Advertisement

Mitochondrial Implication in Cell Death

  • Patrice X. Petit
Chapter
  • 152 Downloads

Keywords

Mitochondrial Membrane Programme Cell Death Permeability Transition Pore Mitochondrial Reactive Oxygen Species Reactive Oxygen Species Accumulation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adachi, S., Cross, A. R., Babior, B. M., and Gottlieb, R. A., 1997, Bcl-2 and the outer mitochondrial membrane in the inactivation of cytochrome c during Fas-mediated apoptosis, J. Biol. Chem. 272: 21878–21882.PubMedGoogle Scholar
  2. Amarante-Mendes, G. P., Kim, C. N., Liu, L., Huang, Y., and Perkins, C. L., 1998, Bcr-Abl exerts its antiapoptotic effect against diverse apoptotic stimuli through blockage of mitochondrial release of cytochrome c and activation of caspase-3, Blood 5:1700–1705.Google Scholar
  3. Antonsson, B., Conti, R, Ciavatta, A., Montessuit, S., and Lewis, S., 1997, Inhibition of Bax channel-forming activity by Bcl-2, Science 277: 370–372.CrossRefPubMedGoogle Scholar
  4. Bernardi, P., and Petronilli, V, 1996, The permeability transition pore as a mitochondrial calcium release channel: A critical appraisal, J. Bioenerg. Biomembr. 28: 129–136.CrossRefGoogle Scholar
  5. Beutner, G., Rück, A., Riede, B., Welte, W., and Brdiczka, D., 1996, Complexes between kinases, mitochondrial porin, and adenylate translocator in rat brain resemble the permeability transition pore, FEBS Lett. 396: 189–195.CrossRefPubMedGoogle Scholar
  6. Beutner, G., Rück, A., Riede, B., and Brdiczka, D., 1998, Complexes between porin, hexokinase, mitochondrial creatine kinase, and adenylate translocator display properties of the permeability transition pore: Implication for regulation of the permeability transition by the kinases, Biochim. Biophys. Acta 1368: 7–18.PubMedGoogle Scholar
  7. Bojes, H. K., Datta, K., Xu, J., Chin, A. S. P., Nunez, G., and Kehrer, J. P., 1997, Bcl-XL overexpression attenuates glutathione depletion in FL5.12 cells following interleukin-3 withdrawal, Biochem. J. 325: 315–319.PubMedGoogle Scholar
  8. Bossy-Wetzel, E., Newmeyer, D. D., and Green, D. D., 1998, Mitochondrial cytochrome c release in apoptosis occurs upstream of DEVD-specific caspase activation and independently of mitochondrial depolarization, EMBO J. 17: 37–49.CrossRefPubMedGoogle Scholar
  9. Boveris A., and Chance, B., 1973, The mitochondial generation of hydrogen peroxide, Biochem. J. 134: 707–716.PubMedGoogle Scholar
  10. Brustovetsky, N., and Klingenberg, M., 1996, Mitochondrial ADP/ATP carrier can be reversibly converted into a large channel by Ca2-Biochemistry 35: 8483–8488.CrossRefPubMedGoogle Scholar
  11. Cassarino, D. S., Swerdlow, R. H., Parks, J. K., Parker, W. D., and Bennett, J. P, 1998, Cyclosporine, a increases resting mitochondrial membrane potential in SY5Y cells and reverses the depressed mitochondrial membrane potential of Alzheimer’s disease cybrids, Biochem. Biophys. Res. Commun. 248: 168–173.CrossRefPubMedGoogle Scholar
  12. Castedo, M., Hirsch, T. Susin, S. A. Zamzami, N. Marchetti, P. Macho, A., and Kroemer, G., 1996. Sequential acquisition of mitochondrial and plasma membrane alterations during early lymphocyte apoptosis. J. Immunol. 157: 512–521.PubMedGoogle Scholar
  13. Chinnaiyan, A. M., Chaudhary, D., O’Rourke, K., Koonin, K., and Dixit, V. M., 1997a, Role of CED-4 in the activation of CED-3, Nature 388: 728–729.CrossRefPubMedGoogle Scholar
  14. Chinnaiyan, A. M., O’Rourke, K., Lane, B. R., and Dixit, V. M., 1997b, Interaction of CED-4 with CED-3 and CED-9: A molecular framework for cell death, Science 275: 1122–1126.CrossRefPubMedGoogle Scholar
  15. Clapham, D. E., 1998, At last, the structure of an ion-selective channel, Nature Struct. Biol. 5: 342–344.CrossRefPubMedGoogle Scholar
  16. Collins, M. K. L., Forlong, I. J., Malde, P., Ascaso, R., Oliver, J., and Rivas, A. L., 1996, An apoptotic endonuclease activated either by decreasing pH or by increasing calcium, J. Cell Sci. 109: 2393–2399.PubMedGoogle Scholar
  17. Cosulich, S. C., Worrall, V., Hedge, P. J., Green, S., and Clarke, P. R., 1998, Regulation of apoptosis by BH3 domains in a cell-free system. Curr. Biol. 7: 913–920.Google Scholar
  18. Decaudin, D., Geley, S., Hirsdch, T., Castedo, M., and Marchetti, P., 1997, Bcl-2 and Bel-XL antagonize the mitochondrial dysfunction preceding nuclear apoptosis induced by chemotherapeutic agents, Cancer Res. 57: 62–69.PubMedGoogle Scholar
  19. Deckwerth, T. L., and Johnson, E. M., 1993, Temporal analysis of events associated with programmed cell death (apoptosis) of sympathetic neurons deprived of nerve growth factor, J. Cell Biol. 123: 1207–1222.CrossRefPubMedGoogle Scholar
  20. Deshmuth, M., and Johnson, E. M., 1998, Evidence of a novel event during neuronal death: Development of competence-to-die in response to cytoplasmic cytochrome c, Neuron 21: 695–705.Google Scholar
  21. Du, Y., Dodel, R. C., Bales, K. R., Jemmerson, E., Hamilton-Byrd, S. M., and Paul, J., 1998, Alpha2-macroglobulin attenuates beta-amyloid peptide 1–40 fibril formation and associated neurotoxicity of cultured fetal rat cortical neurons, Neurochemistry 69: 1382–1388.Google Scholar
  22. Dubrez, L., Eymin, B., Sordet, O., Droin, N., Turhan, A. G., and Solary, E., 1998, BCR-Abl delays apoptosis upstream of caspase-3 activation, Blood 91: 2415–2422.PubMedGoogle Scholar
  23. Dumont, M. E., Cardillo, T. S., Hayes, M. K., and Sherman, F., 1991, Role of cytochrome c heme lyase in mitochondrial import and accumulation of cytochrome c in Sacchammyces cerevisiae, Mol. Cell. Biol. 11: 5487–5496.PubMedGoogle Scholar
  24. Enari, M., Hase, A., and Nagata, S., 1995, Apoptosis by a cytosolic extract from Fas-activated cells, EMBO J. 14: 5201–5208.PubMedGoogle Scholar
  25. Enari, M., Talanian, R. V, Wong, W. W., and Nagata, S., 1996, Sequential activation of ICE-like and CPP32-like proteases during Fas-mediated apoptosis, Nature 380: 723–726.CrossRefPubMedGoogle Scholar
  26. Eskes, R., Antosson, B., Osen-Sand, A., Montesuit, S., and Richter, C., 1998, Bax-induced cytochrome c release from mitochondria is independent of the permeability transition pore but highly dependent on Mg2+ ions, J. Cell Biol. 143: 217–224.CrossRefPubMedGoogle Scholar
  27. Frade, J. M., and Michaelidis, T. M., 1997, Origin of eucaryotic programmed cell death: A consequence of the aerobic metabolism, BioEssays 19: 827–832.CrossRefPubMedGoogle Scholar
  28. Fridovic, I., 1978, The biology of oxygen radicals, Science 201: 875–880.Google Scholar
  29. Fujimura, M., Morita-Fugimura, Y, Murakani, K., Kawase, M., and Chan, P. H., 1998, Cytosolic redistribution of cytochrome c after transient focal ischemia in rats, J. Cereb. Blood Flow Metab. 18: 1239–1247.PubMedGoogle Scholar
  30. Gleichmann, M., Beinroth, S., Reed, J. C., Krajewski, S., and Schultz, J. B., 1998, Potassium deprivation-induced apoptosis of cerebellar granule neurons: Cytochrome c release in the absence of altered expression of Bcl-2 family proteins. Cell Physiol. Biochem. 8: 194–201.CrossRefPubMedGoogle Scholar
  31. Goossens, V, Grooten, J., De Vos, K., and Fiers, W., 1995, Direct evidence for tumor necrosis factor-induced mitochondrial reactive oxygen intermediates and their involvement in cytotoxicity, Proc. Natl. Acad. Sci. USA 92: 8115–8119.PubMedGoogle Scholar
  32. Granville, D. J., Carthy, C. M., Jiang, H., Shore, G. C., McManus, B. M., and Hunt, D. W., 1998, Rapid cytochrome c release, activation of caspases 3, 6, 7, and 8 followed by Bap31 cleavage in HeLa cells treated with photodynamic therapy, FEBS Lett. 437: 5–10.CrossRefPubMedGoogle Scholar
  33. Green, D. R., 1998, Apoptotic pathways: The road to ruin, Cell 94: 695–698.CrossRefPubMedGoogle Scholar
  34. Greenlund, L. J. S., Deckwert, T. L., and Johnson, E. M., 1995, Superoxide dismutase delays neuronal apoptosis: A role for reactive oxygen species in programmed cell death, Neuron 14: 303–315.CrossRefPubMedGoogle Scholar
  35. Gudz, T. I., Tsemg, K. Y., and Hoppel, C. L., 1997, Direct inhibition of mitochondrial respiratory chain complex III by cell-permeable ceramide, J. Biol. Chem. 272: 24154–24158.CrossRefPubMedGoogle Scholar
  36. Guénal, I., Sidoti-de Fraisse, C., Gaumer, S., and Mignotte, B., 1997, Bcl-2 and HSP27 act at different levels to suppress programmed cell death, Oncogene 15: 347–360.CrossRefPubMedGoogle Scholar
  37. Hartley, A., Stone, J. M., Heron, C., Cooper, J. M., and Schapira, A. H. V, 1994, Complex I inhibitors induce dose-dependent apoptosis in PC12 cells: Relevance to Parkinson disease, J. Neurochem. 63: 1987–1990.PubMedGoogle Scholar
  38. Henkart, P. A., and Grinstein, S., 1996, Apoptosis: Mitochondria resurrected? J. Exp. Med. 183: 1293–1295.CrossRefPubMedGoogle Scholar
  39. Henze, K., Nadr, A., Wettem, M., Cerff, R., and Martin, W., 1995, A nuclear gene of eubacterial origin in Euglena gracilis reflects cryptic endosymbioses during protist evolution, Proc. Natl. Acad. Sci. USA 92: 9122–9126.PubMedGoogle Scholar
  40. Higuchi, M., Aggarwal, B. B., and Yeh, E. T. H., 1997, Activation of CCP32-like protease in tumor necrosis factor-induced apoptosis is dependent on mitochondrial function, J. Clin. Invest. 99: 1751–1758.PubMedGoogle Scholar
  41. Hoffmann, K., Bucher, P., and Tschopp, J., 1997, The CARD domain: A new apoptotic signaling motif, Trends Biochem. Sci. 22: 155–156.Google Scholar
  42. Ichas, F., Jouaville, L., and Mazat, J. P., 1997, Mitochondria are excitable organelles capable of generating and conveying electrical and calcium signals, Cell 89: 1145–1153.CrossRefPubMedGoogle Scholar
  43. Jacobson, M. D., 1996, Reactive oxygen species and programmed cell death, Trends Biochem. Sci. 21: 83–86.CrossRefPubMedGoogle Scholar
  44. Jacobson, M. D., and Raff, M. C., 1995, Programmed cell death and Bcl-2 protection in very low oxygen, Nature 374: 814–816.CrossRefPubMedGoogle Scholar
  45. Jones, D. P., McConkey, D. J., Nicotera, P., and Orrenius, S., 1989, Calcium-activated DNA fragmentation in rat liver nuclei, J. Biol. Chem. 264: 6398–6403.PubMedGoogle Scholar
  46. Jones, D. P., and Lash, L. H., 1993, Criteria for Assessing Normal and Abnormal Mitochondrial Functions, Vol. 2, Academic, San Diego, pp. 1–7.Google Scholar
  47. Kane, D. J., Sarafian, T. A., Anton, R., Hahn, H., and Gralla, E. B., 1993, Bcl-2 inhibition of neural death: Decreased generation of reactive oxygen species, Science 262: 1274–1277.PubMedGoogle Scholar
  48. Kerr, J. F. R., Wyllie, A. H., and Currie, A. R., 1972, Apoptosis: A basic biological phenomenon with wideranging implications in tissue kinetics, Br J. Cancer 26: 239–257.PubMedGoogle Scholar
  49. Kharbanda, S., Pandey, P., Schofield, L., Israels, S., and Roncinske, R., 1997, Role of Bcl-XL as an inhibitor of cytosolic cytochrome c accumulation in DNA damage-induced apoptosis, Proc. Natl. Acad. Sci. USA 94: 6939–6942.CrossRefPubMedGoogle Scholar
  50. Kiberstis, P. A., 1999, Mitochondria make their comeback. Science 83: 1475.Google Scholar
  51. Kim, C. N., Wang, X., Huang, Y., Liu, L., Fang, G., and Bhalla, K., 1997, Overexpression of Bcl-XL inhibits Ara-C-induced mitochondrial loss of cytochrome c and other perturbations that activate the molecular cascade of apoptosis, Cancer Res. 57: 3115–3120.PubMedGoogle Scholar
  52. Kinnaly, K.. W., Lohret, T. A., Campo, M. L., and Mannella, C. A., 1996, Perspectives on the mitochondrial multiple conductance channel, J. Bioenerg. Biomenbr. 28: 115–123.Google Scholar
  53. Kluck, R. M., Bossy-Wetzel, E., Green, D. R., and Newmeyer, D. D., 1997a, The release of cytochrome c from mitochondria: A primary site for Bcl-2 regulation of apoptosis. Science 275: 1132–1136.CrossRefPubMedGoogle Scholar
  54. Kluck, R. M., Martin, S. J., Hoffman, B. M., Zhou, J. S., Green, D. R., and Newmeyer, D. D., 1997b, Cytochrome c activation of CPP32-like proteolysis plays a critical role in Xenopus cell-free apoptosis system, EMBO J. 16: 4639–4649.CrossRefPubMedGoogle Scholar
  55. Korsmeyer, S. J., 1992, Bcl-2: A repressor of lymphocyte death, Immunol. Today 13: 285–288.CrossRefPubMedGoogle Scholar
  56. Krippner, A., Matsuno-Yagi, A., Gottlieb, R. A., and Babior, B. M., 1996, Loss of function of cytochrome c in Jurkat cells undergoing Fas-mediated apoptosis, J. Biol. Chem. 271: 21629–21636.PubMedGoogle Scholar
  57. Kroemer, G., 1997a, Mitochondrial implication in apoptosis: Toward an endosymbiont hypothesis of apoptosis evolution, Cell Death Diff. 4: 443–456.Google Scholar
  58. Kroemer, G., 1997b, The proto-oncogene Bcl-2 and its role in regulating apoptosis: The mechanism of action of Bcl-2 clues for therapeutic interventions, Nature Medicine 3: 614–620.CrossRefPubMedGoogle Scholar
  59. Kroemer, G., Petit, P. X., Zamzami, N., Vayssière, J.-L., and Mignotte, B., 1995, The biochemistry of apoptosis, FASEB J. 9: 1277–1287.PubMedGoogle Scholar
  60. Kroemer, G., Zamzami, N., and Susin, S. A., 1997, Mitochondrial control of apoptosis, Immunol. Today 18: 44–51.CrossRefPubMedGoogle Scholar
  61. Kumar, S., and Harvey, N. L., 1995, Role of multiple cellular proteases in the execution of programmed cell death, FEBS Lett. 375: 169–173.CrossRefPubMedGoogle Scholar
  62. Kupsch, E. M, Knepper, B., Kuroki, T., Heuer, I., and Meyer, T. F., 1993, Variable opacity (Opa) outer membrane proteins account for the cell trophisms displayed by Neisseria gonorrhoeae for human leukocytes and epithelial cells, EMBO J. 12: 641–650.PubMedGoogle Scholar
  63. Kurihara, H., Torigoe, S., Omura, M., Saito, K., Kurihara, M., and Matsubara, S., 1998, DNA fragmentation induced by a cytoplasmic extract from irradiated cells, Radiat. Res. 150: 269–274.PubMedGoogle Scholar
  64. Kuwana, T., Smith, J. J., Muzio, M., Dixit, V, Newmeyer, D. D., and Kornbluth, S., 1998, Apoptosis induction by caspase-8 is amplified through the mitochondrial release of cytochrome c, J. Biol. Chem. 273: 16589–16594.CrossRefPubMedGoogle Scholar
  65. Lazebnik, Y. A., Cole, S., Cooke, C. A., Nelson, W. G., and Earnshaw, W. C., 1993, Nuclear events of apoptosis in vitro in cell-free mitotic extracts: A model system for analysis of the active phase of apoptosis, J, Cell. Biol. 123: 7–22.CrossRefGoogle Scholar
  66. Lazebnik, Y. A., Kaufmann, S. H., Desnoyers, S., Poirier, G. G., and Earnshaw, W. C., 1994, Cleavage of poly(ADP-ribose) polymerase by a proteinase with properties like ICE, Nature 371: 346–347.CrossRefPubMedGoogle Scholar
  67. Lazebnik, Y. A., Takahashi, A., Poirier, G. G., Kaufman, S. H., and Earnshaw, W. C., 1995, Characterization of the execution phase of apoptosis in vitro using extracts from condemned-phase cells, J. Cell Sci. S19: 41–49.Google Scholar
  68. Lennon, S. V, Martin, S. J., and Cotter, T. G., 1991, Dose-dependent induction of apoptosis in human tumor cell lines by widely diverging stimuli, Cell Prolif. 24: 203–214.PubMedGoogle Scholar
  69. Leoni, L. M., Chao, Q., Cottam, H. B., Rosenbach, M., and Carrera, C. J., 1998, Induction of an apoptotic program in cell-free extract by 2-chloro-2′-deoxyadenosine 5′triphosphate and cytochrome c Proc. Natl. Acad. Sci. USA 95: 9567–9571.CrossRefPubMedGoogle Scholar
  70. Lin, K. T., Xue, J. Y, and Wong, P. Y, 1997, Reactive oxygen species participate in peroxinitrite-induced apoptosis in HL-60 cells, Biochem. Biophys. Res. Commun. 230: 115–119.CrossRefPubMedGoogle Scholar
  71. Liu, X., Kim, C. N., Yang, J., Jemmerson, R., and Wang, X., 1996, Induction of apoptic program in cell-free extracts: Requirement for dATP and cytochrome c Cell 86: 147–157.PubMedGoogle Scholar
  72. Liu, X., Zou, H., Slaughter, C., and Wang, X., 1997, DFF, a heterodimeric protein that functions downstream of caspase-3 to trigger DNA fragmentation during apoptosis, Cell 89: 175–184.PubMedGoogle Scholar
  73. Mancini, M., Nicholson, D. W., Roy, S., Thornberry, N. A., and Peterson, E. P., 1998, The caspase-3 precursor has a cytosolic and mitochondrial distribution: Implications for apoptotic signaling, J. Cell Biol. 140: 1485–1495.CrossRefPubMedGoogle Scholar
  74. Manon, S., B. C., and Guùrin, M., 1997, Release of cytochrome c and decrease of cytochrome c oxidase in Baxexpressing yeast cells, and prevention of these effects by coexpression of Bcl-XL, FEBS Lett. 415: 29–32.CrossRefPubMedGoogle Scholar
  75. Marchetti, P., Susin, S. A., Decaudin, D., Gamen, S., and Castedo, M., 1996a, Apoptosis-associated derangement of mitochondrial function in cells lacking mitochondrial DNA, Cancer Res. 56: 2033–2038.PubMedGoogle Scholar
  76. Marchetti, P., Zamzami, N., Susin, S. A., Petit, P. X., and Kroemer, G., 1996b, Apoptosis of cells lacking mitochondrial DNA, Apoptosis 1: 119–125.Google Scholar
  77. Marchetti, P., Decaudin, D., Macho, A., Zamzami, N., and Hirsch, T., 1997, Redox regulation of apoptosis: Impact of thiol oxidation status on mitochondrial function, Eur. J. Immunol. 27: 289–296.PubMedGoogle Scholar
  78. Margulis, L., 1996, Archaeal-eubacterial mergers in the origin of Eukarya: Phylogenetic classification of life, Proc. Natl. Acad. Sci. USA 93: 1071–1076.CrossRefPubMedGoogle Scholar
  79. Martin, S. J., and Cotter, T. G., 1991, Ultraviolet B irradiation of human leukemia HL-60 cells in vitro induces apoptosis, Int. J. Radiat. Biol. 59: 1001.PubMedGoogle Scholar
  80. Martin, S. J., and Green, D. R., 1995, Protease activation during apoptosis: Death by a thousand cuts? Cell 82: 349–352.CrossRefPubMedGoogle Scholar
  81. Martin, S. J., Newmeyer, D. D., Mathisa, S., Farschon, D. M., and Wang, H. G., 1995, Cell-free reconstitution of Fas-, UV radiation-and ceramide-induced apoptosis, EMBO J. 14: 5191–5200.PubMedGoogle Scholar
  82. Marzo, L, Brenner, C., Zamzami, N., Jurgensmeier, J. M., and Susin, S. A., 1998a, Bax and adenine nucleotide translocator cooperate in the mitochondrial control of apoptosis, Science 281: 2027–2031.CrossRefPubMedGoogle Scholar
  83. Marzo, I., Brenner, C., Zamzami, N., Susin, S. A., and Beutner, G., 1998b, The permeability transition pore complex: A target for apoptosis regulation by caspases and Bcl-2, J. Exp. Med. 187: 1261–1271.CrossRefPubMedGoogle Scholar
  84. Marzo, I., Susin, S. A., Petit, P. X., Ravagnan, L., and Brenner, C., 1998c, Caspases disrupt mitochondrial membrane barrier function, FEBS Lett. 427: 198–202.CrossRefPubMedGoogle Scholar
  85. Mayer, M., and Noble, M., 1994, N-acetyl-L-cystein is a pluripotent protector against cell death and enhancer of trophic factor-mediated cell survival in vitro, Proc. Natl. Acad. Sci. USA 91: 7496–7500.PubMedGoogle Scholar
  86. Mayer, A., Neupert, W., and Lill, R., 1995a, Mitochondrial protein import: Reversible binding of the presequence at the trans side of the outer membrane drives partial translocation and unfolding, Cell 80: 127–137.CrossRefPubMedGoogle Scholar
  87. Mayer, A., Neupert, W., and Lill, R., 1995b, Translocation of apopcytochrome c across the outer membrane of mitochondria, J. Biol. Chem. 270: 12390–12397.PubMedGoogle Scholar
  88. McConkey, D. J., 1996, Calcium-dependent, interleukin 1 beta-converting enzyme inhibitor-insensitive degradation of lamin B-l and DNA fragmentation in isolated thymocyte nuclei, J. Biol. Chem. 271: 22398–22406.PubMedGoogle Scholar
  89. McEnery, M. W., Snowman, A. M, Trifiletti, R. R. and Snyder, S. H., 1992, Isolation of the mitochondrial benzodiazepine receptor. Association with the voltage-dependent anion channel and the adenine nucleotide carrier. Proc. Natl. Acad. Sci. USA 89: 3170–3174.PubMedGoogle Scholar
  90. Mehlen, P., Schulze-Osthoff, K., and Arrigo, A.-P., 1996, Small stress proteins as novel regulators of apoptosis: Heat shock protein 27 blocks Fas/Apo-1 and staurosporine-induced cell death, J. Biol. Chem. 271: 16510–16514.PubMedGoogle Scholar
  91. Metivier, D., Dallaporta, B., Zamzami, N., Larochette, N., and Susin, S. A., 1998, Cytofluorometric detection of mitochondrial alterations in early CD95/Fas/APO-l-triggered apoptosis of Jurkat lymphoma cells: Comparison of seven mitochondrion-specific fluorochromes, Immunol. Lett., in press.Google Scholar
  92. Mignotte, B., Larcher, J. C., Zheng, D. Q., Esnault, C., Coulaud, D., and Feuteun, J., 1990, SV40 induced cellular immortalization: Phenotypic changes associated with the loss of proliferative capacity in a conditionally immortalized cell line, Oncogene 5: 1529–1533.PubMedGoogle Scholar
  93. Minn, A. J., Velez, P., Schnedel, S. L., Liang, H., and Muchmore, S. W., 1997, Bcl-XL forms an ion channel in synthtic lipid membranes, Nature 385: 353–357.CrossRefPubMedGoogle Scholar
  94. Mirkovic, N., Voehringer, D. W, Story, M. D., McConkey, D. J., McDonnell, T. J., and Meyn, R. E., 1997, Resistance to radiation-induced apoptosis in Bcl-2-expressing cells is reversed by depleting cellular thiols, Oncogene 15: 1461–1470.CrossRefPubMedGoogle Scholar
  95. Muchmore, S. W., Sattler, M., Liang, H., Meadows, R. P., and Harlan, J. E., 1996, X-ray and NMR structure of human Bcl-xL, an inhibitor of programmed cell death. Nature 381: 335–341.CrossRefPubMedGoogle Scholar
  96. Muzio, M., Salvesen, G. S., and Dixit, V M., 1997, FL1CE induced apoptosis in a cell-free system: Cleavage of caspase zymogens, J. Biol Chem. 272: 2952–2956.PubMedGoogle Scholar
  97. Neame, S. J., Rubin, L. L., and Philpott, K. L., 1998, Blocking cytochrome c activity within intact neurons inhibits apoptosis, J. Cell Biol. 142: 1583–1593.CrossRefPubMedGoogle Scholar
  98. Newmeyer, D. D., Farschon, D. M., and Reed, J. C., 1994, Cell-free apoptosis in Xenopus egg extracts: Inhibition by Bcl-2 and requirement for an organelle fraction enriched in mitochondria. Cell 79: 353–364.CrossRefPubMedGoogle Scholar
  99. Nicholson, D. W., and Thornberry, N. A.. 1997, Caspases: Killer proteases, Trends Biachem. Sci. 22: 299–306.Google Scholar
  100. Nieminen, A.-L., Dawson, T. L., Gores, G. J., Kawanishi, T., Herman, B., and Lemasters, J. J., 1990, Protection by acidotic pH and fructose against lethal injury to rat hepatocytes from mitochondrial inhibitors, ionophores, and oxidant chemicals, Biochem. Biophys. Res. Commun. 167: 600–606.CrossRefPubMedGoogle Scholar
  101. O’Donnell, V B., Spycher, S., and Azzi, A., 1995, Involvement of oxidants and oxidant-generating enzymes in tumor necrosis factor γ-mediated apoptosis: Role for lipoxygenase pathway but not mitochondrial respiratory chain, Biochem. J. 310: 133–141.PubMedGoogle Scholar
  102. O’Ciorman, E., Beutner, G., Dolder, M., Koretsky, A. P., Brdiczka, D., and Walliman, T., 1997, The role of creatine kinase in inhibition of mitochondrial permeability transition, FEBS Lett. 414: 253–257.Google Scholar
  103. Oltvai, Z. N., and Korsmeyer, S. J., 1994, Checkpoints of dueling dimers foil death wishes, Cell 79: 189–192.CrossRefPubMedGoogle Scholar
  104. Pastorino, J. G., Simbula, G., Gilfor, E., Hoek, J. B., and Farber, J. L., 1994. Protoporphyrin IX, an endogenous ligand of the peripheral benzodiazepine receptor, potentiates induction of the mitochondrial permeability transition and the killing of cultured hepatocytes by rotenone. J Biol Chem 269: 31041–31046.PubMedGoogle Scholar
  105. Petit, P. X., Lecoeur, H., Zorn, E., Dauguet, C., Mignotte, B., and Gougeon, M. L., 1995, Alterations of mitochondrialstructure and function are early events of dexamethasone-induced thymocyte apoptosis, J. Cell. Biol. 130: 157–167.CrossRefPubMedGoogle Scholar
  106. Petit, P. X., Susin, S. A., Zamzami, N., Mignotte, B., and Kroemer, G., 1996, Mitochondria and programmed cell death: Back to the future. FEBS Lett. 396: 7–14.CrossRefPubMedGoogle Scholar
  107. Petit, P. X., Zamzami, N., Sidoti-de Fraisse, C., Vayssiere, J. L., and Mignotte, B., 1997, Implication of mitochondria in apoptosis, Mol. Cell. Biochem. 174: 185–188.CrossRefPubMedGoogle Scholar
  108. Petit, P. X., Goubern, M., Diolez, P., Susin, S. A., and Zamzami, N. G. K., 1998, Disruption of the outer mitochondrial membrane as a result of largeamplitude swelling: The impact of irreversible permeability transition, WHS Lett. 426: 11–116.Google Scholar
  109. Pinkus, R., Weiner, L. M., Daniel, V, 1996. Role of oxidants and antioxidants in the induction of AP-1, and glutathion S-transferase gene expression, J. Biol. Chem. 271: 13422–13429.PubMedGoogle Scholar
  110. Quillet-Mary, A., Jaffrezou, J. P., Mansat, V., Bordier, C., Naval, J., and Laurent, G., 1997, Implication of mitochondrial hydrogen peroxide generation in ceramide-induced apoptosis, J. Biol. Chem. 272: 21388–21395.CrossRefPubMedGoogle Scholar
  111. Ratan, R. R., Murphy, T. H., and Baraban, J. M., 1994, Oxidative stress induces apoptosis in embryonic cortical neurons. J. Neurochem. 62: 376–379.PubMedGoogle Scholar
  112. Reed, J. C., 1997, Cytochrome c: Can’t live without it, Cell 91: 559–562.CrossRefPubMedGoogle Scholar
  113. Reed, J. C., Jurgensmeier, J. M., and Matsuyama, S., 1998, Bcl-2 family proteins and mitochondria, Biochim. Biophys. Acta 1366: 127–137.PubMedGoogle Scholar
  114. Richter, C., Schweizer, M., Cossariza, A., and Franceschi, C., 1996, Control of apoptosis by ATO levels, FEBS Lett. 378: 107–110.CrossRefPubMedGoogle Scholar
  115. Rottenberg, H., and Wu, S., 1998, Quantitative assay by flow cytometry of the mitochondrial membrane potential in intact cells, Biochim. Biophys. Acta 1404: 393–404.PubMedGoogle Scholar
  116. Rudel, T., Schmid, A., Benz, R., Kolb, H. A., Lang, F., and Meyer, T. F., 1996, Modulation of Neisseria porin (poR) by cytosolic ATP/GTP of target cells: Parallels between pathogen accomodation and mitochondria endosymbiosis, Cell 85: 391–402.CrossRefPubMedGoogle Scholar
  117. Sandstrom, P. A., and Buttke, T. M., 1993, Autocrine production of extracellular catalase prevents apoptosis of the human CEM T-cell line in serum-free medium, Proc. Natl. Acad. Sci. USA 90: 4708–712.PubMedGoogle Scholar
  118. Sato, N., Iwata, S., Nakamura, K., Hori, T., Mori, K.., and Yodoi, J., 1995, Thiol-mediated redox regulation of apoptosis: Possible roles of cellular thiols other than glutathione in T cell apoptosis, J. Immunol. 154: 3194–3203.PubMedGoogle Scholar
  119. Schendel, S. L., Xie, Z., Montal, M. O., Matsuyama, S., Montal, M., and Reed, J. C., 1997, Channel formation by antiapoptotic protein Bcl-2, Proc. Natl Acad. Sci. USA 94: 5113–5118.CrossRefPubMedGoogle Scholar
  120. Schlesinger, P. H., Gross, A., Yin, X. M., Yamamoto, K., and Saito, M., 1997, Comparison of the ion channel characteristics of proapoptotic BAX and antiapoptotic BCL-2z, Proc. Natl. Acad. Sci. USA 94: 11357–11362.CrossRefPubMedGoogle Scholar
  121. Schulze-Osthoff, K., Bakker, A. C., Vanhaesbroeck, B., Beyaert, R., Jacob, W. A., and Fiers, W., 1992, Cytotoxic activity of tumor necrosis factor is mediated by early damage of mitochondrial functions: Evidence for the involvement of mitochondrial radical generation, J. Biol. Chem. 267: 5317–5323.PubMedGoogle Scholar
  122. Schulze-Osthoff, K., Beyaert, R., Vandevoorde, V, Haegeman, G., and Fiers, W., 1993, Depletion of the mitochondrial electron transport abrogates the cytotoxic and gene-inductive effects of TNF, EMBO J. 12: 3095–3104.PubMedGoogle Scholar
  123. Shimizu, S., Eguchi, Y, Kosaka, H., Kamiike, W., Matsuda, H., and Tsujimoto, Y, 1995, Prevention of hypoxia-induced cell death by Bcl-2 and Bel-XL, Nature 374: 811–813.CrossRefPubMedGoogle Scholar
  124. Stridh, H., Kimland, M., Jones, D. P., Orrenius, S., and Hampton, M. B., 1998, Cytochrome c release and caspase activation in hydrogen peroxide-and tributyltin-induced apoptosis, FEBS Lett. 429: 351–355.CrossRefPubMedGoogle Scholar
  125. Susin, S. A., Zamzami, N., Castedo, M., Hirsch, T., and Marchetti, P., 1996, Bcl-2 inhibits the mitochondrial release of an apoptogenic protease, J. Exp. Med. 184: 1331–1342.CrossRefPubMedGoogle Scholar
  126. Susin, S. A., Zamzami, N., Castedo, M., Daugas, E., and Wang, H.-G., 1997a, The central executioner of apoptosis: Multiple connections between proteases activation and mitochondria in Fas/APO-1/CD95-and ceramide-induced apoptosis, J. Exp. Med. 186: 25–37.CrossRefPubMedGoogle Scholar
  127. Susin, S. A., Zamzami, N., Larochette, N., Dallaporta, B., and Marzo, I., 1997b, A cytofluorometric assay of nuclear apoptosis in a cell-free system: Application to ceramide-induced apoptosis, Exp. Cell Res. 236: 397–403.CrossRefPubMedGoogle Scholar
  128. Susin, S. A., Lorenzo, H. K., Zamzami, N., Marzo, I., and Brenner, C., 1998, Mitochondrial release of caspase-2 and caspase-9 during the apoptotic process, J. Exp. Med. 189: 381–394.Google Scholar
  129. Susin, S. A., Lorenzo, H. K., Zamzami, N., Marzo, I., and Snow, E. B., 1999, Molecular characterization of mitochondrial apoptosis-inducing factor, Nature 397: 441–445.PubMedGoogle Scholar
  130. Taylor, F. R. J., 1974, Implications and extensions of the serial endosymbiosis theory of the origin of eukaryotes, Taxon 23: 229–258.Google Scholar
  131. Thompson, C. B., 1995, Apoptosis in the pathogenesis and treatment of disease, Science 267: 1456–1462.PubMedGoogle Scholar
  132. Tudor, J. J., and Karp, M. A., 1994, Translocation of an outer membrane protein into prey cytoplasmic membranes of Bdellovibrio bacteriavirus, J. Bacterial. 172: 4002–4007.Google Scholar
  133. Uckun, F. M., Tuel-Ahlgren, L., Song, C. W., Waddick, K., and Myers, D. E., 1992, Ionizing radiation stimulates unidentified tyrosine-specific protein kinases in human B-lymphocyte precursors, triggering apoptosis and clonogenic cell death, Proc. Natl. Acad. Sci. USA 89: 9005–9009.PubMedGoogle Scholar
  134. Van den Dobbelsteen, D. J., Nobel, C. S. I., Schlegel, J., Cotgreave, I. A., Orrenius, S., and Slater, A. F. G., 1996, Rapid and specific efflux of reduced glutathione during apoptosis induced by anti-Fas/APO-1 antibody, J. Biol. Chem. 271: 15240–15427.Google Scholar
  135. Van der Heiden, M. G., Chandel, N. S., Williamson, E. K., Schumacher, P. J., and Thompson, C. B., 1997, Bcl-XL regulates the membrane potential and volume homeostasis of mitochondria, Cell 91: 627–637.Google Scholar
  136. Vayssière, J.-L., Petit, P. X., Risler, Y., and Mignotte, B., 1994, Commitment to apoptosis is associated with changes in mitochondrial biogenesis and activity in cell lines conditionally immortalized with simian virus 40, Proc. Natl. Acad. Sci. USA 91: 11752–11756.PubMedGoogle Scholar
  137. Weel, J. F. L., and va Putten, J. P. M., 1991, Fate of the major outer membrane protein P.IA in early and late events of gonococcal infection of epithelial cells, Res. Microbiol. 142: 985–993.CrossRefPubMedGoogle Scholar
  138. Wolvetang, E. J., Johnson, K. L., Krauer, K., Ralph, S. J., and Linnane, A. W., 1994, Mitochondrial respiratory chain inhibitors induce apoptosis, FEBS Lett. 339: 40–44.CrossRefPubMedGoogle Scholar
  139. Wong, A., and Cortopassi, G., 1997, MtDNA mutations confer cellular sensitivity to oxidant stress that is partially rescued by calcium depletion and cyclosporine A, Biochem. Biophys. Res. Commun. 239: 139–145.CrossRefPubMedGoogle Scholar
  140. Wong, G. H. W., Elwell, J. H., Oberley, L. W., and Goeddel, D. V, 1989, Manganous superoxide dismutase is essential for cellular resistance to cytotoxicity of tumor necrosis factor, Cell 58: 923–931.CrossRefPubMedGoogle Scholar
  141. Yang, J., Liu, X., Bhalla, K.., Kim, C. N., and Ibrado, A. M., 1997, Prevention of apoptosis by Bcl-2: Release of cytochrome c from mitochondria blocked, Science 275: 1129–1132.CrossRefPubMedGoogle Scholar
  142. Zamzami, N., Marchetti, P., Castedo, M., Decaudin, D., and Macho, A., 1995a, Sequential reduction of mitochondrial transmembrane potential and generation of reactive oxygen species in early programmed cell death, J. Exp. Med. 182: 367–377.CrossRefPubMedGoogle Scholar
  143. Zamzami, N., Marchetti, P., Castedo, M., Zanin, C., and Vayssière, J.-L., 1995b, Reduction in mitochondrial potential constitutes an early irreversible step of programmed lymphocyte death in vivo, J. Exp. Med. 181: 1661–1672.CrossRefPubMedGoogle Scholar
  144. Zamzami, N., Susin, S. A., Marchetti, P., Hirsch, T., and Gómez-Monterrey, I., 1996, Mitochondrial control of nuclear apoptosis, J. Exp. Med. 183: 1533–1544.CrossRefPubMedGoogle Scholar
  145. Zhong, L.-T., Sarafinn, T., Kane, D. J., Charles, A. C., and Mah, S. P., 1993, Bcl-2 inhibits death of central neural cells induced by multiple agents, Proc. Natl. Acad. Sci. USA 90: 4533–4537.PubMedGoogle Scholar
  146. Zoratti, M., and Szabò, I., 1995, The mitochondrial permeability transition, Biochim. Biophys. Acta-Rev. Biomembr. 1241: 139–176.Google Scholar
  147. Zou, H., Henzel, W. J., Liu, X., Lutschg, A., and Wang, X., 1997, Apaf-1, a human protein homologous to C. elegans CED-4, participates in cytochrome c-dependent activation of caspase-3, Cell 90: 405–413.PubMedGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • Patrice X. Petit
    • 1
  1. 1.Institut Cochin de Génétique MoléculaireINSERM U129-CHU Cochin Port-RoyalParisFrance

Personalised recommendations