Advertisement

Mitochondrial Dysfunction in the Pathogenesis of Acute Neural Cell Death

  • Gary Fiskum
Chapter
  • 156 Downloads

Conclusions

Now that the involvement of mitochondrial dysfunction in both necrotic and apoptotic neuronal cell death is firmly established, the molecular mechanisms by which acute stress alters mitochondrial activities and induces cell death must be elucidated. Although a greater understanding of mitochondrial ROS production and apoptogenic protein release is essential, we should also continue to study the ways in which oxidative phosphorylation and cerebral energy metabolism are impaired. Clarification of mitochondrial dysfunction mechanisms will likely require a combination of approaches using measurements performed with living cells, as well as isolated mitochondria and permeabilized cells. The knowledge thus obtained should lead to development of novel modes of protection against neural cell death. The relevance of such results will need verification with animal models of acute neurodegeneration, including models of ischemia and traumatic brain injury.

Keywords

Cerebral Ischemia Mitochondrial Dysfunction Mitochondrial Permeability Transition Permeability Transition Pore Adenine Nucleotide Translocase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allen, K. L., Ameida, A., Bates, T. E., and Clark, J. B., 1995, Changes of respiratory chain activity in mitochondrial and synaptosomal fractions isolated from the gerbil brain after graded ischaemia, J. Neurochem. 64:2222–2229.PubMedGoogle Scholar
  2. Andreyev, A., and Fiskum, G., 1999, Calcium induced release of mitochondrial cytochrome c by different mechanisms selective for brain versus liver, Cell Death Diff., in press.Google Scholar
  3. Andreyev, A., Fahy, B., and Fiskum, G., 1998, Cytochrome c release from brain mitochondria is independent of the mitochondrial permeability transition, FEBS Lett. 439:373–376.CrossRefPubMedGoogle Scholar
  4. Ankarcrona, M., Dypbukt, J. M., Bonfoco, E., Zhivotovsky, B., Orrenius, S., Lipton, S. A., and Nicotera, P., 1995, Glutamate-induced neuronal death: A succession of necrosis or apoptosis depending on mitochondrial function, Neuron 15:961–973.CrossRefPubMedGoogle Scholar
  5. Bernardi, P., Colonna, R., Costantini, P., Eriksson, O., Fontaine, E., Ichas, F., Massari, S., Nicolli, A., Petronilli, V, and Scorrano, L., 1998, The mitochondrial permeability transition, Biofactors 8:273–281.PubMedGoogle Scholar
  6. Beutner, G., Ruck, A., Riede, B., and Brdiczka, D., 1998, Complexes between porin, hexokinase, mitochondrial creatine kinase, and adenylate translocator display properties of the permeability transition pore: Implication for regulation of permeability transition by the kinases, Biochim. Biophys. Acta 1368:7–18.PubMedGoogle Scholar
  7. Bogaert, Y. E., Rosenthal, R. E., and Fiskum, G., 1994, Post-ischemic inhibition of cerebral cortex pyruvate dehydrogenase, Free Radical Biol. Med. 16:811–820.CrossRefGoogle Scholar
  8. Borutaite, V, Morkuniene, R., Brown, and G. C., 1999, Release of cytochrome c from heart mitochondria is induced by high Ca2+ and peroxynitrite and is responsible for Ca(2+)-induced inhibition of substrate oxidation, Biochim. Biophys. Acta 1453:41–48.PubMedGoogle Scholar
  9. Bossy-Wetzel, E., Newmeyer, D. D., and Green, D. R., 1998, Mitochondrial cytochrome c release in apptosis occurs upstream of DEVD-specific caspase activation and independently of mitochondrial transmembrane depolarization, EMBO J. 17:37–49.CrossRefPubMedGoogle Scholar
  10. Bradham, C. A., Qian, T., Streetz, K., Trautwein, C., Brenner, D. A., and Lemasters, J. J., 1998, The mitochondrial permeability transition is required for tumor necrosis factor alpha-mediated apoptosis and cytochrome c release, Mol. Cell Biol. 18:6353–6364.PubMedGoogle Scholar
  11. Budd, S. L., 1998, Mechanisms of neuronal damage in brain hypoxia/ischemia: Focus on the role of mitochondrial calcium accumulation, Pharmacol. Ther. 80:203–229.CrossRefPubMedGoogle Scholar
  12. Budd, S. L., and Nicholls, D. G., 1996, Mitochondria, calcium regulation, and acute glutamate excitotoxicity in cultured cerebellar granule cells, J. Neurochem. 67:2282–2291.PubMedGoogle Scholar
  13. Cai, J., and Jones, D. P., 1998, Superoxide in apoptosis: Mitochondrial generation triggered by cytochrome c loss, J. Biol. Chem. 273:11401–11404.PubMedGoogle Scholar
  14. Castilho, R. F., Ward, M. W., and Nicholls, D. G., 1999, Oxidative stress, mitochondrial function, and acute glutamate excitotoxicity in cultured cerebellar granule cells, J. Neurochem., 72:1394–1401.CrossRefPubMedGoogle Scholar
  15. Colbeau, A., Nachbaur, J., and Vignais, P. M., 1971, Enzymic characterization and lipid composition of rat liver subcellular membranes, Biochim. Biophys. Acta 249:462–492.PubMedGoogle Scholar
  16. Connern, C. P., and Halestrap, A. P., 1996, Chaotropic agents and increased matrix volume enhance binding of mitochondrial cyclophilin to the inner mitochondrial membrane and sensitize the mitochondrial permeability transition to [Ca2+], Biochemistry 35:8172–8180.CrossRefPubMedGoogle Scholar
  17. Costantini, P., Colonna, R., and Bernardi, P., 1998, Induction of the mitochondrial permeability transition by N-ethylmaleimide depends on secondary oxidation of critical thiol groups: Potentiation by copper-ortho-phenanthroline without dimerization of the adenine nucleotide translocase, Biochim. Biophys. Ada 1365:385–392.Google Scholar
  18. Desagher, S., Osen-Sand, A., Nichols, A., Eskes, R., Montessuit, S., Lauper, S., Maundrell, K.., Antonsson, B., and Martinou, J. C., 1999, Bid-induced conformational change of bax is responsible for mitochondrial cytochrome c release during apoptosis, J. Cell. Biol. 144:891–901.CrossRefPubMedGoogle Scholar
  19. Deshmukh, M., and Johnson, E. M., Jr., 1998, Evidence of a novel event during neuronal death: Development of competence-to-die in response to cytoplasmie cytochrome c, Neuron 21:695–705.CrossRefPubMedGoogle Scholar
  20. Dubinsky, J. M., and Levi, Y., 1998, Calcium-induced activation of the mitochondrial permeability transition in hippocampal neurons, J. Neurosci. Res. 53:728–741.CrossRefPubMedGoogle Scholar
  21. Dugan, L. L., Sensi, S. L., Canzoniero, L. M. T., Handran, S. D., Rothman, S. M., Lin, T.-S., Goldberg, M. P., and Choi, D. W., 1995, Mitochondrial production of reactive oxygen species in cortical neurons following exposure to N-methyl-D-aspartate, J. Neurosci. 15:6377–6388.PubMedGoogle Scholar
  22. Dumont, A., Hehner, S. P., Hofmann, T. G., Ueffing, M., Droge, W., and Schmitz, M. L., 1999, Hydrogen peroxide-induced apoptosis is CD95-independent, requires the release of mitochondria-derived reactive oxygen species and the activation of NF-kappaB, Oncogene 18:747–757.CrossRefPubMedGoogle Scholar
  23. Ellerby, L. M., Ellerby, H. M., Park, S. M., Holleran, A. L., Murphy, A. N., Fiskum, G., Kane, D. J., Testa, M. P., Kayalar, C., and Bredesen, D. E., 1996, Shift of the cellular oxidation-reduction potential in neural cells expressing Bcl-2, J. Neurochem. 67:1259–1267.PubMedGoogle Scholar
  24. Eskes, R., Antonsson, B., Osen-Sand, A., Montessuit, S., Richter, C., Sadoul, R., Mazzei, G., Nichols, A., and Martinou, J. C., 1998, Bax-induced cytochrome c release from mitochondria is independent of the permeability transition pore but highly dependent on Mg2+ ions, J. Cell Biol. 143:217–224.CrossRefPubMedGoogle Scholar
  25. Finucane, D. M., Bossy-Wetzel, E., Waterhouse, N. J., Cotter, T. G., and Green, D. R., 1999, Bax-induced caspase activation and apoptosis via cytochrome c release from mitochondria is inhibitable by Bcl-xL, J. Biol. Chem. 274:2225–2233.CrossRefPubMedGoogle Scholar
  26. Fiskum, G., 1985, Intracellular levels and distribution of Ca2+ in digitonin-permeabilized cells, Cell Calcium 6:25–37.CrossRefPubMedGoogle Scholar
  27. Fiskum, G., 1997, Metabolic failure and oxidative stress contribute to ischemic neurological impairment and delayed cell death, in Neuroprotection (T. J. J. Blanck, Ed.), Williams and Wilkins, Baltimore, MD, pp. 1–14.Google Scholar
  28. Fiskum, G., and Andreyev, A., 1999, Brain mitochondrial heterogeneity in Ca2+-induced release of apoptogenic cytochrome c, J. Neurochem. 72:S52C.Google Scholar
  29. Fiskum, G., Craig, S. W., Decker, G., and Lehninger, A. L., 1980, The cytoskeleton of digitonin-treated rat hepatocytes, Proc. Nat. Acad. Sci. USA 77:3430–3434.PubMedGoogle Scholar
  30. Fiskum, G., Murphy, A. N., and Beal, M. F, 1999, Mitochondria in neurodegeneration: Acute ischemia and chronic neurodegenerative diseases, J. Cereb. Blood Flow Metab. 19:351–369.PubMedGoogle Scholar
  31. Friberg, H., Ferrand-Drake, M., Bengtsson, F., Halestrap, A. P., and Wieloch, T., 1998, Cyclosporin A, but not FK 506, protects mitochondria and neurons against hypoglycemic damage and implicates the mitochondrial permeability transition in cell death, J. Neurosci. 18:5151–5159.PubMedGoogle Scholar
  32. Fujimura, M., Morita-Fujimura, Y., Murakami, K., Kawase, M., and Chan, P. H., 1998, Cytosolic redistribution of cytochrome c after transient focal cerebral ischemia in rats, J. Cereb. Blood Flow Metab. 18:1239–1247.PubMedGoogle Scholar
  33. Green, D. R., and Reed, J. C., 1998, Mitochondria and apoptosis, Science 281:1309–1312.PubMedGoogle Scholar
  34. Gross, A., Yin, X. M., Wang, K., Wei, M. C., Jockel, J., Milliman, C., Erdjument-Bromage, H., Tempst, P., and Korsmeyer, S. J., 1999, Caspase cleaved BID targets mitochondria and is required for cytochrome c release, while Blc-xL prevents this release but not tumor necrosis factor-R1/Fas death, J. Biol. Chem. 274:1156–1163.PubMedGoogle Scholar
  35. Hackenbrock, C. R., 1966, Ultrastructural bases for metabolically linked mechanical activity in mitochondria: I. Reversible ultrastructural changes with change in metabolic steady state in isolated liver mitochondria, J.Cell Biol. 30:269–297.CrossRefPubMedGoogle Scholar
  36. Hackenbrock, C. R., and Caplan, A. I., 1969, Ion-induced ultrastructural transformations in isolated mitochon-dria: The energized uptake of calcium, J. Cell Biol. 42:221–234.CrossRefPubMedGoogle Scholar
  37. Halestrap, A. P., 1989, The regulation of the matrix volume of mammalian mitochondria in vivo and in vitro and its role in the control of mitochondrial metabolism, Biochim. Biophys. Acta 973:355–382.PubMedGoogle Scholar
  38. Halestrap, A. P., Woodfield, K. Y, and Connern, C. P., 1997, Oxidative stress, thiol reagents, and membrane potential modulate the mitochondrial permeability transition by affecting nucleotide binding to the adenine nucleotide translocase, J. Biol. Chem. 272:3346–3354.CrossRefPubMedGoogle Scholar
  39. Han, Z., Bhalla, K., Pantazis, P., Hendrickson, E. A., and Wyche, J. H., 1999, Cif (cytochrome c efflux-inducing factor) activity is regulated by Bcl-2 and caspases and correlates with the activation of Bid, Mot. Cell Biol. 19:1381–1389.Google Scholar
  40. Higuchi, M, Proske, R. J., and Yeh, E. T., 1998, Inhibition of mitochondrial respiratory chain complex I by TNF results in cytochrome c release, membrane permeability transition, and apoptosis, Oncogene 17:2515–2524.PubMedGoogle Scholar
  41. Hillered, L., and Ernster, L., 1983, Respiratory activity of isolated rat brain mitochondria following in vitro exposure to oxygen radicals, J. Cereb. Blood Flow Metab. 3:207–214.PubMedGoogle Scholar
  42. Hirsch, T., Decaudin, D., Susin, S. A., Marchetti, P., Larochette, N., Resche-Rigon, M., and Kroemer, G., 1998, PK11195, a ligand of the mitochondrial benzodiazepine receptor, facilitates the induction of apoptosis and reverses Bel-2-mediated cytoprotection, Exp. Cell Res. 241:426–434.CrossRefPubMedGoogle Scholar
  43. Jŭrgensmeier, J. M., Xie, Z., Deverzux, Q., Ellerby, L., Bredesen, D., and Reed, J. C., 1998, Bax directly induces release of cytochrome c from isolated mitochondria, Proc. Natl. Acad. Sci. USA 95:4997–5002.PubMedGoogle Scholar
  44. Kantrow, S. P., and Piantadosi, C. A., 1997, Release of cytochrome c from liver mitochondria during permeability transition, Biochem. Biophys. Res. Commun. 232:669–671.CrossRefPubMedGoogle Scholar
  45. Katayama, Y., and Welsh, F. A., 1989, Effect of dichloroacetate on regional energy metabolites and pyruvate dehydrogenase activity during ischemia and reperfusion in gerbil brain, J. Neurochem. 53:1817–1822.Google Scholar
  46. Kaya, S. S., Mahmood, A., Li, Y., Yavuz, E., Goksel, and M., and Chopp, M., 1999, Apoptosis and expression o p53 response proteins and cyclin Dl after cortical impact in rat brain. Brain Res. 818:23–33.CrossRefPubMedGoogle Scholar
  47. Keller, J. N., Kindy, M. S., Holtsberg, F. W., St. Clair, D. K., Yen, H. C, Germeyer, A., Steiner, S. M., Bruce-Keller, A. J., Hutchins, J. B., and Mattson, M. P. 1998, Mitochondrial manganese superoxide dismutase prevents neural apoptosis and reduces ischemic brain injury: Suppression of peroxynitrite production, lipid peroxidation, and mitochondrial dysfunction, J. Neurosci. 18:687–697.PubMedGoogle Scholar
  48. Kinnally, K. W., Lohret, T. A., Campo, M. L., and Mannella, C. A., 1996, Perspectives on the mitochondrial multiple conductance channel, J. Bioenerg. Biomembr. 28:115–123.CrossRefPubMedGoogle Scholar
  49. Kluck, R. M., Bossy-Wetzel, F., Green, D. R., and Newmeyer, D. D., 1997, The release of cytochrome c from mitochondria: A primary site for Bcl-2 regulation of apoptosis, Science 275:1132–1136.CrossRefPubMedGoogle Scholar
  50. Kowaltowski, A. J., and Vercesi, A. E., 1999, Mitochondrial damage induced by conditions of oxidative stress, Free Radical Biol. Med. 26:463–471.CrossRefGoogle Scholar
  51. Kowaltowski, A. J., Vercesi, A. E., and Fiskum, G., 2000, Bcl-2 prevents mitochondrial permeability transition and cytochrome c release via maintenance of reducedpyridine nucleotides, Cell Death Different. 7: 903–910.Google Scholar
  52. Krajewski, S., Krajewska, M., Ellerby, E. M., Welsch, K., Xie, Z., Deveraux, Q., Salvesen, G. S., Bredesen, D. E., Rosenthal, R. E., Fiskum, G., and Reed, J. C., 1999, Release of caspase-9 from mitochondria during neuronal apoptosis and cerebral ischemia, Proc. Natl. Acad. Sci. USA. 96:5752–5757.CrossRefPubMedGoogle Scholar
  53. Kristal, B. S., and Dubinsky, J. M., 1997, Mitochondrial permeability transition in central nervous system: Induction by calcium cyclin-dependent and-independent pathways, J. Neurochem. 69:524–538.PubMedGoogle Scholar
  54. Kristian, T., and Siesjo, B. K.., 1998, Calcium in ischemic cell death, Stroke 29:705–718.PubMedGoogle Scholar
  55. Kroemer, G., Petit, P., Zamzami, N., Vayssiere, J. L., and Mignotte, B., 1995, The biochemistry of programmed cell death, FASEB J. 9:1277–1287.PubMedGoogle Scholar
  56. Kruman, I. I., and Mattson, M. P., 1999, Pivotal role of mitochondrial calcium uptake in neural cell apoptosis and necrosis, J. Neurochem. 72:529–540.CrossRefPubMedGoogle Scholar
  57. Leist, M., Volbracht, C., Fava, E., and Nicotera, P., 1998, l-Methyl-4-phenylpyridinium induces autocrine excitotoxicity, protease activation, and neuronal apoptosis. Mol. Pharmacol. 54:789–801.PubMedGoogle Scholar
  58. Lemasters, J. J., Qian, T., Elmore, S. P., Trost, E. C., Nishimura, Y., Herman, B., Bradham, C. A., Brenner, D. A., and Nieminen, A.-L., 1998a, Confocal microscopy of the mitochondrial permeability transition in necrotic cell killing, apoptosis, and autophagy, Biofactors 8:283–285.PubMedGoogle Scholar
  59. Lemasters, J. J., Nieminen, A.-L., Qian, T., Trost, E. C., Elmore, S. P., Nishimura, Y, Crowe, R. A., Cascio, W. E., Bradham, C. A., Brenner, D. A., and Herman, B., 1998b, The mitochondrial permeability transition in cell death: A common mechanism in necrosis, apoptosis, and autophagy, Biochim. Biophys. Acta 1366:177–196.PubMedGoogle Scholar
  60. Li, P-A., Uchino, H., Elmer, E., and Siesjö, B.K., 1997a, Amelioration by cyclosporin A of brain damage following 5 or 10 min of ischemia in rats subjected to preischemic hyperglycemia, Brain Res. 753:133–140.CrossRefPubMedGoogle Scholar
  61. Li, Y, Chopp, M., Powers, C., and Jiang, N., 1997b, Apoptosis and protein expression after focal cerebral ischemia in rat, Brain Rex. 765:301–312.Google Scholar
  62. Li, H., Zhu, H., Xu, C. J., and Yuan, J., 1998, Cleavage of BID by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis, Cell 94:491–501.CrossRefPubMedGoogle Scholar
  63. Luo, X., Budihardjo, I., Zou, H., Slaughter, C., and Wang, X., 1998, Bid, a Bcl2 interacting protein, mediates cytochrome c release from mitochondria in response to activation of cell surface death receptors, Cell 94:481–190.CrossRefPubMedGoogle Scholar
  64. Mannella, C. A., 1998, Conformational changes in the mitochondrial channel protein, VDAC, and their functional implications, J. Struct. Biol. 121:207–218.CrossRefPubMedGoogle Scholar
  65. Martinou, I., Desagher, S., Eskes, R., Antonsson, B., Andre, E., Fakan, S., and Martinou, J. C., 1999, The release of cytochrome c from mitochondria during apoptosis of NGF-deprived sympathetic neurons is a reversible event, J. Cell Biol. 144:883–889.CrossRefPubMedGoogle Scholar
  66. Marzo, I., Brenner, C., Zamzami, N., Jûrgensmeier, J. M., Susin, S. A., Vieira, H. L., Prevost, M. C., Xie, Z., Matsuyama, S., Reed, J. C, and Kroemer, G., 1998a, Bax and adenine nucleotide translocator cooperate in the mitochondrial control of apoptosis, Science 281:2027–2031.CrossRefPubMedGoogle Scholar
  67. Marzo, I., Brenner, C., Zamzami, N., Susin, S. A., Beutner, G., Brdiczka, D., Remy, R., Xie, Z. H., Reed, J. C., and Kroemer, G., 1998b, The permeability transition pore complex: A target for apoptosis regulation by caspases and bcl-2-related proteins, J. Exp. Med. 187:1261–71CrossRefPubMedGoogle Scholar
  68. McEnery, M. W., Dawson, T. M., Verma, A., Gurley, D., Colombini, M., and Snyder, S. H., 1993, Mitochondrial voltage-dependent anion channel: Immunochemical and immunohistochemical characterization in rat brain, J. Biol. Chem. 268:23289–23296.PubMedGoogle Scholar
  69. McGinnis, K. M., Gnegy, M. E., and Wang, K. K., 1999, Endogenous bax translocation in SH-SY5Y human neuroblastoma cells and cerebellar granule neurons undergoing apoptosis, J. Neurochem. 72:1899–1906.PubMedGoogle Scholar
  70. Murakami, K., Kondo, T., Kawase, M., Li, Y, Sato, S., Chen, S. F, and Chan, P. H., 1998, Mitochondrial susceptibility to oxidative stress exacerbates cerebral infarction that follows permanent focal cerebral ischemia in mutant mice with manganese superoxide dismutase deficiency, J. Neurosci. 18:205–213.PubMedGoogle Scholar
  71. Murphy, A. N., Bredesen, D. E., Cortopassi, G., Wang, E., and Fiskum, G., 1996a, Bcl-2 potentiates the maximal calcium uptake capacity of neural cell mitochondria, Proc. Natl. Acad. Sci. USA 93:9893–9898.PubMedGoogle Scholar
  72. Murphy, A. N., Myers, K. M., and Fiskum, G., 1996b, Bcl-2 and N-acetylcysteine inhibition of respiratory impairment following exposure of neural cells to chemical hypoxia/aglycemia, in Pharmacology of Cerebral Ischemia 19966 (J. Krieglstein, Ed.), Medpharm Scientific Publishers, Stuttgart, pp. 163–Google Scholar
  73. Murphy, A. N., Fiskum, G., and Beal., M. F., 1999, Mitochondria in neurodegeneration: Bioenergetic function in cell life and death, Cereb. Blood Flow Metab. 19:231–245.Google Scholar
  74. Myers, K. M., Liu, Y, Bredesen, D. E., Fiskum, G., and Murphy, A. N., 1995, Bcl-2 protects neural cells from hypoxia-reoxygenation induced lipid oxidation, mitochondrial injury, and loss of viability, J. Neurochem. 65:2432–2440.PubMedGoogle Scholar
  75. Namura, S., Zhu, J., Fink, K., Endres, M., Srinivasan, A., Tomaselli, K. J., Yuan, J., and Moskowitz, M. A., 1998, Activation and cleavage of caspase-3 in apoptosis induced by experimental cerebral ischemia, J. Neurosci. 18:3659–3668.PubMedGoogle Scholar
  76. Narita, M., Shimizu, S., Ito, T, Chittenden, T., Lutz, R. J., Matsuda, H., and Tsujimoto, Y, 1998, Bax interacts with the permeability transition pore to induce permeability transition and cytochrome c release in isolated mitochondria, Proc. Natl. Acad. Sci. USA 95:14681–14686.CrossRefPubMedGoogle Scholar
  77. Neame, S. J., Rubin, L. L., and Philpott, K. L., 1998, Blocking cytochrome c activity within intact neurons inhibits apoptosis, J. Cell Biol. 142:1583–1593.CrossRefPubMedGoogle Scholar
  78. Neumar, R. W, DeGracia, D. J., Konkoly, L. L, Khoury, J. I., White, B. C., and Krause, G. S., 1998, Calpain mediates eukaryotic initiation factor 4G degradation during global brain ischemia, J Cereb. Blood Flow Metab. 18:876–881.PubMedGoogle Scholar
  79. Nicotera, P., Ankarcrona, M., Bonfoco, E., Orrenius, S., and Lipton, S. A., 1997, Neuronal necrosis and apoptosis: Two distinct events induced by exposure to glutamate or oxidative stress, Adv. Neurol. 72:95–101.PubMedGoogle Scholar
  80. Nieminen, A-L., Petrie, T. G., Lemasters, J. J., and Selman, W. R., 1996, Cyclosporin A delays mitochondrial depolarization induced by N-methyl-D-aspartate in cortical neurons: Evidence of the mitochondrial permeability transition, Neuroscence 75:993–997.Google Scholar
  81. Paschen, W., and Doutheil, J., 1999, Disturbances of the functioning of endoplasmic reticulum: A key mechanism underlying neuronal cell injury? J. Cereb. Blood Flow Metab. 19:1–18.PubMedGoogle Scholar
  82. Pastorino, J. G., Chen, S. T., Tafani, M., Snyder, J. W., and Farber, J. L., 1998, The overexpression of Bax produces cell death upon induction of the mitochondrial permeability transition, J. Biol. Chem. 273:7770–7775.CrossRefPubMedGoogle Scholar
  83. Pèrez-Pinzon, M. A., Mumford, P. L., Rosenthal, M., and Sick, T. J., 1997, Antioxidants limit mitochondrial hyperoxidation and enhance electrical recovery following anoxia in hippocampal slices, Brain Rex. 754:163–170.Google Scholar
  84. Pèrez-Pinzon, M. A., Xu, G. P., Born, J., Lorenzo, J., Busto, R., Rosenthal, M., and Sick, T. J., 1999, Cytochrome c is released from mitochondria into the cytosol after cerebral anoxia or ischemia, J. Cereb. Blood Flow Metab. 19:39–43.PubMedGoogle Scholar
  85. Petit, P. X., Goubern, M., Diolez, P., Susin, S. A., Zamzami, N., and Kroemer, G., 1998, Disruption of the outer mitochondrial membrane as a result of large amplitude swelling: The impact of irreversible permeability transition, FEBS Lett. 426:111–116.CrossRefPubMedGoogle Scholar
  86. Prehn, J. H., Bindokas, V. P., Marcuccilli, C. J., Krajewski, S., Reed, J. C., Miller, R.J., 1994, Regulation of neuronal Bcl2 protein expression and calcium homeostasis by transforming growth factor type beta confers wide-ranging protection on rat hippocampal neurons, Proc. Natl. Acad. Sci., 91:12599–12603.PubMedGoogle Scholar
  87. Priault, M., Chaudhuri, B., Clow, A., Camougrand, N., and Manon, S., 1999, Investigation of bax-induced release of cytochrome c from yeast mitochondria: Permeability of mitochondrial membranes, role of VDAC, and ATP requirement, fur. J. Biochem. 260:684–691.Google Scholar
  88. Reynolds, I. J., and Hastings, T. G., 1995, Glutamate induces the production of reactive oxygen species in cultured forebrain neurons following NMDA receptor activation, J. Neurosci. 15:3318–3327.PubMedGoogle Scholar
  89. Rosenthal, M., Feng, Z-C., Raffin, C. N., Harrison, M., and Sick, T. J., 1995, Mitochondrial hyperoxidation signals residual intracellular dysfunction after global ischemia in rat neocortex, J. Cereb. Blood Flow Metab. 15:655–665.PubMedGoogle Scholar
  90. Rottenberg, H., and Marbach, M., 1990, Regulation of Ca2+ transport in brain mitochondria: II. The mechanism of the adenine nucleotides enhancement of Ca2+ uptake and retention, Biochim. Biophys. Acta 1016:87–98.PubMedGoogle Scholar
  91. Scarlett, J. L., and Murphy, M. P., 1997, Release of apoptogenic proteins from the mitochondrial intermembrane space during the mitochondrial permeability transition, FEBS Lett. 418:282–286.CrossRefPubMedGoogle Scholar
  92. Schinder, A. F., Olson, B. C., Spitzer, N. C., and Montal, M., 1996, Mitochondrial dysfunction is a primary event in glutamate neurotoxicity, J. Neurosci. 16:6125–6133.PubMedGoogle Scholar
  93. Schulke, N., Sepuri, N. B. V, and Pain, D., 1997, In vivo zippering of inner and outer mitochondrial membranes by a stable translocation intermediate, Proc. Natl. Acad. Sci. USA 94:7314–7319.CrossRefPubMedGoogle Scholar
  94. Schulz, J. B., Weller, M., and Moskowitz, M. A., 1999, Caspases as treatment targets in stroke and neurodegenerative diseases, Ann. Neurol. 45:421–429.PubMedGoogle Scholar
  95. Seeman, P., Cheng, D., and Iles, G. H., 1973, Structure of membrane holes in osmotic and saponin hemolysis, J. Cell Biol. 56:91–102.CrossRefGoogle Scholar
  96. Shimizu, S., Eguchi, Y., Kamiike, W., Funahashi, Y., Mignon, A., Lacronique, V, Matsuda, H., and Tsujimoto, Y., 1998, Bcl-2 prevents apoptotic mitochondrial dysfunction by regulating proton flux, Proc. Natl. Acad. Sci. USA 95:1455–1459PubMedGoogle Scholar
  97. Sims, N. R., 1991, Selective impairment of respiration in mitochondria isolated from brain subregions followin transient forebrain ischemia in the rat, J. Neurochem. 56:1836–1844.PubMedGoogle Scholar
  98. Sokolove, P. M., and Kinnally, K. W, 1996, A mitochondrial signal peptide from Neurospora crassa increases the permeability of isolated rat liver mitochondria, Arch. Biochem. Biophys. 336:69–76.CrossRefPubMedGoogle Scholar
  99. Stout, A. K., Raphael, H. M., Kanterewicz, B. I., Klann, E., and Reynolds, I. J., 1998, Glutamate-induced neuron death requires mitochondrial calcium uptake, Nature Neurosci. 1:366–373.PubMedGoogle Scholar
  100. Susin, S. A., Lorenzo, H. K., Zamzami, N., Marzo, I., Brenner, C., Larochette, N., Prevost, M. C., Alzari, P. M., and Kroemer, G., 1999a, Mitochondrial release of caspase-2 and-9 during the apoptotic process, J. Exp. Med. 189:381–394.CrossRefPubMedGoogle Scholar
  101. Susin, S. A., Lorenzo, H. K., Zamzami, N., Marzo, I., Snow, B. E., Brothers, G. M., Mangion, J., Jacotot, E., Costantini, P., Loeffler, M., Larochette, N., Goodlett, D. R., Aebersold, R., Siderovski, D. P., Penninger, J. M., and Kroemer, G., 1999b, Molecular characterization of mitochondrial apoptosis-inducing factor, Nature 397:441–446.PubMedGoogle Scholar
  102. Tamatani, M., Ogawa, S., Niitsu, Y, and Tohyama, M., 1998, Involvement of Bcl-2 family and caspase-3-like potease in NO-mediated neuronal apoptosis, J. Neurochem. 71:1588–1596.PubMedGoogle Scholar
  103. Uchino, H., Elmer, E., Uchino, K., Li, P. A., He, Q. P., Smith, M. L., and Siesjo, B. K.., 1998, Amelioration by cyclosporin A of brain damage in transient forebrain ischemia in the rat, Brain Res. 812:216–226.CrossRefPubMedGoogle Scholar
  104. Ushmorov, A., Ratter, R, Lehmann, V, Droge, W., Schirrmacher, V, and Umansky, V, 1999, Nitric-oxide-induced apoptosis in human leukemic lines requires mitochondrial lipid degradation and cytochrome c release, Blood 93:2342–2352.PubMedGoogle Scholar
  105. Vander Heiden, M. G., Chandel, N. S., Williamson, E. K., Schumacker, P. T., and Thompson, C. R. 1997, Bcl-xL regulates the membrane potential and volume homeostasis of mitochondria, Cell 91:627–637.Google Scholar
  106. Walter, D. H., Haendeler, J., Galle, J., Zeiher, A. M., Dimmeler, S., 1998, Cyclosporin A inhibits apoptosis of human endothelial cells by preventing release of cytochrome C from mitochondria, Circulation, 98:1153–7.PubMedGoogle Scholar
  107. Werling, L., and Fiskum, G., 1996, Calcium channels and neurotransmitter releaseability following cerebral ischemia, in Neuroprotection (J. A. Stamford and L. Strunin, Eds.), Bailliere Tindall, London, pp. 445–459.Google Scholar
  108. White, R. J., and Reynolds, I. J., 1995, Mitochondria and Na+Ca2+ exchange buffer glutamate-induced calcium loads in cultured cortical neurons, J. Neurosci. 15:1318–1328.PubMedGoogle Scholar
  109. Yang, J. C., and Cortopassi, G. A., 1998, Induction of the mitochondrial permeability transition causes release of the apoptogenic factor cytochrome c, Free Radical Biol. Med. 24:624–631.CrossRefGoogle Scholar
  110. Yang, J., Liu, X., Bhalla, K., Kim, C. N., Ibrado, A. M., Cai, J., Peng, T-L, Jones, D. P., and Wang, X., 1997, Prevention of apoptosis by Bcl-2: Release of cytochrome c from mitochondria blocked, Science 275:1129–1132.CrossRefPubMedGoogle Scholar
  111. Zaidan E., and Sims, N. R., 1997, Reduced activity of the pyruvate dehydrogenase complex but not cytochrome c oxidase is associated with neuronal loss in the striatum following short-term forebrain ischemia, Brain Res. 772:23–28.CrossRefPubMedGoogle Scholar
  112. Zhuang, J., Dinsdale, D., and Cohen, G. M., 1998, Apoptosis, in human monocytic THP.1 cells, results in the release of cytochrome c from mitochondria prior to their ultracondensation, formation of outer membrane discontinuities, and reduction in inner membrane potential, Cell Death Differ. 5:953–962.CrossRefPubMedGoogle Scholar
  113. Zoratti, M., and Szabó, I., 1995, The mitochondrial permeability transition, Biochim. Biophys. Acta 1241:139–176.PubMedGoogle Scholar
  114. Zou, H., Li, Y., Liu, X., and Wang, X.,1999, An APAF-1-cytochrome c multimeric complex is a functional apoptosome that activates procaspase-9, J. Biol. Chem. 274:11549–11556.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • Gary Fiskum
    • 1
  1. 1.Department of Anesthesiology, School of MedicineUniversity of MarylandBaltimore

Personalised recommendations