieminen, A.-L, Saylor, A. K., Tesfai, S. A., Herman, B., and Lemasters, J. J., 1995, Contribution of the mitochondrial permeability transition to lethal injury after exposure of hepatocytes to t-butylhydroperoxide, Biochem. J. 307:99–106.PubMedGoogle Scholar
  34. O’Gorman, E., Beutner, G., Dolder, M., Koretsky, A. P., Brdiczka, D., and Wallimann, T., 1997, The role of creatine kinase in inhibition of mitochondrial permeability transition, FEBS Lett. 414:253–257.PubMedGoogle Scholar
  35. Reinke, L. A., Lai, E. K., Du Bose, C. M., and MacCay, P. B., 1987, Reactive free radical generation in vivo in heart and liver of ethanol-fed rats: Correlation with radical formation in vitro, Proc. Natl. Acad. Sci. USA 84: 9223–9227.PubMedGoogle Scholar
  36. Rice, G. C., Bump, E. A., Shrieve, D. C., Lee, W., and Kovacs, M., 1986, Quantitative analysis of cellular glutathione by flow cytometry utilizing monochlorobimane: Some applications to radiation and drug resistance in vitro and in vivo, Cancer Res. 46:6105–6110.PubMedGoogle Scholar
  37. Rouach, H., Park, M. K., Orfanelli, M. T., Janvier, B., Brissot, P., Bourel, M., and Nordmann, R., 1988, Effects of ethanol on hepatic and cerebellar lipid peroxidation and endogenous antioxidants in native and chronic iron-overload rats, in Alcohol Toxicity and Free Radical Mechanism: Advances in the Biosciences, Vol. 71 (R. Nordmann, C. üRibière, and H. Rouach, Eds.), Pergamon, Oxford, England pp. 49–54.Google Scholar
  38. Schulze-Osthoff, K., Bakker, A. C., Vanhaese-Broeck, B., Beyaert, R., Jacob, W. A., and Fiers, W., 1992, Cytotoxic activity of tumor necrosis factor is mediated by early damage of mitochondrial functions, J. Biol. Chem. 267:5317–5323.PubMedGoogle Scholar
  39. Shaw, S., Jayatilleke, E., and Lteber, C. S., 1988, Lipid peroxidation as a mechanism of alcoholic liver injury: Role of iron mobilization and microsomal induction, Alcohol 5:135–140.CrossRefPubMedGoogle Scholar
  40. Sinaceur, J., Ribière, C., Sabourault, D., and Nordmann, R., 1985, Superoxide formation in liver mitochondria during ethanol intoxication: Possible role in alcohol hepatotoxicity, in Free Radicals in Liver Injury (G. Poli, K. H Cheeseman, M. U. Dianzani, and T. F. Slater, Eds.), IRL Oxford, England pp. 175–177.Google Scholar
  41. Slater, T. F, Sawyer, B. C., and Sträuli, U. D., 1964, Changes in liver nucleotide concentrations in experimental liver injury. H. Acute ethanol poisoning, Biochem. J. 93:267–270.PubMedGoogle Scholar
  42. Speisky, H., MacDonald, A., Giles, G., Orrego, H., and Israel, Y, 1985, Increased loss and decreased synthesis of hepatic glutathione after acute ethanol administration, Biochem. J. 225:565–572.PubMedGoogle Scholar
  43. Speisky, H., Kera, Y, Penttila, K. E., Israel, Y, and Lindros, K. O., 1988, Depletion of hepatic glutathione by ethanol occurs independently of ethanol metabolism, Alcoholism: Clin. Exp. Res. 12:224–227.Google Scholar
  44. Susin, S. A., Zamzami, N., Castedo, M., Daugas, E., Wang, H. G., Geley, S., Fassy, F., Reed, J. C., and Kroemer, G., 1997, The central executioner of apoptosis: Multiple connections between protease activation and mitochondria in Fas/APO-l/CD95-and ceramide-induced apoptosis, J. Exp. Med. 186:25–37.CrossRefPubMedGoogle Scholar
  45. Susin, S. A., Zamzami, N., Castedo, M., Hirsh, T., Marchetti, P., Macho, A., Daugas, E., Geuskens, M., and Kroemer, G., 1996, Bcl-2 inhibits the mitochondrial release of an apoptogenic protease, J. Exp. Med. 84: 1331–1342.Google Scholar
  46. Susin, S. A., Zamzami, N., and Kroemer, G., 1998, Mitochondria as a regulator of apoptosis: Doubt no more, Biochim. Biophys. Ada 1366:151–165.Google Scholar
  47. Thurman, R. G., and Handler, J. A., 1989, New perspectives in catalase-dependent ethanol metabolism, Drug Metab. Rev. 20:679–688.PubMedGoogle Scholar
  48. Ublacker, G. A., Johnson, J. A., Siegel, F. L., and Mulcahy, R. T., 1991, Influence of glutathione S-transferases on cellular glutathione determination by flow cytometry using monochlorobimane, Cancer Res. 51:1783–1788.PubMedGoogle Scholar
  49. Videla, L. A., and Valenzuela, A., 1982, Alcohol ingestion, liver glutathione, and lipoperoxidation: Metabolic interrelations and pathological implications, Life Sci. 31:2395–2407.CrossRefPubMedGoogle Scholar
  50. Vina, J., Estrela, J. M., Guerri, C., and Romero, F. J., 1980, Effect of ethanol on glutathione concentration in isolated hepatocytes, Biochem. J. 188:549–552.PubMedGoogle Scholar
  51. Zahrebelski, G., Nieminen, A.-L., Al-Ghoul, K., Qian, T, Hermen, B., and Lemasters, J. J., 1995, Progression of subcellular changes during chemical hypoxia to cultured rat hepatocytes: A laser scanning confocal microscopic study, Hepatology 21:1361–1372.CrossRefPubMedGoogle Scholar
  52. Zamzami, N., Marchetti, P., Castedo, M., Zanin, C., Vayssiere, J. L., Petit, P. X., and Kroemer, G., 1995, Reduction in mitochondrial potential constitutes an early irreversible step of programmed lymphocytes death in vivo, J. Exp. Med. 181:1661–1672.CrossRefPubMedGoogle Scholar
  53. Zamzami, N., Susin, S. A., Marchetti, P., Hirsh, T., Gomez-Monterrey, I., Castedo, M., and Kroemer, G., 1996, Mitochondrial control of nuclear apoptosis, J. Exp. Med. 183:1533–1544.CrossRefPubMedGoogle Scholar
  54. Zentella de Pina, M., Corona, S., Rocha-Hernández, A. E., Saldana Balmori, Y, Cabrera, G., and Pina, E., 1994, Restoration by piroxicam of liver glutathione levels decreased by acute ethanol intoxication, Life Sci. 54: 1433–1439.PubMedGoogle Scholar
  55. Zhou, H., Henzel, W. J., Liu, X., Lutschg, A., and Wang, X. D., 1997, Apaf-1, a human protein homologous to C. elegans CED-4, participates in cytochrome c-dependent activation of caspase-3, Cell 90:405–413.Google Scholar
  56. Zoratti, M., and Szabò, I., 1995, The mitochondrial permeability transition, Biochim. Biophys. Acta 1241:139–176.PubMedGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • Hajimi Higuchi
    • 1
  • Hiromasa Ishii
    • 1
  1. 1.Department of Internal Medicine, School of MedicineKeio UniversityTokyoJapan

Personalised recommendations