Flow Cytometric Analysis of Mitochondrial Function

  • Hagai Rottenberg


Mitochondrial Membrane Potential Mitochondrial Permeability Transition Fluorescence Ratio Plasma Membrane Potential Free Calcium Concentration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson, W. M., Wood, J. M., and Anderson, A. C., 1993, Inhibition of mitochondrial and Paracoccus denitrificans NADH-ubiquinone reductase by oxacarbocyanine dyes: A structure-activity study, Biochem. Pharmacol. 45:2115–2122.PubMedGoogle Scholar
  2. Ardawi, M. S. M., and Newsholme, E. A., 1985, Metabolism in lymphocytes and its importance in the immune system, Essays Biochem 21:1–44.PubMedGoogle Scholar
  3. Brand, M. D., Chien, L. F., Ainscow, E. A., Rolfe, D. F., and Porter, R. K., 1994, The causes and functions of mitochondrial proton leak, Biochim. Biophys. Acta 1187:132–139.PubMedGoogle Scholar
  4. Cai, J., and Jones, D. P., 1998, Superoxide in apoptosis: Mitochondrial generation triggered by cytochrome c loss, J. Biol. Chem. 273:11401–11404.PubMedGoogle Scholar
  5. Castedo, M., Macho, A., Zamzami, N., Hirsch, T, Marchetti, P., Uriel, J., and Kroemer G., 1995, Mitochondrial perturbations define lymphocytes undergoing apoptotic depletion in vivo, Eur. J. Immunol. 25:3277–3284.PubMedGoogle Scholar
  6. Chacon, E., Reece, J. M., Nieminen, A. L., Zahrebelski, G., Herman, B., and Lemasters, J. J., 1994, Distribution of electrical potential, pH, free Ca2+, and volume inside cultured adult rabbit cardiac myocytes during chemical hypoxia: A multiparameter digitized confocal microscopy study, Biophys. J. 66:942–952.PubMedGoogle Scholar
  7. Chance, B., Sies, H., and Boveris, A., 1979, Hydroperoxide metabolism in mammalian organs, Physiol. Rev. 59: 527–605.PubMedGoogle Scholar
  8. Chen, L. B., 1988, Mitochondrial membrane potential in living cells, Ann. Rev. Cell Biol. 4:155–182.PubMedGoogle Scholar
  9. Cossarizza, A., Baccarani-Contri, M., Kalashnikova, G., Franceschi, C., 1993, A new method for the cytofluori-metric analysis of mitochondrial membrane potential using the J-aggregate forming lipophilic cation 5,5’, 6,6′-tetrachloro-1,1′,3,3′-tetraethylbenzimidazolylcarbocyanineiodide (JC-1), Biochem. 197:40–45.Google Scholar
  10. Cunningham, E. R., 1994, Overview of flow cytometry and fluorescent probes for cytometry, Methods Mol. Biol. 34:219–224.PubMedGoogle Scholar
  11. Emaus, R. K., Grunwald, R., and Lemasters, J. J., 1986, Rhodamine 123 as a probe of transmembrane potential in isolated rat-liver mitochondria, Biochim. Biophys. Acta 850:436–48.PubMedGoogle Scholar
  12. Felber, S. M., and Brand, M. D., 1982, Valinomycin can depolarize mitochondria in intact lymphocytes without increasing plasma membrane potassium fluxes, FEBS Lett. 150:122–124.CrossRefPubMedGoogle Scholar
  13. Ferlini, C., Scambia, G., Fattorossi, A., 1998, Is chloromethyl-X-rosamine useful in measuring mitochondrial transmembrane potential? Cytometry 31:74–75.CrossRefPubMedGoogle Scholar
  14. Kuhnel, J. M., Perrot, J. Y., Faussat, A. M., Marie, J. P., Schwaller, M. A., 1997, Functional assay of multidrug resistant cells using JC-1, a carbocyanine fluorescent probe, Leukemia 11:1147–1155.PubMedGoogle Scholar
  15. Kunz, D., Luley, C., Winkler K., Lin, H., and Kunz, W. S., 1997, Flow cytometric detection of mitochondrial dysfunction in subpopulation of human mononuclear cells, Anal. Biochem. 246:218–224.CrossRefPubMedGoogle Scholar
  16. Loew, L. M., Tuft, R. A., Carrington, W., Fay, F. S., 1993, Imaging in five dimensions: Time-dependent membrane potentials in individual mitochondria, Biophys. J. 65:2396–2407.PubMedGoogle Scholar
  17. Macho, A., Decaudin, D., Castedo, M., Hirsch, T., Susin, S. A., Zamzami, N., Kroemer, G., 1996, Chloromethyl-X-Rosamine is an aldehyde-fixable potential-sensitive fluorochrome for the detection of early apoptosis, Cytometty 25:333–340.Google Scholar
  18. Marchetti, P., Hirsch, T., Zamzami, N., Castedo, M., Decaudin, D., Susin, S. A., Masse, B., and Kroemer, G., 1996, Mitochondrial permeability transition triggers lymphocyte apoptosis, J. Immunol. 157:4830–4836.PubMedGoogle Scholar
  19. Petit, P. X., Lecoeur, H., Zorn, E., Dauguet, C., Mignotte, B., and Gougeon, M. L., 1995, Alterations in mitochondrial structure and function are early events of dexamethasone-induced thymocyte apoptosis, J. Cell Biol. 130:157–167.CrossRefPubMedGoogle Scholar
  20. Petit, P. X., Susin, S. A., Zamzami, N., Mignotte, B., and Kroemer, G., 1996, Mitochondria and programmed cell death: Back to the future, FEBS Lett. 396:7–13.CrossRefPubMedGoogle Scholar
  21. Petriz, J., and Garcia-Lopez, J., 1997, Flow cytometric analysis of P-glycoprotein function using thodamine 123, Leukemia 11:1124–1130.PubMedGoogle Scholar
  22. Reers, M., Smiley, S. T., Mottola-Hartshorn, C, Chen, A., Lin, M., and Chen, L. B., 1995, Mitochondrial membrane potential monitored by JC-1 dye, Methods Enzymol. 260:406–417.PubMedGoogle Scholar
  23. Rottenberg, H., 1989, Proton electrochemical gradient in vesicles, organelles, and prokaryotic cells, Methods Enzymol. 172:63–84.PubMedGoogle Scholar
  24. Rottenberg, H., and Wu, S., 1997, Mitochondrial dysfunction in lymphocytes from old mice: Enhanced activation of the permeability transition, Biochem. Biophys. Res. Commun. 240:68–74.CrossRefPubMedGoogle Scholar
  25. Rottenberg, H., and Wu, S., 1998, Quantitative assay by flow cytometry of the mitochondrial membrane potential in intact cells, Biochim. Biophys. Acta 1404:393–104.PubMedGoogle Scholar
  26. Salvioli, S., Ardizzoni, A., Franceschi, C., and Cossarizza, A., 1997, JC-1, but not DiOC6(3) or rhodamine 123, is a reliable fluorescent probe too assess ΔΨ changes in intact cells: Implication for studies on mitochondrial functionality during apoptosis, FEBS Lett. 411:77–82.CrossRefPubMedGoogle Scholar
  27. Salvioli S., Maseroli R., Pazienza T. L., Bobyleva V, and Cossarizza, A., 1998, Use of flow cytometry as a tool to study mitochondrial membrane potential in isolated, living hepatocytes, Biochemistry 63:235–238.PubMedGoogle Scholar
  28. Shapiro, H. H., 1994, Cell membrane potential analysis, Methods Cell Biol. 41:121–133.PubMedGoogle Scholar
  29. Srivatava, I. K., Rottenberg, H., and Vaidya, A. B., 1997, Atovquone, a broad spectrum antiparasitic drug, collapses mitochondrial membrane potential in a malarial parasite, J. Biol. Chem. 272:3961–3966.Google Scholar
  30. Wilson, H. A., Seligmann, B. E., and Chused, T. M., 1985, Voltage-sensitive cyanine dye fluorescence signals in lymphocytes: Plasma membrane and mitochondrial components, J. Cell. Physiol. 125:61–71.PubMedGoogle Scholar
  31. Witkowski, J. M., and Miller, R. A., 1993, Increased function of P-glycoprotein in T lymphocyte subsets of aging mice, J. Immunol. 150:1296–1306.PubMedGoogle Scholar
  32. Zamzami, N., Marchetti, P., Castedo, M., Zanin, C., Vayssiere, J. L., Petit, P. X., Kroemer, G., 1995, Reduction in mitochondrial potential constitutes an early irreversible step of programmed lymphocyte death in vivo, J Exp. Med. 181:1661–1672.CrossRefPubMedGoogle Scholar
  33. Zoratti, M., and Szabó, l., 1995, The mitochondrial permeability transition, Biochim. Biophys. Acta 1241:139–176.PubMedGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • Hagai Rottenberg
    • 1
  1. 1.MCP Hahnemann UniversityPhiladelphia

Personalised recommendations