Advertisement

Role of the Permeability Transition in Glutamate-Mediated Neuronal Injury

  • Ian J. Reynolds
  • Teresa G. Hastings
Chapter
  • 150 Downloads

Conclusions

Glutamate can injure neurons in a way that is likely relevant to a number of acute neurodegenerative states, including stroke and head trauma. It is also likely that glutamate contributes to neurons degeneration in chronic diseases as well. Many studies have established a relationship between the bioenergetic state of neurons and their vulnerability to injury, and more-recent investigations have placed mitochondria at the center of the event cascade linking glutamate receptor activation to neuronal death. The key question posed at the start of this review concerned the role of the PTP in this process, however, and this is much less clear. There are significant concerns in interpretating studies which suggest that transition occurs in intact neurons, because of the difficulty in attributing alterations in membrane potential to pore activation, so these studies remain suggestive but not conclusive. Morphological approaches also imply pore involvement but contain similar methodological concerns. It is evident that CsA is neuroprotective under certain circumstances, but there are multiple mechanisms by which this might be so, and FK506 sometimes has neuroprotective actions as well. No other drugs that alter membrane potential have shown neuroprotective effects. Thus, the body of evidence linking the PTP to excitotoxicity, though suggestive and intriguing, remains to be firmly established.

Keywords

Mitochondrial Membrane Potential Neuronal Injury Mitochondrial Permeability Transition Mitochondrial Permeability Transition Pore Cerebellar Granule Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andreyev, A. Y., Fahy, B., and Fiskum, G., 1998, Cyctochrome c release from brain mitochondria is independent of the mitochondrial permeability transition, FEBS Lett. 439:373–376.CrossRefPubMedGoogle Scholar
  2. Ankarcrona, M., Dypbukt, J. M., Bonfoco, E., Zhivotovsky, B., Orrenius, S., Lipton, S. A., and Nicotera, P., 1995, Glutamate-induced neuronal death: A succession of necrosis or apoptosis depending on mitochondrial function, Neuron 15:961–973.CrossRefPubMedGoogle Scholar
  3. Baron, K. T., and Thayer, S. A., 1997, CGP 37157 modulates mitochondrial Ca2+ homeostasis in cultured rat dorsal root ganglion neurons, Eur. J. Pharmacol. 340:295–300.CrossRefPubMedGoogle Scholar
  4. Beal, M. F., Hyman, B. T., and Koroshetz, W., 1993, Do defects in mitochondrial energy metabolism underlie the pathology of neurodegenerative diseases? Trends Neurosci. 16:125–131.CrossRefPubMedGoogle Scholar
  5. Benveniste, H., Drejer, J., Schousboe, A., and Diemer, N. H., 1984, Elevation of the extracellular concentrations of glutamate and aspartate in rat hippocampus during transient cerebral ischemia monitored by intracerebral microdialysis, J. Neurochem. 43:1369–1374.PubMedGoogle Scholar
  6. Berman, S. B., and Hastings, T. G., 1997, Inhibition of glutamate transport in synaptosomes by dopamine oxidation and reactive oxygen species, J. Neurochem. 69:1185–1195.PubMedGoogle Scholar
  7. Berman, S. B., and Hastings, T. G., 1999, Dopamine oxidation alters mitochondrial respiration and induces permeability transition in brain mitochondria: Implications for Parkinson’s disease, J. Neurochem. 73:1127–1137.CrossRefPubMedGoogle Scholar
  8. Berman, S. B., Watkins, S.C., and Hastings, T. G., 2000, Quantitative biochemical and ultrastructural comparison of mitochondrial permeability transition in isolated brain and liver mitochondria: evidence for relative insensitivity of brain mitochondria. Exp. Neurol. 166:615–625.Google Scholar
  9. Bernardi, P., Broekemeier, K. M., and Pfeiffer, D. R., 1994, Recent progress on regulation of the mitochondrial permeability transition pore: A cyclosporin sensitive pore in the inner mitochondrial membrane, J. Bioenerg. Biomemb. 26:509–517.Google Scholar
  10. Bindokas, V P., Jordan, J., Lee, C. C., and Miller, R. J., 1996, Superoxide production in rat hippocampal neurons: Selective imaging with hydroethidine, J. Neurosci. 16:1324–1336.PubMedGoogle Scholar
  11. Boast, C. A., Gerhardt, S. C., Pastor, G., Lehmann, J., Etienne, P. E., and Liebman, J. M., 1988, The N-methyl-D-aspartate antagonists CGS 19755 and CPP reduce ischemic brain damage in gerbils, Brain Rex. 442:345–348.Google Scholar
  12. Brocard, J. B., Rajdev, S., and Reynolds, I. J., 1993, Glutamate induced increases in intracellular free Mg2+ in cultured corticalneurons, Neuron 11:751–757.CrossRefPubMedGoogle Scholar
  13. Budd, S. L., and Nicholls, D. G., 1996a, A reevaluation of the role of mitochondria in neuronal Ca2- homeostasis, J. Neurochem. 66:403–411.PubMedGoogle Scholar
  14. Budd, S. L., and Nicholls, D. G., 1996b, Mitochondria, calcium regulation, and acute glutamate excitotoxicity in cultured cerebellar granule cells, J Neurochem. 67:2282–2291.PubMedGoogle Scholar
  15. Chernyak, B. V, and Bernardi, P. 1996, The mitochondrial permeability transition pore is modulated by oxidative agents through both pyridine nucleotides and glutathione at two separate sites, Eur. J. Biochem. 238:623–630.CrossRefPubMedGoogle Scholar
  16. Chinopoulos, C., Tretter, L., and Adam-Vizi, V, 1999, Depolarization of in situ mitochondria due to hydrogen peroxide-induced oxidative stress in nerve terminals: Inhibition of α-ketoglutarate dehydrogenase, J. Neurochem. 73:220–228.CrossRefPubMedGoogle Scholar
  17. Choi, D. W., 1987, Ionic dependence of glutamate neurotoxicity, J. Neurosci. 7:369–379.PubMedGoogle Scholar
  18. Choi, D. W., Maulucci-Gedde, M., and Kriegstein, A. R., 1987, Glutamate neurotoxicity in cortical cell culture, J.Neurosci. 7:357–368.PubMedGoogle Scholar
  19. Connern, C. P., and Halestrap, A. P., 1994, Recruitment of mitochondrial cyclophilin to the mitochondrial inner membrane under conditions of oxidative stress that enhance opening of a calcium sensitive non-specific channel, Biochem. J. 302:321–324.PubMedGoogle Scholar
  20. Cox, D. A., and Matlib, M. A., 1993, Modulation of intramitochondrial free Ca2+ concentration by antagonists of Na+-Ca2+ exchange, Trends Pharmacol. sci. 14:408–413.CrossRefPubMedGoogle Scholar
  21. Custodio, J. B., Moreno, A. J., and Wallace, K. B., 1998, Tamoxifen inhibits induction of the mitochondrial permeability transition by Ca2+ and inorganic phosphate, Toxicol. Appl. Pharmacol. 152:10–17.CrossRefPubMedGoogle Scholar
  22. Dawson, T.M., Steiner, J. P., Dawson, V. L., Dinerman, J. L., Uhl, G. R., and Snyder, S. H., 1993, Immunosuppressant FK506 enhances phosphorylation of nitric oxide synthase and protects against glutamate neurotoxicity, Proc. Natl. Acad. Sci. USA 90:9808–9812.PubMedGoogle Scholar
  23. Doble, A., 1999, The role of excitotoxicity in neurodegenerative disease:Implications for therapy, Pharmacol. Ther. 81:163–221.CrossRefPubMedGoogle Scholar
  24. Dubinsky, J. M., and Levi, Y., 1998, Calcium induced activation of the mitochondrial permeability transition in hippocampal neurons, J. Neurosci. Res. 53:728–741.CrossRefPubMedGoogle Scholar
  25. Dubinsky, J. M., Kristal, B. S., and Elizondo-Fournier, M., 1995, An obligate role for oxygen in the early stages if glutamate-induced, delayed neuronal death, J. Neurosci. 15:7071–7078.PubMedGoogle Scholar
  26. Dugan, L. L., Sensi, S. L., Canzoniero, L. M. T, Handran, S. D., Rothman, S. M., Lin, T.-S., Goldberg, M. P., and Choi, D. W., 1995, Mitochondrial production of reactive oxygen species in cortical neurons following exposure to W-methyl-D-aspartate, J. Neurosci. 15:6377–6388.PubMedGoogle Scholar
  27. Dykens, J. A., 1994, Isolated cerebral and cerebellar mitochondria produce free radicals when exposed to elevated and Ca2+ and Na+: Implications for neurodegeneration, J. Neurochem. 63:584–591.PubMedGoogle Scholar
  28. Ellerby, H. M., Martin, S. J., Ellerby, L. M., Naiem, S. S., Rabizadeh, S., Salvesen, G. S., Casiano, C. A., Cashman, N. R., Green, D. R., and Bredesen, D. E., 1997, Establishment of a cell-free system of neuronal apoptosis: Comparison of premitochondrial, mitochondrial, and postmitochondnal phases, J Neurosci. 17:6165–6178.PubMedGoogle Scholar
  29. Erecinska, M., and Silver, I. A., 1996, Calcium handling by hippocampal neurons under physiologic and pathologic conditions, Adv. Neurol. 71:119–136.Google Scholar
  30. Fontaine, E., Ichas, F., and Bernardi, P., 1998, A ubiquinone binding site regulates the mitochondrial permeability transition pore, J. Biol. Chem. 273:25734–25740.PubMedGoogle Scholar
  31. Friberg, H., Ferrand-Drake, M., Bengtsson, F., Halestrap, A. P., and Wieloch, T., 1998, Cyclosporin A, but not FK 506, protects mitochondria and neurons against hypoglycemic damage and implicates the mitochondrial permeability transition in cell death, J. Neurosci. 18:5151–5159.PubMedGoogle Scholar
  32. Friberg, H., Connern, C. P., Halestrap, A. P., and Wieloch, T., 1999, Differences in the activation of the mitochondrial permeability transition among brain regions correlates with selective vulnerability, J. Neurochem. 72:2488–2497.CrossRefPubMedGoogle Scholar
  33. Gill, R., Foster, A. C., and Woodruff, G. N., 1987, Systemic administration of MK.-801 protects against ischemiainduced hippocampal neurodegeneration in the gerbil, J Neurosci. 7:3343–3349.PubMedGoogle Scholar
  34. Götz, M. F., Künig, G., Riederer, P., and Youdim, M. B. H., 1994, Oxidative stress: Free radical production in neural degeneration, Pharmacol. Ther. 63:37–122.PubMedGoogle Scholar
  35. Graham, D. G.,1978, Oxidative pathways for catecholamines in the genesis of ncuromelanin and cytotoxic quinones, Mol. Pharmacol. 14:633–643.Google Scholar
  36. Greene, J. G., and Grcenamyre, J. T., 1996, Bioenergetics and glutamate excitotoxicity, Prog. Neurobiol. 48:613–621.CrossRefPubMedGoogle Scholar
  37. Griffiths, E.J., and Halestrap, A.P., 1991, Further evidence that cyclosporin A protects mitochondria from calcium overload by inhibiting a matrix peptidyl-prolyl cis-trans isomerase, Biochem. J. 274:611–614.PubMedGoogle Scholar
  38. Gunter, T. E., and Pfeiffer, D. R., 1990, Mechanisms by which mitochondria transport calcium, Am. J. Physiol. Cell Physiol. 258:C755–C786.Google Scholar
  39. Halestrap, A. P., and Davidson, A. M., 1990, Inhibition of Ca2- induced high amplitude swelling of liver and heart mitochondria by cyclosporin is probably caused by theinhibitor binding to mitochondrial matrix peptidyl prolyl cis-trans isomerase and preventing it interacting with the adenine nucleotide translocase, Biochem. J. 268:153–160.PubMedGoogle Scholar
  40. Hall, E.D., and Braughler, J.M., 1989, Central nervoussystemtrauma andstroke: II. Physiological and pharmacological evidence for involvement of oxygen radicals and lipid peroxidation, Free Radical Biol. Med. 6:303–313.CrossRefGoogle Scholar
  41. Halliwell, B., 1992, Reactive oxygen species in the central nervous system, J. Neurochem. 59:1609–1623.PubMedGoogle Scholar
  42. Hastings, T. G., 1995, Enzymatic oxidation of dopamine: The role of prostaglandin H synthase, J Neurochem. 64:919–924.PubMedGoogle Scholar
  43. Hastings, T. G., Lewis, D. A., and Zigmond, M. J., 1996, Role of oxidation in the neuroloxic effects of intrastriatal dopamine injections, Proc. Natl. Acad. Sci. USA 93:1956–1961.PubMedGoogle Scholar
  44. Hoyt, K. R., Gallagher, A. J., Hastings, T. G., and Reynolds, I. J., 1997a, Characterization of hydrogen peroxide toxicity in cultured rat forebrain neurons, Neurochem. Res. 22:333–340.CrossRefPubMedGoogle Scholar
  45. Hoyt, K. R., Reynolds, I. J., and Hastings, T. G., 1997b, Mechanisms of dopamine-induced cell death in cultured rat forebrain neurons: Interactions with and differences from glutamate-induced cell death, Exp Neurol. 143:269–281.CrossRefPubMedGoogle Scholar
  46. Hoyt, K. R., Sharma, T. A., and Reynolds, I. J. 1997c, Trifluoperazine and dibucaine inhibit glutamate-induced mitochondrial depolarization in cultured rat forebrain neurones, Br. J. Pharmacol. 122:803–808.CrossRefPubMedGoogle Scholar
  47. Hoyt, K. R. McLaughlin, B.A., Higgins, D.S., and Reynolds, I. J. Inhibition of glutamate-induced mitochondrial depolarization by tamoxifen in cultured neurons, J. Pharmacol. Exp. Ther. 293:480–486, 2000.PubMedGoogle Scholar
  48. Hyrc, K., Handran, S. D., Rothman, S. M., and Goldberg, M. P., 1997, Ionized intracellular calcium concentration predicts excitotoxic neuronal death: Observations with low affinity fluorescent calcium indicators, J. Neurosci. 17:6669–6677.PubMedGoogle Scholar
  49. Ichas, F., and Mazat, J. P., 1998, From calcium signaling to cell death: Two conformations for the mitochondrial permeability transition pore:Switching from low-to high-conductance state, Biochim. Biophys. Acta 1366:33–50.PubMedGoogle Scholar
  50. Khodorov, B., Pinelis, V, Storozhevykh, T., Vergun, O., and Vinskaya, N., 1996, Dominant role of mitochondria in protection against a delayed neuronal Ca2+ overload induced by endogenous excitatory amino acids following a glutamate pulse, FEBS Lett. 393:135–138.CrossRefPubMedGoogle Scholar
  51. Kiedrowski, L., Wroblewski, J. T., and Costa, E., 1994, Intracellular sodium concentration in cultured cerebellar granule cells challenged with glutamate, Mol. Pharmacol. 45:1050–1054.PubMedGoogle Scholar
  52. Koh, J. Y., Goldberg, M. P., Hartley, D. M., and Choi, D. W., 1990, Non-NMDA receptor mediated neurotoxicity in cortical culture, J. Neurosci. 10:693–705.PubMedGoogle Scholar
  53. Koroshetz, W. J., and Moskowitz, M. A. 1996, Emerging treatments for stroke in humans, Trends Pharmacol. Sci. 17:227–233.CrossRefPubMedGoogle Scholar
  54. Kristal, B. S., and Dubinsky, J. M., 1997, Mitochondrial permeability transition in the central nervous system: Induction by calcium cycling-dependent and independent pathways, J. Neurochem. 69:524–538.PubMedGoogle Scholar
  55. Kristián, T., Katsura, K.., Gidö G., and Siesjö, B. K., 1994, The influence of pH on cellular calcium influx during ischemia. Brain Res. 641:295–302.PubMedGoogle Scholar
  56. Lafon-Cazal, M., Pietri, S., Culcasi, M., and Bockaert, J., 1993, NMDA-dependent superoxide production and neurotoxicity, Nature 364:535–537.CrossRefPubMedGoogle Scholar
  57. Lu, Y. F., Tomizawa, K., Moriwaki, A., Hayashi, Y., Tokuda, M., Itano, T., Hatase, O., and Matsui, H., 1996, Calcineurin inhibitors, FK506 and cyclosporin A, suppress the NMDA receptor-mediated potentials and LTP, but not depotentiation in the rat hippocampus, Brain Res. 729:142–146.CrossRefPubMedGoogle Scholar
  58. MacDermott, A. B., Mayer, M. L., Westbrook, G. L., Smith, S. J., and Barker, J. L., 1986, NMDA-receptor activation increases cytoplasmic calcium concentration in cultured spinal cord neurones, Nature 321:519–522.CrossRefPubMedGoogle Scholar
  59. Mackenzie, G. M., and Greenamyre, J. T., 1998, A novel model of slowly progressive Parkinson’s disease, Soc. Neurosci. 24:1721 (abstract).Google Scholar
  60. Maker, H. S., Weiss, C., Silides, D. J., and Cohen, G., 1981, Coupling of dopamine oxidation (monamine oxidase activity) to glutathione oxidation via the generation of hydrogen peroxide in the brain, J. Neurochem. 36:589–593.PubMedGoogle Scholar
  61. Mayer, M. L., and Westbrook, G. L., 1987, Cellular mechanisms underlying excitotoxicity, Trends Neurosci. 10:59–61.CrossRefGoogle Scholar
  62. McCormack, J. G., Halestrap, A. P., and Denton, R. M., 1990, Role of calcium ions in regulation of mammalian intramitochondrial metabolism, Physiol. Rev. 70:391–425.PubMedGoogle Scholar
  63. Minta, A., Kao, J. P. Y., and Tsien, R. Y, 1989, Fluorescent indicators for cytosolic calcium based on rhodamine and fluorescein chromophores, J. Biol. Chem. 264:8171–8178.PubMedGoogle Scholar
  64. Nicholls, D. G., and Akerman, K. E. O., 1982, Mitochondrial calcium transport, Biochim. Biophys. Acta 683:57–88.PubMedGoogle Scholar
  65. Nieminen, A.-L., Petrie, T. G., Lemasters, J. J., and Selman, W. R., 1996, Cyclosporin A delays mitochondrial depolarization induced by N-methyl-D-aspartate in cortical neurons: Evidence of the mitochondrial permeability transition, Neurosdence 75:993–997.Google Scholar
  66. Novgorodov, S. A., Gudz, T. I., Brierley, G. P., and Pfeiffer, D. R., 1994, Magnesium ion modulates the sensitivity of the mitochondrial permeability transition pore to cyclosporin A and ADP, Arch. Biochem. Biophys. 311:219–228.CrossRefPubMedGoogle Scholar
  67. O’Gorman, E., Beutner, G., Dolder, M., Koretsky, A. P., Brdiczka, D., and Walliman, T., 1997, The role of creatine kinase in inhibition of mitochondrial permeability transition, FEBS Lett. 414:253–257.PubMedGoogle Scholar
  68. Olney, J. W., 1990, Excitotoxic amino acids and neuropsychiatric disorders. Ann. Rev. Pharmacol. Toxicol. 30:47–71.Google Scholar
  69. Peng, T. I., and Greenamyre, J. T., 1998, Privileged access to mitochondria of calcium influx through N-methyl-Daspartate receptors, Mol. Pharmacol. 53:974–980.PubMedGoogle Scholar
  70. Peng, T. I., Jou, M. J., Sheu, S.-S., and Greenamyre, J. T., 1998, Vizualization of NMDA receptor-induced mitochondrial calcium accumulation in striatal neurons, Exp. Neurol. 149:1–12.CrossRefPubMedGoogle Scholar
  71. Petronilli, V, Miotto, G., Canton, M., Brini, M., Lonna, R., Bernardi P., and Di Lisa, F., 1999, Transient and longlasting openings of the mitochondrial permeability transition pore can be monitored directly in intact cells by changes in mitochondrial calcein fluorescence, Biophys. J. 76:725–734.PubMedGoogle Scholar
  72. Phillis, J. W.,1994, A “radical” view of cerebral ischemic injury. Prog. Neurobiol. 42:441–448.Google Scholar
  73. Piani, D., Frei, K., Pfister, H.-W., and Fontana, A., 1993, Glutamate uptake by astrocytes is inhibited by reactive oxygen intermediates but not by other macrophage-derived molecules including cytokines, leukotrienes, or platelet-activating factor, J. Neuroimmunol. 48:99–104.CrossRefPubMedGoogle Scholar
  74. Poot, M., Zhang, Y. Z., KrÂmer, J. A., Wells, K. S., Jones, L., Hanzel, D. K., Lugade, A. G., Singer, V. L., and Haughland, R. P., 1996, Analysis of mitochondrial morphology and function with novel fixable fluorescent stains, J. Histochem. Cytochem. 44:1363–1372.PubMedGoogle Scholar
  75. Reynolds, I. J., and Hastings, T. G., 1995, Glutamate induces the production of reactive oxygen species in cultured forebrain neurons following NMDA receptor activation, J. Neurosci. 15:3318–3327.PubMedGoogle Scholar
  76. Rosenberg, P. A., 1988, Catecholamine toxicity in cerebral cortex in dissociated cell culture, J. Neurosci. 8:2887–2894.PubMedGoogle Scholar
  77. Rothman, S. M., 1984, Synaptic release of excitatory amino acid neurotransmitter mediates anoxic neuronal death, J. Neurosci. 4:1884–1891.PubMedGoogle Scholar
  78. Rothman, S. M, and Olney, J. W., 1987, Excitotoxicity and the NMDA receptor, Trends Neurosci. 10:299–302.CrossRefGoogle Scholar
  79. Sattler, R., Charlton, M. P., Hafner, M., and Tymianski, M., 1998, Distinct influx pathways, not calcium load, determine neuronal vulnerability to calcium neurotoxicity, J. Neurochem. 71:2349–2364.PubMedGoogle Scholar
  80. Scanlon, J. M., and Reynolds, 1. J. 1998, Effects of oxidants and glutamate receptor activation on mitochondrial membrane potential in rat forebrain neurons, J. Neurochem. 71:2392–2401.PubMedGoogle Scholar
  81. Schinder, A. F., Olson, E. C., Spitzer, N. C., and Montal, M., 1996, Mitochondrial dysfunction is a primary event in glutamate neurotoxicity, J. Neurosci. 16:6125–6133.PubMedGoogle Scholar
  82. Sciamanna, M. A., Zinkel, J., Fabi, A. Y, and Lee, C. P., 1992, Ischemic injury to rat forebrain mitochondria and cellular calcium homeostasis, Biochim. Biophys. Ada Mol. Cell Res. 1134:223–232.Google Scholar
  83. Scorrano L. Petronilli V. Colonna R. Di Lisa F. Bernardi P. Chloromethyltetramethylrosamine (Mitotracker Orange) induces the mitochondrial permeability transition and inhibits respiratory complex I. Implications for the mechanism of cytochrome c release. J. Biol. Chem. 274:24657–24663, 1999.PubMedGoogle Scholar
  84. Stout, A. K., and, Reynolds, I. J., 1999, High-affinity calcium indicators underestimate increases in intracellular calcium concentrations associated with excitotoxic glutamate stimulations, Neuroscience 89:91–100.CrossRefPubMedGoogle Scholar
  85. Stout, A. K., Raphael, H. M., Kanterewicz, B. I., Klann, E., and Reynolds, 1. J., 1998, Glutamate-induced neuron death requires mitochondrial calcium uptake, Nature Neurosci. 1:366–373.PubMedGoogle Scholar
  86. Strijbos, P. J. L. M., Leach, M. J., and Garthwaite, J., 1996, Vicious cycle involving Na+ channels, glutamate release, and NMDA receptors mediates delayedneurodegenerationthrough nitric oxide formation, J. Neurosci. 16:5004–5013.PubMedGoogle Scholar
  87. Taylor, C. P., Weber, M. L., Gaughan, C. L., Lehning, E. J., and Lopachin, R. M., 1999, Oxygen/glucose deprivation in hippocampal slices: Altered intraneuronal elemental composition predicts structural and functional damage, J. Neurosci. 19:619–629.PubMedGoogle Scholar
  88. Tretter, L., Chinopoulos, C., and Adam-Vizi, V, 1998, Plasma membrane depolarization and disturbed Na+ homeostasis induced by the protonophore carbonyl cyanide-P-trifluoromethoxyphenyl-hydrazone in isolated nerve terminals, Mol. Pharmacol. 53:734–741.PubMedGoogle Scholar
  89. Tricklebank, M. D., Singh, L., Dies, R. J., Wong, E. H. F., and Iversen, S. D., 1987, A role for receptors of N-methyl-D-aspartic acid in the discriminative stimulus properties of phencyclidine, Eur. J. Pharmacol. 141:497–501.CrossRefPubMedGoogle Scholar
  90. Tsacopoulos, M., and Magistretti, P. J., 1996, Metabolic coupling between glia and neurons, J. Neurosci. 16:877–885.PubMedGoogle Scholar
  91. Tymianski, M., Charlton, M. P., Carlen, P. L., and Tator, C. H., 1993, Source specificity of early calcium neurotoxicity in cultured embryonic spinal neurons, J. Neurosci. 13:2085–2104.PubMedGoogle Scholar
  92. Vanden Hoek, T. L., Li, C., Shao, Z., Schumacker, P. T., and Becker, L. B., 1997, Significant levels of oxidants are generated by isolated cardiomyocytes during ischemia prior to reperfusion, J. Mol. Cell. Cardiol. 29:2571–2583.Google Scholar
  93. Volterra, A., Trotti, D., Tromba, C., Floridi, S., Racagni, G., 1994, Glutamate uptake inhibition by oxygen free radicals in rat cortical astrocytes, J. Neurosci. 14:2924–2932.PubMedGoogle Scholar
  94. Wang, G. J., and Thayer, S. A., 1996, Sequestration of glutamate-induced Ca2+ loads by mitochondria in cultured rat hippocampal neurons, J. Neurophysiol. 76:1611–1621.PubMedGoogle Scholar
  95. White, R. J., and Reynolds, I. J., 1995, Mitochondria and Na+/Ca2+ exchange buffer glutamate-induced calcium loads in cultured cortical neurons, J. Neurosci. 15:1318–1328.PubMedGoogle Scholar
  96. White, R. J., and Reynolds, I. J., 1996, Mitochondrial depolarization in glutamate-stimulated neurons: An early signal specific to excitotoxin exposure, J. Neurosci. 16:5688–5697.PubMedGoogle Scholar
  97. White, R. J., and Reynolds, I. J., 1997, Mitochondria accumulate Ca2- following intense glutamate stimulation of cultured rat forebrain neurones, J. Physiol.(London) 498:31–47.Google Scholar
  98. Zhang, Y., Marcillat, O., Guilivi, C., Ernster, L., and Davies, K. J. A., 1990, The oxidative inactivation of mitochondrial electron transport chain components and ATPase, J. Biol. Chem. 265:16330–16336.PubMedGoogle Scholar
  99. Zoratti, M., and Szabò, I. 1995, The mitochondrial permeability transition, Biochim. Biophys. Ada 1241:139–176.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • Ian J. Reynolds
    • 1
  • Teresa G. Hastings
    • 2
  1. 1.Department of PharmacologyUniversity of PittsburghPittsburgh
  2. 2.Department of Neurology and NeuroscienceUniversity of PittsburghPittsburgh

Personalised recommendations