Skip to main content

Electron Transfer and Radical Forming Reactions of Methane Monooxygenase

  • Chapter
Enzyme-Catalyzed Electron and Radical Transfer

Part of the book series: Subcellular Biochemistry ((SCBI,volume 35))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

10. References

  • Andersson, K. K., Elgren, T. E., Que, L., Jr., and Lipscomb, J. D., 1992, Accessibility in the active site of methane monooxygenase: the first demonstration of exogenous ligand binding to the diiron center, J. Am. Chem. Soc. 114:8711–8713.

    Article  CAS  Google Scholar 

  • Andersson, K. K., Froland, W. A., Lee, S.-K., and Lipscomb, J. D., 1991, Dioxygen independent oxygenation of hydrocarbons by methane monooxygenase hydroxylase component, New J. Chem. 15:411–415.

    CAS  Google Scholar 

  • Basch, H., Magi, K., Musaev, G. D., and Morokuma, K., 1999, Mechanism of the methane to methanol conversion reaction catalyzed by methane monooxygenase: A density functional study, J. Am. Chem. Soc. 121:7249–7256.

    Article  CAS  Google Scholar 

  • Bell, R. P., 1973, The Proton in Chemistry, 2nd Edition, Cornell University Press, Ithaca, NY.

    Book  Google Scholar 

  • Brazeau, B. J., and Lipscomb, J. D., 1999, Effect of temperature on the methane monooxygenase compound Q formation and decay processes, J. Inorg. Biochem. 74:81.

    Google Scholar 

  • Broadwater, J. A., Ai, J., Loehr, T. M., Sanders-Loehr, J., and Fox, B. G., 1998, Peroxodiferric intermediate of stearoyl-acyl carrier protein Δ9 desaturase: oxidase reactivity during single turnover and implications for the mechanism of desaturation, Biochemistry 37:14664–14471.

    Article  CAS  PubMed  Google Scholar 

  • Cardy, D. L., Laidler, V., Salmond, G. P., and Murrell, J. C., 1991a, The methane monooxygenase gene cluster of Methylosinus trichosporium: cloning and sequencing of the mmoC gene, Arch. Microbiol. 156:477–483.

    CAS  PubMed  Google Scholar 

  • Cardy, D. L., Laidler, V., Salmond, G. P, and Murrell, J. C., 1991b, Molecular analysis of the methane monooxygenase (MMO) gene cluster of Methylosinus trichosporium OB3b, Mol. Microbiol. 5:335–342.

    Article  CAS  PubMed  Google Scholar 

  • Chan, S. I., Nguyen, H.-H. T., Shiemke, A. K., and Lidstrom, M. E., 1992, Biochemical and biophysical studies toward characterization of the membrane-associated methane monooxygenase. 7th Intern. Symp. on Microbial Growth on C1 Compounds. J. C. Murrell, and D. P. Kelly. Andover UK, Intercept Ltd., 93–107.

    Google Scholar 

  • Chang, S. L., Wallar, B. J., Lipscomb, J. D., and Mayo, K. H., 1999, Solution structure of component B from methane monooxygenase derived through heteronuclear NMR and molecular modeling, Biochemistry 38:5799–5812.

    Article  CAS  PubMed  Google Scholar 

  • Choi, S.-Y., Eaton, P. E., Hollenberg, P. F., Liu, K. E., Lippard, S. J., Newcomb, M., Putt, D. A., Upadhyaya, S. P., and Xiong, Y., 1996, Regiochemical variations in reactions of methylcubane withtert-butoxyl radical, cytochrome P-450 enzymes, and a methane monooxygenase system, J. Am. Chem. Soc. 118:6547–6555.

    Article  CAS  Google Scholar 

  • Choi, S.-Y., Eaton, P. E., Kopp, D. A., Lippard, S. J., Newcomb, M., and Shen, R., 1999, Cationic species can be produced in soluble methane monooxygenase-catalyzed hydroxylation reactions; radical intermediates are not formed, J. Am. Chem. Soc., in press.

    Google Scholar 

  • Dalton, H., 1980, Oxidation of hydrocarbons by methane monooxygenase from a variety of microbes, Adv. Appl. Microbiol. 26:71–87.

    Article  CAS  Google Scholar 

  • Davydov, A., Davydov, R., Gr‰slund, A., Lipscomb, J. D., and Andersson, K. K., 1997,Radiolytic reduction of methane monooxygenase dinuclear iron cluster At 77KóEPR evidence for conformational change upon reduction or binding of component B to the diferric state, J. Biol. Chem. 272:7022–7026.

    Article  CAS  PubMed  Google Scholar 

  • Davydov, R., Valentine, A. M., Komar-Panicucci, S., Hoffman, B. M., and Lippard, S. J., 1999, An EPR study of the dinuclear iron site in the soluble methane monooxygenase from Methylococcus capsulatus (Bath) reduced by one electron at 77K: the effects of component interactions and the binding of small molecules to the diiron(III) center, Biochemistry 38:4188–4197.

    Article  CAS  PubMed  Google Scholar 

  • DeRose, V. J., Liu, K. E., Kurtz, J., D. M., Hoffman, B. M., and Lippard, S. J., 1993, Proton ENDOR identification of bridging hydroxide ligands in mixed-valent diiron centers of proteins: methane monooxygenase and semimet azidohemerythrin, J. Am. Chem. Soc. 115:6440–6441.

    Article  CAS  Google Scholar 

  • DeRose, V. J., Liu, K. E., Lippard, S. J., and Hoffman, B. M., 1996, Investigation of the dinuclear Fe center of methane monooxygenase by advanced paramagnetic resonance techniques: on the geometry of DMSO binding, J. Am. Chem. Soc. 118:121–134.

    Article  CAS  Google Scholar 

  • DeWitt, J. G., Bentsen, J. G., Rosenzweig, A. C., Hedman, B., Green, J., Pilkington, S., Papaefthymiou, G. C., Dalton, H., Hodgson, K. O., and Lippard, S. J., 1991, X-ray absorption, M ssbauer, and EPR studies of the dinuclear iron center in the hydroxylase component of methane monooxygenase, J. Am. Chem. Soc. 113:9219–9233.

    Article  CAS  Google Scholar 

  • DeWitt, J. G., Rosenzweig, A. C., Salifoglou, A., Hedman, B., Lippard, S. J., and Hodgson, K. O., 1995, X-ray absorption spectroscopic studies of the diiron center in methanemonooxygenase in the presence of substrate and the coupling protein of the enzyme system, Inorg. Chem. 34:2505–2515.

    Article  CAS  Google Scholar 

  • Dong, Y., Fujii, H., Hendrich, M. P., Leising, R. A., Pan, G., Randall, C. R., Wilkinson, E. C., Zang, Y., Que, L., Jr., Fox, B. G., Kauffmann, K., and M,nck, E., 1995b, A high-valent nonheme iron intermediate. Structure and properties of [Fe2(μ-O)2(5-Me-TPA)2](ClO4)3, J. Am. Chem. Soc. 117:2778–2792.

    Article  CAS  Google Scholar 

  • Dong, Y., Kauffmann, K., M,nck, E., and Que, L., Jr., 1995a, An exchange-coupled complex with localized high-spin FeIV and FeIII sites of relevance to cluster X of Escherichia coli ribonucleotide reductase, J. Am. Chem. Soc. 117:11377–11378.

    Article  CAS  Google Scholar 

  • Elango, N., Radhakrishnan, R., Froland, W. A., Wallar, B. J., Earhart, C. A., Lipscomb, J. D., and Ohlendorf, D. H., 1997, Crystal structure of the hydroxylase component of methane monooxygenase from Methylosinus trichosporium OB3b, Protein Sci. 6:556–568.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ericson, A., Hedman, B., Green, J., Bentsen, J. G., Beer, R. H., Lippard, S. J., Dalton, H., and Hodgson, K. O., 1988, Structural characterization by EXAFS spectroscopy of the binuclear iron center in protein A of methane monooxygenase from Methylococcus capsulatus (Bath), J. Am. Chem. Soc. 110:2330–2332.

    Article  CAS  Google Scholar 

  • Feig, A. L., and Lippard, S. J., 1994, Reactions of non-heme iron(II) centers with dioxygen in biology and chemistry, Chem. Rev. 94:759–805.

    Article  CAS  Google Scholar 

  • Fox, B. G., and Lipscomb, J. D., 1988, Purification of a high specific activity methane monooxygenase hydroxylase component from a type II methanotroph, Biochem. Biophys. Res. Commun. 154:165–170.

    Article  CAS  PubMed  Google Scholar 

  • Fox, B. G., Surerus, K. K., M,nck, E., and Lipscomb, J. D., 1988, Evidence for a μ-oxo-bridged binuclear iron cluster in the hydroxylase component of methane monooxygenase. M^ssbauer and EPR studies, J. Biol. Chem. 263:10553–10556.

    CAS  PubMed  Google Scholar 

  • Fox, B. G., Froland, W. A., Dege, J. E., and Lipscomb, J. D., 1989, Methane monooxygenase from Methylosinus trichosporium OB3b. Purification and properties of a three-component system with high specific activity from a type II methanotroph, J. Biol. Chem. 264:10023–10033.

    CAS  PubMed  Google Scholar 

  • Fox, B. G., Borneman, J. G., Wackett, L. P., and Lipscomb, J. D., 1990, Haloalkene oxidation by the soluble methane monooxygenase from Methylosinus trichosporium OB3b: mechanistic and environmental implications, Biochemistry 29:6419–6427.

    Article  CAS  PubMed  Google Scholar 

  • Fox, B. G., Liu, Y., Dege, J. E., and Lipscomb, J. D., 1991, Complex formation between the protein components of methane monooxygenase from Methylosinus trichosporium OB3b. Identification of sites of component interaction, J. Biol. Chem. 266:540–550.

    CAS  PubMed  Google Scholar 

  • Fox, B. G., Hendrich, M. P., Surerus, K. K., Andersson, K. K., Froland, W. A., Lipscomb, J. D., and M,nck, E., 1993, M^ssbauer, EPR, and ENDOR studies of the hydroxylase and reductase components of methane monooxygenase from Methylosinus trichosporium OB3b, J. Am. Chem. Soc. 115:3688–3701.

    Article  CAS  Google Scholar 

  • Froland, W. A., Andersson, K. K., Lee, S.-K., Liu, Y., and Lipscomb, J. D., 1992, Methane monooxygenase component B and reductase alter the regioselectivity of the hydroxylase component-catalyzed reactions. A novel role for protein-protein interactions in an oxygenase mechanism, J. Biol. Chem. 267:17588–17597.

    CAS  PubMed  Google Scholar 

  • Gallagher, S. C., Callaghan, A. J., Zhao, J., Dalton, H., and Trewhella, J., 1999, Global Conformational Changes Control the Reactivity of Methane Monooxygenase, Biochemistry 38:6572–6760.

    Article  Google Scholar 

  • Gassner, G. T., and Lippard, S. J., 1999, Component interactions in the soluble methane monooxygenase system from Methylococcus capsulatus (Bath), Biochemistry 38:12768–12785.

    Article  CAS  PubMed  Google Scholar 

  • Green, J., and Dalton, H., 1985, Protein B of soluble methane monooxygenase from Methylococcus capsulatus (Bath). A novel regulatory protein of enzyme activity, J. Biol. Chem. 260:15795–15801.

    CAS  PubMed  Google Scholar 

  • Green, J., and Dalton, H., 1989, A stopped-flow kinetic study of the soluble methane monooxygenase from Methylococcus capsulatus (Bath), Biochem J. 259:167–172.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Groves, J. T., McClusky, G. A., White, R. E., and Coon, M. J., 1978, Aliphatic hydroxylation by highly purified liver microsomal cytochrome P-450. Evidence for a carbon radical intermediate, Biochem. Biophys. Res. Commun. 81:154–160.

    Article  CAS  PubMed  Google Scholar 

  • Hendrich, M. P., and Debrunner, P. G., 1989, Integer-spin electron paramagnetic resonance of iron proteins, Biophys. J. 56:489–506.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hendrich, M. P., M,nck, E., Fox, B. G., and Lipscomb, J. D., 1990, Integer-spin EPR studies of the fully reduced methane monooxygenase hydroxylase component, J. Am. Chem. Soc. 112:5861–5865.

    Article  CAS  Google Scholar 

  • Hendrich, M. P., Fox, B. G., Andersson, K. K., Debrunner, P. G., and Lipscomb, J. D., 1992, Ligation of the diiron site of the hydroxylase component of methane monooxygenase. An electron nuclear double resonance study, J. Biol. Chem. 267:261–269.

    CAS  PubMed  Google Scholar 

  • Hsu, H., Dong, Y., Shu, L., Young, J. V. G., and Que, J. L., 1999, Crystal structure of a synthetic high-valent complex with an Fe2(μ-O)2 diamond core. Implications for the core structures of methane monooxygenase intermediate Q and ribonucleotide reductase intermediate X, J. Am. Chem. Soc. 121:5230–5237.

    Article  CAS  Google Scholar 

  • Hwang, C.-C., and Grissom, C. B., 1994, J. Am. Chem. Soc. 116:795–796.

    Article  CAS  Google Scholar 

  • Jiang, Y., Wilkins, P. C., and Dalton, H., 1993, Activation of the hydroxylase of sMMO from Methylococcus capsulatus (Bath) by hydrogen peroxide, Biochim. Biophys. Acta 1163:105–112.

    Article  CAS  PubMed  Google Scholar 

  • Jin, Y., and Lipscomb, J. D., 1999, Probing the mechanism of CóH activation: oxidation of methylcubane by soluble methane monooxygenase from Methylosinus trichosporium OB3b, Biochemistry 38:6178–6186.

    Article  CAS  PubMed  Google Scholar 

  • Kazlauskaite, J., Hill, H. A., Wilkins, P. C., and Dalton, H., 1996, Direct electrochemistry of the hydroxylase of soluble methane monooxygenase from Methylococcus capsulatus (Bath), Eur. J. Biochem. 241:552–556.

    Article  CAS  PubMed  Google Scholar 

  • Kim, C., Dong, Y. H., and Que, L., Jr., 1997, Modeling nonheme diiron enzymesóHydrocarbon hydroxylation and desaturation by a high-valent Fe2O2 diamond core, J. Am. Chem. Soc. 119:3635–3636.

    Article  CAS  Google Scholar 

  • Kim, K., and Lippard, S. J., 1996, Structure and M^ssbauer spectrum of a (μ-1,2-peroxo)-bis(μ-carboxylato)diiron(III) model for the peroxo intermediate in the methane monooxygenase hydroxylase reaction cycle, J. Am. Chem. Soc. 118:4914–4915.

    Article  CAS  Google Scholar 

  • Kohen, A., and Klinman, J. P., 1998, Enzyme catalysis: beyond classical paradigms, Acc. Chem. Res. 31:397–404.

    Article  CAS  Google Scholar 

  • Kohen, A., and Klinman, J. P., 1999, Hydrogen tunneling in biology, Chem. Biol. 6:191–197.

    Article  Google Scholar 

  • Kohen, A., Cannio, R., Bartolucci, S., and Klinman, J. P., 1999, Enzyme dynamics and hydrogen tunneling in a thermophilic alcohol dehydrogenase, Nature 399:496–499.

    Article  CAS  PubMed  Google Scholar 

  • Lee, S. K., and Lipscomb, J. D., 1999, Oxygen activation catalyzed by methane monooxygenase hydroxylase component: proton delivery during the OóO bond cleavage steps, Biochemistry 38:4423–4432.

    Article  CAS  PubMed  Google Scholar 

  • Lee, S.-K., Nesheim, J. C., and Lipscomb, J. D., 1993a, Transient intermediates of the methane monooxygenase catalytic cycle, J. Biol. Chem. 268:21569–21577.

    CAS  PubMed  Google Scholar 

  • Lee, S.-K., Fox, B. G., Froland, W. A., Lipscomb, J. D., and M,nck, E., 1993b, A transient intermediate of the methane monooxygenase catalytic cycle containing a FeIVFeIV cluster, J. Am. Chem. Soc. 115:6450–6451.

    Article  CAS  Google Scholar 

  • Lipscomb, J. D., 1994, Biochemistry of the soluble methane monooxygenase. Ann. Rev. Microbial. 48:371–399.

    Article  CAS  Google Scholar 

  • Lipscomb, J. D., and Que, L., Jr., 1998, MMOóP450 in wolfís clothing?, JBIC 3:331–336.

    Article  CAS  Google Scholar 

  • Liu, K. E., and Lippard, S. J., 1991, Redox properties of the hydroxylase component of methane monooxygenase from Methylococcus capsulatus (Bath). Effects of protein B, reductase, and substrate [published erratum appears in J. Biol. Chem. 1991, 266:24859], J. Biol. Chem. 266:12836–12839.

    CAS  PubMed  Google Scholar 

  • Liu, K. E., Johnson, C. C., Newcomb, M., and Lippard, S. J., 1993, Radical clock substrate probes and kinetic isotope effect studies of the hydroxylation of hydrocarbons by methane monooxygenase, J. Am. Chem. Soc. 115:939–947.

    Article  CAS  Google Scholar 

  • Liu, K. E., Wang, D., Huynh, B. H., Edmondson, D. E., Salifoglou, A., and Lippard, S. J., 1994, Spectroscopic detection of intermediates in the reaction of dioxygen with the reduced methane monooxygenase hydroxylase from Methylococcus capsulatus (Bath), J. Am. Chem. Soc. 116:7465–7466.

    Article  CAS  Google Scholar 

  • Liu, K. E., Valentine, A. M., Wang, D. L., Huynh, B. H., Edmondson, D. E., Salifoglou, A., and Lippard, S. J., 1995, Kinetic and spectroscopic characterization of intermediates and component interactions in reactions of methane monooxygenase from Methylococcus capsulatus (Bath), J. Am. Chem. Soc. 117:10174–10185.

    Article  CAS  Google Scholar 

  • Liu, Y., Nesheim, J. C., Lee, S.-K., and Lipscomb, J. D., 1995, Gating effects of component B on oxygen activation by the methane monooxygenase hydroxylase component, J. Biol. Chem. 270:24662–24665.

    Article  CAS  PubMed  Google Scholar 

  • Liu, Y., Nesheim, J. C., Paulsen, K. E., Stankovich, M. T., and Lipscomb, J. D., 1997, Roles of the methane monooxygenase reductase component in the regulation of catalysis, Biochemistry 36:5223–5233.

    Article  CAS  PubMed  Google Scholar 

  • Lund, J., and Dalton, H., 1985, Further characterisation of the FAD and Fe2 S2 redox centres of component C, the NADH:acceptor reductase of the soluble methane monooxygenase of Methylococcus capsulatus (Bath), Eur. J. Biochem. 147:291–296.

    Article  CAS  PubMed  Google Scholar 

  • Lund, J., Woodland, M. P., and Dalton, H., 1985, Electron transfer reactions in the soluble methane monooxygenase ofMethylococcus capsulatus (Bath), Eur. J. Biochem. 47:297–305.

    Article  Google Scholar 

  • McMurry, T. J., and Groves, J. T., 1986, Metalloporphyrin models for cytochrome P-450. Cytochrome P-450 Structure, Mechanism, and Biochemistry. P. R. Ortiz de Montellano. New York, Plenum Press, 1–28.

    Chapter  Google Scholar 

  • Moenne-Loccoz, P., Krebs, C., Herlihy, K., Edmondson, D. E., Theil, E. C., Huynh, B. H., and Loehr, T., 1999, The ferroxidase reaction of ferritin reveals a diferric μ-1,2 bridging peroxide intermediate in common with other O2-activating non-heme diiron proteins, Biochemistry 38:5290–5295.

    Article  CAS  PubMed  Google Scholar 

  • Nesheim, J. C., and Lipscomb, J. D., 1996, Large isotope effects in methane oxidation catalyzed by methane monooxygenase: evidence for CóH bond cleavage in a reaction cycle intermediate, Biochemistry 35:10240–10247.

    Article  CAS  PubMed  Google Scholar 

  • Newcomb, M., Tadic-Biadatti, M.-H. L., Chestney, D. L., Roberts, E. S., and Hollenberg, P. F., 1995, A nonsynchronous concerted mechanism for cytochrome P-450 catalyzed hydroxylation, J. Am. Chem. Soc. 117:12085–12091.

    Article  CAS  Google Scholar 

  • Nguyen, H. H., Nakagawa, K. H., Hedman, B., Elliott, S. J., Lidstrom, M. E., Hodgson, K. O., and Chan, S. I., 1996, X-ray absorption and EPR studies on the copper ions associated with the particulate methane monooxygenase from Methylococcus capsulatus (Bath)ó Cu(I) Ions and their implications, J. Am. Chem. Soc. 118:12766–12776.

    Article  CAS  Google Scholar 

  • Nguyen, H. H., Elliott, S. J., Yip, J. H., and Chan, S. I., 1998, The particulate methane monooxygenase from Methylococcus capsulatus (Bath) is a novel copper-containing three-subunit enzyme. Isolation and characterization, J. Biol. Chem. 273:7957–7966.

    Article  CAS  PubMed  Google Scholar 

  • Ortiz de Montellano, P. R., 1995, Cytochrome P450: structure, mechanism, and biochemistry, Plenum Press, New York.

    Book  Google Scholar 

  • Paulsen, K. E., Liu, Y., Fox, B. G., Lipscomb, J. D., M,nck, E., and Stankovich, M. T., 1994, Oxidation-reduction potentials of the methane monooxygenase hydroxylase component from Methylosinus trichosporium OB3b, Biochemistry 33:713–722.

    Article  CAS  PubMed  Google Scholar 

  • Priestley, N. D., Floss, H. G., Froland, W. A., Lipscomb, J. D., Williams, P. G., and Morimoto, H., 1992, Cryptic stereospecificity of methane monooxygenase, J. Am. Chem. Soc. 114:7561–7562.

    Article  CAS  Google Scholar 

  • Prince, R. C., and Patel, R. N., 1986, Redox properties of the flavoprotein of methane monooxygenase, FEBS Lett. 203:127–130.

    Article  CAS  Google Scholar 

  • Pulver, S., Froland, W. A., Fox, B. G., Lipscomb, J. D., and Solomon, E. I., 1993, Spectroscopic studies of the coupled binuclear non-heme iron active site in the fully reduced hydroxylase component of methane monooxygenase: Comparison to deoxy and deoxy-azide hemerythrin, J. Am. Chem. Soc. 115:12409–12422.

    Article  CAS  Google Scholar 

  • Pulver, S. C., Froland, W. A., Lipscomb, J. D., and Solomon, E. I., 1997, Ligand field circular dichroism and magnetic circular dichroism studies of component B and substrate binding to the hydroxylase component of methane monooxygenase, J. Am. Chem. Soc. 19:387–395.

    Article  Google Scholar 

  • Que, L., Jr., and Dong, Y., 1996, Modeling the oxygen activation chemistry of methane monooxygenase and ribonucleotide reductase, Acc. Chem. Res. 29:190–196.

    Article  CAS  Google Scholar 

  • Rardin, R. L., Tolman, W. B., and Lippard, S. J., 1991, New J. Chem. 15:417–430.

    CAS  Google Scholar 

  • Rataj, M. J., Kauth, J. E., and Donnelly, M. I., 1991, Oxidation of deuterated compounds by high specific activity methane monooxygenase from Methylosinus trichosporium. Mechanistic implications, J. Biol. Chem. 266:18684–18690.

    CAS  PubMed  Google Scholar 

  • Riggs-Gelasco, P. J., Shu, L. J., Chen, S. X., Burdi, D., Huynh, B. H., Que, L., and Stubbe, J., 1998, Exafs Characterization of the intermediate X generated during the assembly of theEscherichia coli ribonucleotide reductase R2 diferric tyrosyl radical cofactor, J. Am. Chem. Soc. 120:849–860.

    Article  CAS  Google Scholar 

  • Rosenzweig, A. C., Frederick, C. A., Lippard, S. J., and Nordlund, P., 1993, Crystal structure of a bacterial non-haem iron hydroxylase that catalyses the biological oxidation of methane, Nature 366:537–543.

    Article  CAS  PubMed  Google Scholar 

  • Rosenzweig, A. C., Nordlund, P., Takahara, P. M., Frederick, C. A., and Lippard, S. J., 1995, Geometry of the soluble methane monooxygenase catalytic diiron center in two oxidation states, Chem. Biol. 2:409–418.

    Article  CAS  Google Scholar 

  • Rosenzweig, A. C., Brandstetter, H., Whittington, D. A., Wordlund, P., Lippard, S. J., and Frederick, C. A., 1997, Crystal structures of the methane monooxygenase hydroxylase from Methylococcus capsulatus (Bath): implications for substrate gating and component interactions, Proteins 29:141–152.

    Article  CAS  PubMed  Google Scholar 

  • Ruzicka, F., Huang, D. S., Donnelly, M. I., and Frey, P. A., 1990, Methane monooxygenase catalyzed oxygenation of 1,1-dimethylcyclopropane. Evidence for radical and carbocationic intermediates, Biochemistry 29:1696–1700.

    Article  CAS  PubMed  Google Scholar 

  • Sanders-Loehr, J., Wheeler, W. D., Shiemke, A. K., Averill, B. A., and Loehr, T. M., 1989, Electronic and Raman spectroscopic properties of oxo-bridge dinuclear iron centers in proteins and model compounds, J. Am. Chem. Soc. 111:8084–8093.

    Article  CAS  Google Scholar 

  • Schlichting, I., Berendzen, J., Chu, K., Stock, A. M., Sweet, R. M., Ringe, D., Petsko, G. A., Davies, M., Gerber, N. C., Mueller, E. J., Benson, D., Vidakovic, M., and Sligar, S. G., 1999, Crystal structures of intermediates occurring along the reaction coordinate of cytochrome P450cam, J. Inorg. Biochem. 74:49.

    Google Scholar 

  • Shilov, A. E., and Shteinman, A. A., 1999, Oxygen atom transfer into CóH bond in biological and model chemical systems. mechanistic aspects, Acc. Chem. Res. 32:763–771.

    Article  CAS  Google Scholar 

  • Shteinman, A. A., 1995, The mechanism of methane and dioxygen activation in the catalytic cycle of methane monooxygenase, FEBS Lett. 362:5–9.

    Article  CAS  PubMed  Google Scholar 

  • Shu, L., Liu, Y., Lipscomb, J. D., and Que, L., Jr., 1996, EXAFS studies of the methane monooxygenase hydroxylase component from Methylosinus trichosporium OB3b, JBIC 1:297–304.

    Article  CAS  Google Scholar 

  • Shu, L., Nesheim, J. C., Kauffmann, K., M,nck, E., Lipscomb, J. D., and Que, L., Jr., 1997, An Fe2 IVO2 diamond core structure for the key intermediate Q of methane monooxygenase, Science 275:515–518.

    Article  CAS  PubMed  Google Scholar 

  • Siegbahn, P. E. M., and Crabtree, R. H., 1997, Mechanism of CóH activation by diiron methane monooxygenasesóquantum chemical studies, J. Am. Chem. Soc. 119:3103–3113.

    Article  CAS  Google Scholar 

  • Siegbahn, P. E. M., Crabtree, R. H., and Nordlund, P., 1998, Mechanism of methane monooxygenaseóa structural and quantum chemical perspective, JBIC 3:314–317.

    Article  CAS  Google Scholar 

  • Siegbahn, P. E. M., 1999, Theoretical model studies of the iron dimer complex of MMO and RNR, Inorg. Chem. 38:2880–2889.

    Article  CAS  PubMed  Google Scholar 

  • Stainthorpe, A. C., Murrell, J. C., Salmond, G. P., Dalton, H., and Lees, V., 1989, Molecular analysis of methane monooxygenase from Methylococcus capsulatus (Bath), Arch. Microbial. 152:154–159.

    Article  CAS  Google Scholar 

  • Stainthorpe, A. C., Lees, V., Salmond, G. P., Dalton, H., and Murrell, J. C., 1990, The methane monooxygenase gene cluster of Methylococcus capsulatus (Bath), Gene 91:27–34.

    Article  CAS  PubMed  Google Scholar 

  • Stanley, S. H., Prior, S. D., Leak, D. J., and Dalton, H., 1983, Copper stress underlies the fundamental change in intracellular location of methane monooxygenase in methaneoxidizing organisms: Studies in batch and continuous cultures, Biotech. Lett. 55:487–492.

    Article  Google Scholar 

  • Thomann, H., Bernardo, M., McCormick, J. M., Pulver, S., Andersson, K. K., Lipscomb, J. D., and Solomon, E. I., 1993, Pulsed EPR studies of mixed valence [Fe(II)Fe(III)] forms of hemerythrin and methane monooxygenase: Evidence for a hydroxide bridge, J. Am. Chem. Soc. 115:8881–8882.

    Article  CAS  Google Scholar 

  • Tolman, W. B., Liu, S., Bentsen, J. G., and Lippard, S. J., 1991, Models of the reduced forms of polyiron-oxo proteins: An asymmetric, triply carboxylate bridged diiron(II) complex and its reactions with dioxygen, J. Am. Chem. Soc. 113:152–164.

    Article  CAS  Google Scholar 

  • Valentine, A. M., Wilkinson, B., Liu, K. E., Komarpanicucci, S., Priestley, N. D., Williams, P. G., Morimoto, H., Floss, H. G., and Lippard, S. J., 1997, Tritiated chiral alkanes as substrates for soluble methane monooxygenase from Methylococcus capsulatus (Bath)óprobes for the mechanism of hydroxylation, J. Am. Chem. Soc. 119:1818–1827.

    Article  CAS  Google Scholar 

  • Valentine, A. M., Stahl, S. S., and Lippard, S. J., 1999a, Mechanistic studies of the reaction of reduced methane monooxygenase hydroxylase with dioxygen and substrates, J. Am. Chem. Soc. 121:3876–3887.

    Article  CAS  Google Scholar 

  • Valentine, A. M., LeTadic-Biadatti, M. H., Toy, P. H., Newcomb, M., and Lippard, S. J., 1999b, Oxidation of ultrafast radical clock substrate probes by the soluble methane monooxygenase from Methylococcus capsulatus (Bath), J. Biol. Chem. 274:10771–10776.

    Article  CAS  PubMed  Google Scholar 

  • Wallar, B. J., and Lipscomb, J. D., 1996, Dioxygen activation by enzymes containing binuclear non-heme iron clusters, Chem. Rev. 96:2625–2657.

    Article  CAS  PubMed  Google Scholar 

  • Walters, K. J., Gassner, G. T., Lippard, S. J., and Wagner, G., 1999, Structure of the soluble methane monooxygenase regulatory protein B, Proc. Natl. Acad. Sci. USA 96:7877–7882.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilkins, P. C., Dalton, H., Samuel, C. J., and Green, J., 1994, Further evidence for multiple pathways in soluble methane-monooxygenase-catalysed oxidations from the measurement of deuterium kinetic isotope effects, Eur. J. Biochem. 226:555–560.

    Article  CAS  PubMed  Google Scholar 

  • Wilkinson, B., Zhu, M., Priestley, N. D., Nguyen, H.-H. T., Morimoto, H., Williams, P. G., Chan, S. I., and Floss, H. G., 1996, A concerted mechanism for ethane hydroxylation by the particulate methane monooxygenase from Methylococcus capsulatus (Bath), J. Am. Chem. Soc. 118:921–922.

    Article  CAS  Google Scholar 

  • Woodland, M. P., Patil, D. S., Cammack, R., and Dalton, H., 1986, ESR studies of protein A of the soluble methane monooxygenase from Methylococcus capsulatus (Bath), Biochim. Biophys. Acta 873:237–242.

    Article  CAS  Google Scholar 

  • Yoshizawa, K., 1998, Two-step concerted mechanism for alkane hydroxylation on the ferryl active site of methane monooxygenase, JBIC 3:318–324.

    Article  CAS  Google Scholar 

  • Zang, Y., Dong, Y., Kauffmann, K., M,nck, E., and Que, L., Jr., 1995, The first bis(μ-oxo)-diiron(III) complex. Structure and magnetic properties of [Fe2 (μ-O)2 (6TLA)2](ClO4)2, J. Am. Chem. Soc. 117:1169–1170.

    Article  CAS  Google Scholar 

  • Zhang, X.-Y., and Lipscomb, J. D., 1999, Kinetic studies on electron transfer reactions in methane monooxygenase from M. trichosporium OB3b, J. Inorg. Biochem. 74:349.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Kluwer Academic/Plenum Publishers

About this chapter

Cite this chapter

Brazeau, B.J., Lipscomb, J.D. (2000). Electron Transfer and Radical Forming Reactions of Methane Monooxygenase. In: Holzenburg, A., Scrutton, N.S. (eds) Enzyme-Catalyzed Electron and Radical Transfer. Subcellular Biochemistry, vol 35. Springer, Boston, MA. https://doi.org/10.1007/0-306-46828-X_7

Download citation

  • DOI: https://doi.org/10.1007/0-306-46828-X_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-46399-0

  • Online ISBN: 978-0-306-46828-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics