Reactive Oxygen Generation by Mitochondria

  • Alicia J. Kowaltowski
  • Anibal E. Vercesi


Normally, mitochondria provide eukaryotic cells with ATP, generated in a highly energy conservational manner. Under unfavorable conditions, however, or over time, mitochondria also generate ROS, which may damage both mitochondria themselves and the cell that surrounds them. In addition, mitochondria can promote cell death not only through energy deprivation but also in a highly organized fashion by releasing cytochrome c. Thus our cells carry within them a potential time bomb that can lead to cell damage and ultimately, death. A better understanding of the mechanisms by which mitochondria generate ROS and promote cell death will certainly help to provide the tools for preventing undesirable, mitochondrial effects, and help make their association with eukaryotic cells an even more peaceful one.


Mitochondrial Permeability Transition Mitochondrial Permeability Transition Pore Permeability Transition Pore Free Radical Biol Mitochondrial Oxidative Stress 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andreyev, A. Y., Fahy, B., and Fiskum, G., 1998, Cytochrome c release from brain mitochondria is independent of the mitochondrial permeability transition, FEBS Lett. 439:373–376.CrossRefPubMedGoogle Scholar
  2. Bacon, B. R., and Britton, R. S., 1990, The pathology of hepatic iron overload: A free radical-mediated process? Hepatology 11:127–137.PubMedGoogle Scholar
  3. Balakirev, M. Yu, Khramtsov, V V, and Zimmer, G., 1997, Modulation of the mitochondrial permeability transition by nitric oxide, Eur. J. Biochem. 246:710–718.CrossRefPubMedGoogle Scholar
  4. Berlett, B. S., and Stadtman, E. R., 1997, Protein oxidation in aging, disease, and oxidative stress, J. Biol. Chem. 272:20313–20316.CrossRefPubMedGoogle Scholar
  5. Bernardes, C. F., Pereira-da-Silva L., and Vercesi A. E., 1986, t-Butylhydroperoxide-induced Ca2+ efflux from liver mitochondria in the presence of physiological concentrations of Mg2+ and ATP, Biochim. Biophys. Acta 850:41–48.PubMedGoogle Scholar
  6. Bernardes, C. F., Meyer-Fernandes, J. R., Basseres, D. S., Castilho, R. F, and Vercesi, A. E., 1994, Permeabilization of the rat liver inner membrane by 4,4′-diisothiocyanatostilbene-2,2′-dissulfonic acid (DIDS) in the presence of Ca2+ is mediated by production of membrane protein aggregates, Biochim. Biophys. Acta 1188:93–100.PubMedGoogle Scholar
  7. Bernardi, P., 1992, Modulation of the mitochondrial cyclosporin A-sensitive permeability transition pore by the proton electrochemical gradient: Evidence that the pore can be opened by membrane depolarization, J. Biol. Chem. 267:8834–8839.PubMedGoogle Scholar
  8. Bernardi, P., 1996, The permeability transition pore: Control points of a cyclosporin A-sensitive mitochondrial channel involved in cell death, Biochim. Biophys. Acta. 1275:5–9.PubMedGoogle Scholar
  9. Bernardi, P., and Petronilli, V, 1996, The permeability transition pore as a mitochondrial calcium release channel: A critical appraisal, J. Bioenerg. Biomembr. 28:131–138.CrossRefPubMedGoogle Scholar
  10. Bindoli, A., Callegaro, M. T, Barzon, E., Benetti, M., and Rigobello, M. P., 1997, Influence of the redox state of pyridine nucleotides on mitochondrial sulfhydryl groups and permeability transition. Arch. Biochem. Biophys. 342:22–28.CrossRefPubMedGoogle Scholar
  11. Bobyleva, V, Pazienza, T. L., Maseroli, R., Tomasi, A., Salvioli, S., Cossarizza, A., Franceschi, C., and Skulachev, V P., 1998, Decrease in mitochondrial energy coupling by thyroid hormones: A physiological effect rather than a pathological hyperthyroidism consequence, FEBS Lett. 430:409–413.CrossRefPubMedGoogle Scholar
  12. Bolli, R., 1998, Causative role of oxyradicals in myocardial stunning: A proven hypothesis: A brief review of the evidence demonstrating a major role of reactive oxygen species in several forms of postischemic dysfunction, Basic Res. Cardiol. 93:156–162.PubMedGoogle Scholar
  13. Bolli, R., Patel, B. S., Jeroudi, M. O., Lai, E. K., and McCay P. B., 1988, Demonstration of free radical generation in “stunned” myocardium of intact dogs with the use of the spin trap alpha-phenyl N-tert-butyl nitrone, J. Clin. Invest. 82:476–485.PubMedGoogle Scholar
  14. Bolli, R., Jeroudi, M. O., Patel, B. S., Aruoma, O. I., Halliwell, B., Lai, E. K., and McCay, P. B., 1989, Marked reduction of free radical generation and contractile dysfunction by antioxidant therapy begun at the time of reperfusion: Evidence that myocardial “stunning” is a manifestation of reperfusion injury, Circ. Res. 65:607–622.PubMedGoogle Scholar
  15. Boveris, A., and Chance, B., 1973, The mitochondrial generation of hydrogen peroxide: General properties and effect of hyperbaric oxygen, Biochem. J. 134:707–716.PubMedGoogle Scholar
  16. Boveris, A., Cadenas, E., and Stoppani, A. O., 1976, Role of ubiquinone in the mitochondrial generation of hydrogen peroxide, Biochem. J. 156:435–144.PubMedGoogle Scholar
  17. Broekemeier, K. M., Klocek, C. K., and Pfeiffer, D. R., 1998, Proton selective substate of the mitochondrial permeability transition pore: Regulation by the redox state of the electron transport chain, Biochemistry 37:13059–13065.CrossRefPubMedGoogle Scholar
  18. Budd, S. L., and Nicholls, D. G., 1996, Mitochondria, calcium regulation, and acute glutamate excitotoxicity in cultured cerebellar granule cells, J. Neurochem. 67:2282–2291.PubMedGoogle Scholar
  19. Budd, S. L., Castilho, R. R, and Nicholls, D. G., 1997, Mitochondrial membrane potential and hydroethidine-monitored superoxide generation in cultured cerebellar granule cells, FEBS Lett. 415:21–24.CrossRefPubMedGoogle Scholar
  20. Cadenas, E., and Boveris, A., 1980, Enhancement of hydrogen peroxide formation by protonophores and ionophores in antimycin-supplemented mitochondria, Biochem. J. 188:31–37.PubMedGoogle Scholar
  21. Cadenas, E., Boveris, A., Ragan, C. I., and Stoppani, A. O. M, 1977, Production of superoxide radicals and hydrogen peroxide by NADH-ubiquinone reductase and ubiquinol-cytochrome c reductase from beef-heart mitochondria, Arch. Biochem. Biophys. 180:248–257.CrossRefPubMedGoogle Scholar
  22. Cadet, J. L., and Brannock, C., 1998, Free radicals and the pathobiology of brain dopamine systems, Neurochem. Int. 32:117–131.CrossRefPubMedGoogle Scholar
  23. Cai, J., and Jones, D. P., 1998, Superoxide in apoptosis: Mitochondrial generation triggered by cytochrome c loss, J. Biol. Chem. 273:11401–11404.PubMedGoogle Scholar
  24. Castilho, R. R, Meinicke, A. R., Almeida, A. M., Hermes-Lima, M., and Vercesi, A. E., 1994, Oxidative damage of mitochondria induced by Fe(II)citrate is potentiated by Ca2+ and induces lipid peroxidation and alterations in membrane proteins, Arch. Biochem. Biophys. 308:158–163.CrossRefPubMedGoogle Scholar
  25. Castilho, R. R, Kowaltowski, A. J., Meinicke, A. R., and Vercesi, A. E., 1995a, Oxidative damage of mitochondria induced by Fe(ll)citrate or t-butyl hydroperoxide in the presence of Ca2+: Effect of coenzyme Q redox state, Free Radical Biol. Med, 18:55–59.Google Scholar
  26. Castilho, R. F, Kowaltowski, A. J., Meinicke, A. R., Bechara, E. J., and Vercesi, A. E., 1995b, Permeabilization of the inner mitochondrial membrane by Ca2+ ions is stimulated by t-butyl hydroperoxide and mediated by reactive oxygen species generated by mitochondria, Free Radical Biol. Med. 18:479–486.Google Scholar
  27. Castilho, R. F, Kowaltowski, A. J., and Vercesi, A. E., 1996, The irreversibility of inner mitochondrial membrane permeabilization by Ca2+ plus prooxidants is determined by the extent of membrane protein thiol cross-linking, J. Bioenerg. Biomembr. 28:523–529.CrossRefPubMedGoogle Scholar
  28. Castilho, R. F., Kowaltowski, A. J., and Vercesi, A. E., 1998a, 3,5,3′-Triiodothyronine induces mitochondrial permeability transition mediated by reactive oxygen species and membrane protein thiol oxidation, Arch. Biochem. Biophys. 354:151–157.CrossRefPubMedGoogle Scholar
  29. Castilho, R. F., Hansson, O., Ward, M. W., Budd, S. L., and Nicholls, D. G., 1998b, Mitochondrial control of acute glutamate excitotoxicity in cultured cerebellar granule cells, J. Neurosci. 18:10277–10286.PubMedGoogle Scholar
  30. Castilho, R. F., Ward, M. W., and Nicholls, D. G., 1999, Oxidative stress, mitochondrial function, and acute glutamate excitotoxicity in cultured cerebellar granule cells, J. Neurochem., 72:1394–1401.CrossRefPubMedGoogle Scholar
  31. Chandel, N. S., Maltepe, E., Goldwasser, E., Mathieu, C. E., Simon, M. C., and Schumacker, P. T., 1998, Mitochondrial reactive oxygen species trigger hypoxia-induced transcription, Proc. Nail. Acad. Sci. USA. 95:11715–11720.Google Scholar
  32. Clayton, P. A., 1984, Transcription of the mammalian mitochondrial genome, Ann. Rev. Biochem. 53:573–594.PubMedGoogle Scholar
  33. Cossarizza, A., Franceschi, C., Monti, D., Salvioli, S., Bellesia, E., Rivabene, R., Biondo, L., Rainaldi, G., Tinari, A., and Malorni, W, 1995, Protective effect of N-acetylcysteinee in tumor necrosis factor-alpha-induced apoptosis in U937 cells: The role of mitochondria, Exp. Cell Res. 220:232–240.CrossRefPubMedGoogle Scholar
  34. Costa, L. E., Llesuy, S., and Boveris, A., 1993, Active oxygen species in the liver of rats submitted to chronic hypobaric hypoxia, Am. J. Physiol. 264:1395–1400.Google Scholar
  35. Costantini, P., Petronilli, V, Colonna, R., and Bernardi, P., 1995, On the effects of paraquat on isolated mitochondria: Evidence that paraquat causes opening of the cyclosporin A-sensitive permeability transition pore synergistically with nitric oxide, Toxicology 99:77–88.CrossRefPubMedGoogle Scholar
  36. Croteau, D. L., and Bohr, V A., 1997, Repair of oxidative damage to nuclear and mitochondrial DNA in mammalian cells, J. Biol. Chem. 272:25409–25412.PubMedGoogle Scholar
  37. Dawson, T. L., Gores, G. J., Nieminen, A.-L., Herman, B., and Lemasters, J. J., 1993, Mitochondria as a source of reactive oxygen species during reductive stress in rat hepatocytes, Am. J. Physiol. 264:961–967.Google Scholar
  38. Degli Esposti, M., and McLennan, H., 1998, Mitochondria and cells produce reactive oxygen species in virtual anaerobiosis: Relevance to ceramide-induced apoptosis, FEBS Lett. 430:338–342.CrossRefPubMedGoogle Scholar
  39. Dizdaroglu, M., 1991, Chemical determination of free radical-induced damage to DNA, Free Radical Biol. Med. 10:225–242.CrossRefGoogle Scholar
  40. Doonan, S., Barra, D., and Bossa, F, 1984, Structural and genetic relationships between cytosolic and mitochondrial isoenzymes, Int. J. Biochem. 16:1193–1199.CrossRefPubMedGoogle Scholar
  41. Dubinsky, J. M., and Levi, Y., 1998, Calcium-induced activation of the mitochondrial permeability transition in hippocampal neurons, J. Neurosci. Res. 53:728–741.CrossRefPubMedGoogle Scholar
  42. Duranteau, J., Chandel, N. S., Kulisz, A., Shao, Z., and Schumacker, P. T., 1998, Intracellular signaling by reactive oxygen species during hypoxia in cardiomyocytes, J. Biol. Chem. 273:11619–11624.CrossRefPubMedGoogle Scholar
  43. Ernster, L., Forsmark, P., and Nordenbrand, K.., 1992, The mode of action of lipid-soluble antioxidants in biological membranes: Relationship between the effects of ubiquinol and vitamin E as inhibitors of lipid peroxidation in submitochondrial particles, J. Nutr. Sci. Vitaminol. (Tokyo) 1992:548–551.Google Scholar
  44. Fagian, M. M, Pereira-da-Silva, L., Martins, 1. S., and Vercesi, A. E., 1990, Membrane protein thiol cross-linking associated with the permeabilization of the inner mitochondrial membrane by Ca2+plus prooxidants, J. Biol. Chem. 265:19955–19960.PubMedGoogle Scholar
  45. Fiskum, G., 1985, Mitochondrial damage during cerebral ischemia, Ann. Emerg. Med. 14:810–815.CrossRefPubMedGoogle Scholar
  46. Fiskum, G., and Lehninger, A. L., 1979, Regulated release of Ca2+ from respiring mitochondria by Ca2+/2H+ antiport, J. Biol Chem. 254:6236–6239.PubMedGoogle Scholar
  47. Fiskum, G., Murphy, A. N., and Beal, M. F., 1998, Mitochondria in neurodegeneration: Part II. Acute ischemia and chronic neurodegenerative diseases, J. Cerebr. Flow Metab. 19:351–369.Google Scholar
  48. Frei, B., Winterhalter, K. H., and Richter, C., 1985, Mechanism of alloxan-induced calcium release from liver mitochondria, J. Biol. Chem. 260:7394–7401.PubMedGoogle Scholar
  49. Gabbita, S. P., Subramaniam, R., Allouch, F., Carney, J. M., and Butterfield, D. A., 1998, Effects of mitochondrial respiratory stimulation on membrane lipids and proteins: An electron paramagnetic resonance investigation, Biochim. Biophys. Acta. 1372:163–173.PubMedGoogle Scholar
  50. Gadelha, F. R., Thomson, L., Fagian, M. M., Costa, A. D. T., Radi, R., and Vercesi, A. E., 1997, Ca2+-independent permeabilization of the inner mitochondrial membrane by peroxinitrite is mediated by membrane protein thiol cross-linking and lipid peroxidation, Arch. Biochim. Biophys. 345:243–250.Google Scholar
  51. Giulivi, C., 1998, Functional implications of nitric oxide produced by mitochondria in mitochondrial metabolism, Biochem. J. 332:673–679.PubMedGoogle Scholar
  52. Giulivi, C., Boveris, A., and Cadenas, E. A., 1995, Hydroxyl radical generation during mitochondrial electron transfer and the formation of 8-hydroxylguanosine in mitochondrial DNA, Arch. Biochem. Biophys. 316:909–916.CrossRefPubMedGoogle Scholar
  53. Giulivi, C., Poderoso, J. J., and Boveris, A., 1998, Production of nitric oxide by mitochondria, J. Biol. Chem. 273:11038–11043.CrossRefPubMedGoogle Scholar
  54. Green, D. R., and Reed, J. C., 1998, Mitochondria and apoptosis, Science 281:1309–1312.PubMedGoogle Scholar
  55. Grijalba, M. T., Andrade, P. B., Meinicke, A. R., Castilho, R. F., Vercesi, A. E., and Schreier, S., 1998, Inhibition of membrane lipid peroxidation by a radical scavengingmechanism: A novel function for hydroxyl-containing ionophores, Free Radical Res. 28:301–318.Google Scholar
  56. Grijalba, M. T., Vercesi, A. E., and Schreier, S., 1999, Ca2+-induced increased lipid packing and domain formation in submitochondrial particles. A possible early step in the mechanism of Ca2+-stimulated generation of reactive oxygen species by the respiratory chain, Biochemistry 38:13279–13287.CrossRefPubMedGoogle Scholar
  57. Gunasekar, P. G., Kanthasamy, A. G., Borowitz, J. L., and Isom, G. E., 1995, NMDA receptor activation produces concurrent generation of nitric oxide and reactive oxygen species: Implication for cell death, J. Neurochem. 65:2016–2021.PubMedGoogle Scholar
  58. Gunter, T. E., Gunter, K. K., Sheu, S. S., and Gavin, C. E., 1994, Mitochondrial calcium transport: Physiological and pathological relevance, Am. J. Physiol. 267:313–339.Google Scholar
  59. Halestrap, A. P., Kerr, P. M., Javadov, S., and Woodfield, K. Y., 1998, Elucidating the molecular mechanism of the permeability transition pore and its role in reperfusion injury of the heart, Biochim. Biophys. Acta 1366:79–94.PubMedGoogle Scholar
  60. Halliwell, B., and Gutteridge, J. M. C., 1990, Role of free radicals and catalytic metal ions in human disease: An overview, Methods Enzymol. 186:1–85.PubMedGoogle Scholar
  61. Hansford, R. G., Hogue, B. A., and Mildaziene, V., 1997, Dependence of H2O2 formation by rat heart mitochondria on substrate availability and donor age, J. Bioenerg. Biomembr. 29:89–95.CrossRefPubMedGoogle Scholar
  62. Harris, E. J., Al-Shaikhaly, M., and Baum, H., 1979, Stimulation of mitochondrial calcium ion efflux by thiol-specific reagents and by thyroxine: The relationship to adenosine diphosphate retention and to mitochondrial permeability, Biochem. J. 182:455–464.PubMedGoogle Scholar
  63. Hayakawa, M., Torii, K., Sugiyama, S., Tanaka, M., and Ozawa, T., 1991, Age-associated accumulation of 8-hydroxydeoxyguanosine in mitochondrial DNA of human diaphragm, Biochem. Biophys. Res. Conmun. 179:1023–1029.Google Scholar
  64. Hermes-Lima, M., 1995, How do Ca2+ and 5-aminolevulinic acid-derived oxyradicals promote injury to isolated mitochondria? Free Radical Biol. Med. 19:381–390.Google Scholar
  65. Hermes-Lima, M., Valle, V G. R., Vercesi, A. E., and Bechara, E. J. H., 1991, Damage to rat liver mitochondria promoted by δ-aminolevulinic acid-generated reactive oxygen species: Connections with acute intermittent porphyria and lead poisoning, Biochim. Biophys. Acta 1056:57–63.PubMedGoogle Scholar
  66. Hockenbery, D. M., Oltvai, Z. N., Yin, X. M., Milliman, C. L., and Korsmeyer, S. J., 1993, Bcl-2 functions in an antioxidant pathway to prevent apoptosis, Cell 75:241–251.CrossRefPubMedGoogle Scholar
  67. Hoek, J. B., and Rydstron, J., 1988, Physiological roles of nicotinamide nucleotide transhydrogenase, Biochem. J. 254:1–10.PubMedGoogle Scholar
  68. Hunter, D. R., and Haworth, R. A., 1979, The Ca2+-induced membrane transition in mitochondria: III. Transitional Ca2+-release, Arch. Biochem. Biophys. 195:468–477.PubMedGoogle Scholar
  69. Hüser, J., Rechenmacher, C. E., and Blatter, L. A., 1998, Imaging the permeability pore transition in single mitochondria, Biophys. J. 74:2129–2137.PubMedGoogle Scholar
  70. Ichas, F., and Mazat, J. P., 1998, From calcium signaling to cell death: Two conformations for the mitochondrial permeability transition pore: Switching from low-to high-conductance state, Biochim. Biophys. Acta 1366:33–50.PubMedGoogle Scholar
  71. Jacobson, M. D., and Raff, M. C., 1995, Programmed cell death and Bcl-2 protection in very low oxygen, Nature 374:814–816.CrossRefPubMedGoogle Scholar
  72. Jamieson, D., Chance, B., Cadenas, E., and Boveris, A., 1986, The relation of free radical production to hyperoxia, Annu. Rev. Physiol. 48:703–719.CrossRefPubMedGoogle Scholar
  73. Jurgensmeier, J. M., Xie, Z., Deveraux, Q., Ellerby, L., Bredesen, D., and Reed, J. C., 1998, Bax directly induces release of cytochrome c from isolated mitochondria, Proc. Natl. Acad. Sci. USA 95:4997–5002.CrossRefPubMedGoogle Scholar
  74. Juurlink, B. H., and Sweeney, M. I., 1997, Mechanisms that result in damage during and following cerebral ischemia, Neurosci. Biobehav. Rev. 21:121–128.PubMedGoogle Scholar
  75. Kappus, A., 1985, Lipid Peroxidation: Mechanisms, Analysis, Enzymology and Biological Relevance (H. Sies, Ed.), Academic, London.Google Scholar
  76. Kasha, M., 1991, Energy transfer, charge transfer, and proton transfer in molecular composite systems, Basic Life Sci. 58:231–251.PubMedGoogle Scholar
  77. Keller, J. N., Kindy, M. S., Holtsberg, F. W., St. Clair, D. K., Yen, H. C., Germeyer, A., Steiner, S. M., Bruce-Keller, A. J., Hutchins, J. B., and Mattson, M. P., 1998, Mitochondrial manganese superoxide dismutase prevents neural apoptosis and reduces ischemic brain injury: Suppression of peroxynitrite production, lipid peroxidation, and mitochondrial dysfunction, J. Neurosci. 18:687–697.PubMedGoogle Scholar
  78. Kerver, E. D., Vogels, I. M., Bosch, K. S., Vreeling-Sindelarova, H., Van den Munckhof, R. J., and Frederiks, W. M., 1997, In situ detection of spontaneoussuperoxide anion and singlet oxygen production by mitochondria in rat liver and small intestine, Histochem. J. 29:229–237.CrossRefPubMedGoogle Scholar
  79. Kluck, R. M., Bossy-Wetzel, E., Green, D. R., and Newmeyer, D. D., 1997, The release of cytochrome c from mitochondria: A primary site for Bcl-2 regulation of apoptosis, Science 275:1132–1136.CrossRefPubMedGoogle Scholar
  80. Korshunov, S. S., Skulachev, V P., and Starkov, A. A., 1997, High protonic potential actuates a mechanism of production of reactive oxygen species in mitochondria, FEBS Lett., 416:15–18.CrossRefPubMedGoogle Scholar
  81. Korshunov, S. S., Korkina, O. V., Ruuge, E. K., Skulachev, V. P., and Starkov, A. A., 1998, Fatty acids as natural uncouplers preventing generation of O2 and H2O2 by mitochondria in the resting state, FEBS Lett. 435:215–218.CrossRefPubMedGoogle Scholar
  82. Kowaltowski, A. J., and Castilho, R. F., 1997, Ca2+ acting at the external side of the inner mitochondrial membrane can stimulate mitochondrial permeability transition induced by phenylarsine oxide, Biochim. Biophys. Acta 1322:221–229.PubMedGoogle Scholar
  83. Kowaltowski, A. J., and Vercesi, A. E., 1999, Mitochondrial damage induced by conditions of oxidative stress, Free Radical Biol. Med. 26:463–471. in press.CrossRefGoogle Scholar
  84. Kowaltowski, A. J., Castilho, R. F., and Vercesi, A. E., 1995, Ca2+-induced mitochondrial membrane permeabilization: Role of coenzyme Q redox state, Am. J. Physiol. 269:141–147.Google Scholar
  85. Kowaltowski, A. J., Castilho, R. F., and Vercesi, A. E., 1996a, Opening of the mitochondrial permeability transition pore by uncoupling or inorganic phosphate in the presence of Ca2+ is dependent on mitochondrial-generated reactive oxygen species, FEBS Lett. 378:150–152.CrossRefPubMedGoogle Scholar
  86. Kowaltowski, A. J., Castilho, R. E., Bechara, E. J. H., and Vercesi, A. E., 1996b, Effect of inorganic phosphate concentration on the nature of inner mitochondrial membrane alterations induced by Ca2+ions: A proposed model for phosphate-stimulated lipid peroxidation, J Biol. Chem. 271:2929–2934.PubMedGoogle Scholar
  87. Kowaltowski, A. J., Vercesi, A. E., and Castilho, R. F., 1997, Mitochondrial membrane protein thiol reactivity with N-ethylmaleimide or mersalyl is modified by Ca2+: Correlation with mitochondrial permeability transition, Biochim. Biophys. Acta 1318:395–402.PubMedGoogle Scholar
  88. Kowaltowski, A. J., Costa, A. D. T., and Vercesi, A. E., 1998a, Activation of the potato plant uncoupling mitochondrial protein inhibits reactive oxygen species generation by the respiratory chain, FEBS Lett. 425:213–216.CrossRefPubMedGoogle Scholar
  89. Kowaltowski, A. J., Netto, L. E. S., and Vercesi, A. E., 1998b, The thiol-specific antioxidant enzyme prevents mitochondrial permeability transition: Evidence for the involvement of reactive oxygen species in this mechanism, J. Biol. Chem. 273:12766–12769.CrossRefPubMedGoogle Scholar
  90. Kowaltowski, A. J., Naia-da-Silva, E. S., Castilho, R. E., and Vercesi, A. E., 1998c, Ca2+-stimulated mitochondrial reactive oxygen species generation and permeability transition are inhibited by dibucaine or Mg2+. Arch. Biochem. Biophys. 359:77–81.CrossRefPubMedGoogle Scholar
  91. Kristian, T., and Siesjo, B. K., 1998, Calcium in ischemic cell death, Stroke 29:705–718.PubMedGoogle Scholar
  92. Kuzminova, A. E., Zhuravlyova, A. V., Vyssokikh, M. Yu., Zorova, L. D., Krasnikov, B. F., and Zorov, D. B., 1998, The permeability transition pore induced under anaerobic conditions in mitochondria energized with ATP, FEBS Lett. 434:313–316.CrossRefPubMedGoogle Scholar
  93. Lehninger, A. L., Vercesi, A. E., and Bababumni, E. A., 1978, Regulation of Ca2+ release from mitochondria by the oxidation-reduction state of pyridine nucleotides, Proc. Nat. Acad. Sci. USA 75:1690–1694.PubMedGoogle Scholar
  94. Leist, M., and Nicotera, P., 1997, The shape of cell death, Biochem. Biophys. Res. Commun. 236:1–9.CrossRefPubMedGoogle Scholar
  95. Lemasters, J. J., Nieminen, A. L., Qian, T., Trost, L. C., Elmore, S. P., Nishimura, Y., Crowe, R. A., Cascio, W. E., Bradham, C. A., Brenner, D. A., and Herman, B., 1998, The mitochondrial permeability transition in cell death: A common mechanism in necrosis, apoptosis, and autophagy, Biophim. Biophys. Acta 1366:177–196.Google Scholar
  96. Lenartowics, E., Bernardi, P., and Azzone, G. F., 1991, Phenylarsine oxide induced the cyclosporin A-sensitive membrane permeability transition in rat liver mitochondria, J. Bioenerg. Biomembr. 23:679–688.Google Scholar
  97. Liu, X., Kim, C. N., Yang, J., Jemmerson, R., and Wang, X., 1996, Induction of apoptotic program in cell-free extracts: Requirement for dATP and cytochrome c, Cell 86:147–157.PubMedGoogle Scholar
  98. Liu, S. S., 1997, Generating, partitioning, targeting, and functioning of superoxide in mitochondria, Biosci. Rep. 17:259–272.CrossRefPubMedGoogle Scholar
  99. Liu, Y., Rosenthal, R. E., Haywood, Y., Miljkovic-Lolic, M., Vanderhoek, J. Y., and Fiskum, G., 1998, Normoxic ventilation after cardiac arrest reduces oxidation of brain lipids and improves neurological outcome, Stroke 29:1679–1686.PubMedGoogle Scholar
  100. Loschen, G., and Azzi, A., 1975, On the formation of hydrogen peroxide and oxygen radicals in heart mitochondria, Recent Adv. Stud. Cardiac. Struct. Metab. 7:3–12.PubMedGoogle Scholar
  101. Loschen, G., Azzi, A., and Flohe, L., 1973, Mitochondrial H2O2 formation: Relationship with energy conservation, FEBS Lett 33:84–87.CrossRefPubMedGoogle Scholar
  102. Low, P. S., Lloyd, D. H., Stein, T. M., and Rogers, J. A., 1979, Calcium displacement by local anesthetics: Dependence on pH and anesthetic charge, J. Biol. Chem. 254:4119–4125.PubMedGoogle Scholar
  103. Lubec, G., 1996, The hydroxyl radical: From chemistry to human disease, J. Invest. Med. 44:324–346.Google Scholar
  104. Majewska, M. D., Strosznajder, J., and Lazarewicz, J., 1978, Effect of ischemic anoxia and barbiturate anesthesia on free radical oxidation of mitochondrial phospholipids, Brain Res.158:423–434.Google Scholar
  105. Merryfield, M.L., and Lardy, H. A., 1982, Ca2+-mediated activation of phosphoenolpyruvate carboxykinase occurs via release of Fe2+ from rat liver mitochondria, J. Biol.Chem. 257:3628–3635.PubMedGoogle Scholar
  106. Multhaup, G., Ruppert, T., Schlicksupp, A., Hesse, L., Beher, D., and Masters, C. L., 1997, Reactive oxygen species and Alzheimer’s disease, Biochem. Pharmacol. 54:533–539.CrossRefPubMedGoogle Scholar
  107. Murphy, A. N., Fiskum, G., and Beal, M. F., 1999, Mitochondria in neurodegeneration: Part I. Bioenergetic function in cell life and death, J. Cereb. Flow Metab., in press.Google Scholar
  108. Myers, K. M., Fiskum, G., Liu, Y., Simmens, S. J., Bredesen, D. E., and Murphy, A. N., 1995, Bcl-2 protects neural cells from cyanide/aglycemia-induced lipid oxidation, mitochondrial injury, and loss of viability, J. Neurochem. 65:2432–2440.PubMedGoogle Scholar
  109. Nantes, I. L., Cilento, G., Bechara, E. J. H., and Vercesi, A. E., 1995, Chemiluminescent diphenylacetaldehyde oxidation by mitochondria is promoted by cytochromes and leads to oxidative injury of the organelle, Photochem. Photohiol. 62:522–527.Google Scholar
  110. Negre-Salvayre, A., Hirtz, C., Carrera, G., Cazenave, R., Troly, M., Salvayre, R., Penicaud, L., and Casteilla, L., 1997, A role for the uncoupling protein-2 as a regulator of mitochondrial hydrogen peroxide generation, FASEB J. 11:809–815.PubMedGoogle Scholar
  111. Nicholls, D. G., and Ferguson, S. J., 1982, Bioenergetics 2, Academic, London.Google Scholar
  112. Ozawa, T., 1997, Oxidative damage and fragmentation of mitochondrial DNA in cellular apoptosis, Biosci Rep. 17:237–248.CrossRefPubMedGoogle Scholar
  113. Petit, P. X., Goubern, M, Diolez, P., Susin, S. A., Zamzami, N, and Kroemer, G., 1998, Disruption of the outer mitochondrial membrane as a result of large amplitude swelling: The impact of irreversible permeability transition, FEBS Lett. 426:111–116.CrossRefPubMedGoogle Scholar
  114. Petronilli, V, Costantini, P., Scorrano, L., Colonna, R., Passamonti, S., and Bernardi, P., 1994, The voltage sensor of the mitochondrial permeability transition pore is tuned by the oxidation-reduction state of vicinal thiols: Increase of the gating potential by oxidants and its reversal by reducing agents, J. Biol. Chem. 269:16638–16642.PubMedGoogle Scholar
  115. Polyak, K., Xia, Y., Zweier, J. L., Kinzler, K. W., and Vogelstein, B., 1997, A model for p53-induced apoptosis, Nature 389:300–305.CrossRefPubMedGoogle Scholar
  116. Pryor, W. A., and Squadrito, G. L., 1995, The chemistry of peroxynitrite: A product from the reaction of nitric oxide with superoxide, Am J. Physiol. 268:699–722.Google Scholar
  117. Quillet-Mary, A., Jaffrezou, J. P., Mansat, V, Bordier, C, Naval, J., and Laurent, G., 1997, Implication of mitochondrial hydrogen peroxide generation in ceramide-induced apoptosis, J. Biol. Chem. 272:21388–21395.CrossRefPubMedGoogle Scholar
  118. Radi, R., Turrens, J. F, Chang, L. Y., Bush, K. M., Crapo, J. D., and Freeman, B. A., 1991, Detection of catalase in rat heart mitochondria, J. Biol. Chem. 266:22028–22034.PubMedGoogle Scholar
  119. Reynolds, I. J., and Hastings, T. G., 1995, Glutamate induces the production of reactive oxygen species in cultured forebrain neurons following NMDA receptor activation, J. Neurosci. 15:3318–3327.PubMedGoogle Scholar
  120. Rigobello, M. P., Callegaro, M. T., Barzon, E., Benetti, M., and Bindoli, A., 1998, Purification of mitochondrial thioredoxin reductase and its involvement in the redox regulation of membrane permeability, Free Radical Biol. Med. 24:370–376.Google Scholar
  121. Rossi, C. S., and Lehninger, A. L., 1964, Stoichiometry of respiratory stimulation, accumulation of Ca++ and phosphate and oxidative phosphorylation in rat liver mitochondria, J. Biol. Chem. 239:3971–3980.PubMedGoogle Scholar
  122. Salganik, R. I., Shabalina, I. G., Solovyova, N. A., Kolosova, N. G., Solovyov, V. R., and Kolpakov, A. R., 1994, Impairment of respiratory functions in mitochondria of rats with an inherited hyperproduction of free radicals, Biochem. Biophys. Res. Commun. 205:180–185.CrossRefPubMedGoogle Scholar
  123. Scorrano, L., Petronilli, V, and Bernardi, P., 1997, On the voltage dependence of the mitochondrial permeability transition pore: A critical appraisal, J. Biol. Chem. 272:12295–12299.CrossRefPubMedGoogle Scholar
  124. Sengpiel, B., Preis, E., Krieglstein, J., and Prehn, J. H., 1998, NMDA-induced superoxide production and neurotoxicity in cultured rat hippocampal neurons: Role of mitochondria, Eur. J. Neurosci. 10:1903–1910.CrossRefPubMedGoogle Scholar
  125. Sies, H., and Moss, K. M., 1978, A role of mitochondrial glutathione peroxidase in modulating mitochondrial oxidations in liver, Eur. J. Biochem. 84:377–383.CrossRefPubMedGoogle Scholar
  126. Siliprandi, D., Toninello, A., Zoccarato, F., Rugolo, M., and Siliprandi, N., 1975, Synergic action of calcium ions and diamide on mitochondrial swelling, Biochem. Biophys. Res. Commun. 66:956–961.CrossRefPubMedGoogle Scholar
  127. Skulachev, V. P., 1997, Membrane-linked systems preventing superoxide formation, Biosci. Rep. 17:347–366.PubMedGoogle Scholar
  128. Skulachev, V. P., 1998, Cytochrome c in the apoptotic and antioxidant cascades, FEBS Lett. 423:275–280.CrossRefPubMedGoogle Scholar
  129. Sokolove, P. M., 1988, Mitochondrial sulfhydryl group modification by adriamycin aglycones, FEBS Lett. 234:199–202.CrossRefPubMedGoogle Scholar
  130. Steller, H., 1995, Mechanisms and genes of cellular suicide, Science 267:1445–1449.PubMedGoogle Scholar
  131. Susin, S. A., Zamzami, N., and Kroemer, G,, 1998, Mitochondria as regulators of apoptosis: Doubt no more, Biochim. Biophys. Acta 1366:151–165.PubMedGoogle Scholar
  132. Sutton, H. C., and Winterbourn, C. C., 1989, On the participation of higher oxidation states of iron and copper in Fenton reactions, Free Radical Biol. Med. 6:53–60.CrossRefGoogle Scholar
  133. Takayama, N., Matsuo, N., and Tanaka, T., 1993, Oxidative damage to mitochondria is mediated by the Ca2+-dependent inner membrane permeability transition, Biochem. J. 294:719–725.Google Scholar
  134. Tatoyan, A., and Giulivi, C., 1998, Purification and characterization of a nitric-oxide synthase from rat liver mitochondria, J. Biol. Chem. 273:11044–11048.CrossRefPubMedGoogle Scholar
  135. Turrens, J. F., 1997, Superoxide production by the mitochondrial respiratory chain, Biosci. Rep. 17:3–8.CrossRefPubMedGoogle Scholar
  136. Turrens, J. F., and Boveris, A., 1980, Generation of superoxide anion by the NADH dehydrogenase of bovine heart mitochondria, Biochem. J. 191:421–427.PubMedGoogle Scholar
  137. Turrens, J. F., Freeman, B. A., Levitt, J. G., and Crapo, J. D., 1982, The effect of hyperoxia on superoxide production by lung submitochondrial particles, Arch. Biochem. Biophys. 217:401–410.PubMedGoogle Scholar
  138. Turrens, J. F., Alexandre, A., and Lehninger, A. L., 1985, Ubisemiquinone is the electron donor for superoxide formation by complex III of heart mitochondria, Arch. Biochem. Biophys. 237:408–414.CrossRefPubMedGoogle Scholar
  139. Valle, V. G., Fagian, M. M., Parentoni, L. S., Meinicke, A. R., and Vercesi, A. E., 1993, The participation of reactive oxygen species and protein thiols in the mechanism of mitochondrial inner membrane permeabiliza-tion by calcium plus prooxidants, Arch. Biochem. Biophys. 307:1–7.CrossRefPubMedGoogle Scholar
  140. Vanden Hoek, T. L., Becker, L. B., Shao, Z., Li, C., and Schumacker, P. T., 1998, Reactive oxygen species-released from mitochondria during brief hypoxia induce preconditioning in cardiomyocytes, J. Biol. Chem. 273:18092–18098.Google Scholar
  141. Vercesi, A.E., 1984a, Dissociation of NAD(P)+-simulated mitochondrial Ca2+ efflux fromswelling and membrane damage, Arch. Biochem. Biophys. 232:86–91.CrossRefPubMedGoogle Scholar
  142. Vercesi, A. E., 1984b, Possible participation of membrane thiol groups on the mechanism of NAD(P)+-simulated Ca2+ efflux from mitochondria, Biochem. Biophys. Res. Commun. 119:305–310.Google Scholar
  143. Vercesi, A. E., and Hoffmann, M. E., 1993, Generation of reactive oxygen metabolites and oxidative damage in mitochondria: The role of calcium, in Methods in Toxicology, Vol. 2 D. P. Jones and L. H. Lash, Eds.), Academic, New York, pp. 256–265.Google Scholar
  144. Vercesi, A. E., Castilho, R. K, Meinicke, A. R., Valle, V. G. R., Hermes-Lima, M., and Bechara, E. J. H., 1994, Oxidative damage of mitochondria induced by 5-aminolevulinic acid: Role of Ca2+ ions and membrane protein thiols, Biochim. Biophys. Acta 1188:86–92.PubMedGoogle Scholar
  145. Vercesi, A. E., Kowaltowski, A. J., Grijalba, M. T., Meinicke, A. R., and Castilho, R. F., 1997, The role of reactive oxygen species in mitochondrial permeability transition, Biosci. Re. 17:43–52.Google Scholar
  146. Visioli, O., 1998, Oxidative stress during myocardial ischaemia and heart failure, Eur. Heart J. 19B:2–11.Google Scholar
  147. Watabe, S., Hiroi, T, Yamamoto, Y, Fujioka, Y, Hasegawa, H., Yago, N., and Takahashi, S. Y, 1997, SP-22 is a thioredoxin-dependent peroxide reductase in mitochondria, Eur. J. Biochem. 249:52–60.CrossRefPubMedGoogle Scholar
  148. Wudarczyk, J., Debska, G., and Lenartowicz, E., 1996, Relation between the activities reducing disulfides and the protection against membrane permeability transition in rat liver mitochondria, Arch. Biochem. Biophys. 327:215–221.CrossRefPubMedGoogle Scholar
  149. Xie, Y. W., Kaminski, P. M., and Wolin, M. S., 1998, Inhibition of rat cardiac muscle contraction and mitochondrial respiration by endogenous peroxynitrite formation during posthypoxic reoxygenation, Circ. Res. 82:891–897.PubMedGoogle Scholar
  150. Yakes, F. M., and Van Houten B., 1997, Mitochondrial DNA damage is more extensive and persists longer than nuclear DNA damage in human cells following oxidative stress, Proc. Natl. Acad. Sci. USA 94:514–519.CrossRefPubMedGoogle Scholar
  151. Yang, W., and Block, E. R., 1995, Effect of hypoxia and reoxygenation on the formation and release of reactive oxygen species by porcine pulmonary artery endothelial cells, J. Cell Physiol. 164:414–423.CrossRefPubMedGoogle Scholar
  152. Yang, J., Liu, X., Bhalla, K., Kirn, C. N., Ibrado, A. M., Cai, J., Peng, T. I., Jones, D. P., and Wang, X., 1997, Prevention of apoptosis by Bcl-2: Release of cytochrome c from mitochondria blocked, Science 275:1129–1132.CrossRefPubMedGoogle Scholar
  153. Zakowski, J. J., and Tappel, A. L., 1978, Purification and properties of rat liver mitochondrial glutathione peroxidase, Biochim. Biophys. Acta 526:65–76.PubMedGoogle Scholar
  154. Zamzami, N., Susin, S. A., Marchetti, P., Hirsch, T., Gomez-Monterrey, I., Castedo, M., and Kroemer, G., 1996, Mitochondrial control of nuclear apoptosis, J. Exp. Med. 183:1533–1544.CrossRefPubMedGoogle Scholar
  155. Zhang, P., Liu, B., Kang, S. W, Seo, M. S., Rhee, S. G., and Obeid, L. M., 1997, Thioredoxin peroxidase is a novel inhibitor of apoptosis with a mechanism distinct from that of Bcl-2, J. Biol. Chem. 272:30615–30618.PubMedGoogle Scholar
  156. Zhivotovsky, B., Orrenius, S., Brustugun, O.T., and Doskeland, S.O., 1998, Injected cytochrome c induces apoptosis, Nature 391:449–450.CrossRefPubMedGoogle Scholar
  157. Zoratti, M., and Szabò, I., 1995, The mitochondrial permeability transition, Biochim. Biophys. Acta 1241:139–76.PubMedGoogle Scholar
  158. Zwicker, K., Dikalov, S., Matuschka, S., Mainka, L., Hofmann, M., Khramtsov, V, and Zimmer, G., 1998, Oxygen radical generation and enzymatic properties of mitochondria in hypoxia/reoxygenation, Arzneimittelforschung 48:629–636.PubMedGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • Alicia J. Kowaltowski
    • 1
  • Anibal E. Vercesi
    • 2
  1. 1.Departmento de Bioquimica, Instituto de QuimicaUniversidade de Sao PauloSPBrazil
  2. 2.Departamento de Patologia Clinica, Faculdade de Ciências MédicasUniversidade Estadual de CampinasCampinas, SPBrazil

Personalised recommendations