Skip to main content

Part of the book series: Subcellular Biochemistry ((SCBI,volume 35))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

6. References

  • Adams, B., Smith, A. T., Bailey, S., McEwan, A. G., and Bray, R. C., 1999, Reactions of dimethylsulfoxide reductase from Rhodobacter capsulatus with dimethylsulfide and with dimethylsulfoxide: complexities revealed by conventional and stopped-flow spectrophotometry, Biochemistry 38:8501–8511.

    Article  CAS  PubMed  Google Scholar 

  • Amaya, Y., Yamazaki, X., Sato, M., Noda, K., Nishino, T., and Nishino, T., 1990, Proteolytic conversion of xanthine dehydrogenase from the NAD-dependent type to the O2-dependent type, J. Biol. Chem. 265:14170–14175.

    CAS  PubMed  Google Scholar 

  • Athwal, G. S., Huber, J. L., and Huber, S. C., 1998, Phosphorylated nitrate reductase and 14-3-3 proteins, Plant Physiol. 118:1041–1048.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Axley, M. J., Grahame, D. A., and Stadtman, T. C., 1990, Ecsherichia coli formate-hydrogen lyase. Purification and properties of the selenium-dependent formate dehydrogenase complex, J. Biol. Chem. 265:18213–18218.

    CAS  PubMed  Google Scholar 

  • Balagopalakrishna, C., Kimbrough, J. T., and Westmoreland, T. D., 1996, Electronic structural contributions to g values and molybdenum hyperfine coupling constants in oxyhalide anions of molybdenum(V), Inorg. Chem. 35:7758–7768.

    Article  CAS  Google Scholar 

  • Barber, M. J., May, H. D., and Ferry, J. G., 1986, Inactivation of formate dehydrogenase from Methanobacterium formicicum by cyanide, Biochemistry 25:8150–8155.

    Article  CAS  Google Scholar 

  • Bennett, B., Benson, N., McEwan, A. G., and Bray, R. C., 1994, Multiple states of the molybdenum centre of dimethylsulfoxide reductase from Rhodobacter capsulatus revealed by EPR spectroscopy, Eur. J. Biochem. 225:321–331.

    Article  CAS  PubMed  Google Scholar 

  • Berg, J. M., and Holm, R. H., 1985, A model for the active sites of oxo-transfer molybdoenzymes: reactivity, kinetics and catalysis, J. Am. Chem. Soc. 107:925–932.

    Article  CAS  Google Scholar 

  • Berks, B. C., Richardson, D. J., Robinson, C., Reilly, A., Aplin, R. T., and Ferguson, S. J., 1994, Purification and characterization of the periplasmic nitrate reductase from Thiosphaera pantetropha., Eur. J. Biochem. 220:117–124.

    Article  CAS  PubMed  Google Scholar 

  • Bilous, P. T., and Weiner, J. H., 1988, Molecular cloning and expression of the Escherichia coli dimethyl sulfoxide reductase operon, J. Bacteriol. 170:1511–1518.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blasco, F., Iobbi, C., Giordano, G., Chippaux, M., and Bonnefoy, V., 1989, Nitrate reductase from Escherichia coli: completion of the nucleotide sequence of the nar operon and reassessment of the role of the α and β subunits in iron binding and electron transfer, Mol. Gen. Genet. 218:249–256.

    Article  CAS  PubMed  Google Scholar 

  • Blasco, F., Iobbi, C., Ratouchniak, J., Bonnefoy, V., and Chippaux, M., 1990, Nitrate reductases of Escherichia coli: sequence of the second nitrate reductase and comparison with that encoded by the narGHJI operon, Mol. Gen. Genet. 222:104–111.

    CAS  PubMed  Google Scholar 

  • Bordas, J., Bray, R. C., Garner, C. D., Gutteridge, S., and Hasnain, S. S., 1980, X-ray absorption spectroscopy of xanthine oxidase: the molybdenum centres of the functional and the desulfo forms, Biochem. J. 191:499–508.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boyington, J. C., Gladyshev, V. N., Khangulov, S. V., Stadtman, T. C., and Sun, P. D., 1997, Crystal structure of formate dehydrogenase H: catalysis involving Mo, molybdopterin, selenocysteine and an Fe4 S4 cluster, Science 275:1305–1308.

    Article  CAS  PubMed  Google Scholar 

  • Bray, R. C., 1988, The inorganic biochemistry of molybdoenzymes, Quart. Rev. Biophys. 21:299–329.

    Article  CAS  Google Scholar 

  • Bray, R. C., and George, G. N., 1985, Electron paramagnetic resonance studies using pre-steady-state kinetics and substitution with stable isotopes on the mechanism of action of molybdoenzymes, Biochem. Soc. Trans. 13:561–567.

    Article  Google Scholar 

  • Bray, R. C., and VÂnngÂrd, T., 1969, ëRapidly appearingí molybdenum electron paramagnetic resonance signals from reduced xanthine oxidase, Biochem. J. 114:725–734.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brody, M. S., and Hille, R., 1995, The reaction of chicken liver sulfite oxidase with dimethyl-sulfite, Biochim. Biophys. Acta. 1253:133–135.

    Article  PubMed  Google Scholar 

  • Brody, M. S., and Hille, R., 1999, The kinetic behavior of chicken liver sulfite oxidase. Biochemistry 38:6668–6677.

    Article  CAS  PubMed  Google Scholar 

  • Buc, J., Santini, C.-L., Blasco, F., Giordani, R., Crdenas, M. L., Chippaux, M., Cornish-Bowden, A., and Giordano, G., 1995, Kinetic studies of a soluble αβ complex of nitrate reductase A from Escherichia coli. Use of various αβ mutants with altered β subunits, Eur. J. Biochem. 234:766–772.

    Article  CAS  PubMed  Google Scholar 

  • Campbell, W. H., 1992, Expression in Escherichia coli of cytochrome c reductase activity from a maize NADH:nitrate reductase complementary DNA, Plant Physiol. 99:693–699.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Campbell, W. H., 1996, Nitrate reductase biochemistry comes of age, Plant Physiol. 111:355–361.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cannons, A. C., Iida, N., and Solomonson, L. P., 1991, Expression of a cDNA clone encoding the haem-binding domain of Chlorella nitrate reductase, Biochem. J. 278:203–209.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Caradonna, J. P., Reddy, P. R., and Holm, R. H., 1988, Kinetics, mechanisms, and catalysis of oxygen atom transfer reactions of S Oxide and pyridine N Oxide substrates with molybdenum (IV,VI) complexes: relevance to molybdoenzymes, J. Am. Chem. Soc. 110:2139–2144.

    Article  CAS  Google Scholar 

  • Choe, M., and Reznikoff, W. S., 1993, Identification of the regulatory sequence of anaerobically expressed locus aeg-46.5, J. Bacteriol. 175:1165–1172.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coughlan, M. P., Rajagopalan, K. V., and Handler, P., 1969, The role of molybdenum in xanthine oxidase and related enzymes. Reactivity with cyanide, arsenite, and methanol, J. Biol. Chem. 244:2658–2663.

    CAS  PubMed  Google Scholar 

  • Cramer, S. P, Wahl, R., and Rajagopalan, K. V., 1981, Molybdenum sites of sulfite oxidase and xanthine dehydrogenase, J. Am. Chem. Soc. 103:7721–7727.

    Article  CAS  Google Scholar 

  • Cramer, S. P, and Hille, R., 1985, Arsenite-inhibited xanthine oxidase-determination of the MoóSóAs geometry by EXAFS, J. Am. Chem. Soc. 107:8164–8169.

    Article  CAS  Google Scholar 

  • Czjzek, M., Dos Santos, J.-P, Pommier, J., Giordano, G., MÈjean, V., and Haser, R., 1998, Crystal structure of oxidized trimethylamine-N-oxide reductase from Shewanella massilia at 2.5 resolution, J. Mol. Biol. 284:435–447.

    Article  CAS  PubMed  Google Scholar 

  • DíArdenne, S. C., and Edmondson, D. E., 1990, Kinetic isotope effect studies on milk xanthine oxidase and on chicken liver xanthine dehydrogenase, Biochemistry 29:9046–9052.

    Article  Google Scholar 

  • Dias, J. M., Than, M. E., Humm, A., Huber, R., Bourenkov, G. P, Bartunik, H. D., Bursakov, S., Calvete, J., Caldiera, J., Carniero, C., Moura, J. J. G., Moura, I., and Romao, M. J., 1999, Crystal structure of the first dissimilatory nitrate reductase at 1.9 solved by MAD methods, Structure Fold Res. 7:65–79.

    Article  CAS  Google Scholar 

  • Dobbek, H., Gremer, L., Meyer, O., and Huber, R., 1999, Crystal structure and mechanism of CO dehydrogenase, a molybdo iron-sulfur flavoprotein containing S-selanylcysteine, Proc. Natl. Acad. Sci. (USA) 96:8884–8889.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Douglas, P., Morrice, N., and MacKintosh, C., 1995, Identification of a regulatory phosphorylation site in the hinge 1 region of nitrate reductase from spinach (Spinacea oleracea) leaves, FEBS Lett. 177:113–117.

    Article  Google Scholar 

  • Douglas, P., Moorhead, G., Hong, Y., Morrice, N., and MacKintosh, C., 1998, Purification of a nitrate reductase kinase from Spinaceaa oleracea leaves, and its identification as a calmodulin-domain protein kinase, Planta 206:435–442.

    Article  CAS  PubMed  Google Scholar 

  • Garrett, R. M., Johnson, J. M., Graf, T. N., Feigenbaum, A., and Rajagopalan, K.V., 1998, Human sulfite oxidase R160Q: identification of the mutation in a sulfite oxidase-deficient patient and expression and characterization of the mutant enzyme, Proc. Natl. Acad. Sci. (USA) 95:6394–6398.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garton, S. D., Hilton, J., Oku, H., Crouse, B. R., Rajagopalan, K. V., and Johnson, M. K., 1997, Active site structures and catalytic mechanism of Rhodobacter sphaeroides dimethyl sulfoxide reductase as revealed by resonance Raman spectroscopy, J. Am. Chem. Soc. 119:12906–12916.

    Article  CAS  Google Scholar 

  • George, G. N., Kipke, C. A., Prince, R. C., Sunde, R. A., Enemark, J. H., and Cramer, S. P., 1989, Structure of the active site of sulfite oxidase. X-ray absorption spectroscopy of the Mo(IV), Mo(V) and Mo(VI) oxidation states, Biochemistry 28:5075–5080.

    Article  CAS  PubMed  Google Scholar 

  • George, G. N., Garrett, R. M., Prince, R. C., and Rajagopalan, K. V., 1996, The molybdenum center of sulfite oxidase: a comparison of wild-type and and the cysteine 207 to serine mutant using x-ray absorption spectroscopy, J. Am. Chem. Soc. 118:8588–8592.

    Article  CAS  Google Scholar 

  • George, G. N., Hilton, J., and Rajagopalan, K. V., 1996, X-ray absorption spectroscopy of dimethyl-sulfoxide reductase from Rhodobacter sphaeroides, J. Am. Chem. Soc. 118:1113–1117.

    Article  CAS  Google Scholar 

  • George, G. N., Hilton, J., Temple, C., and Rajagopalan, K. V., 1999, Structure of the molybdenum site of dimethylsulfoxide reductase, J. Am. Chem. Soc. 121:1256–1266.

    Article  CAS  Google Scholar 

  • Gheller, S. F., Schultz, B. E., Scott, M. J., and Holm, R. H., 1992, A broad-substrate analogue reaction system of the molybdenum oxotransferases, J. Am. Chem. Soc. 114:6934–6935.

    Article  CAS  Google Scholar 

  • Gladyshev, V. N., Khangulov, S. V., Axley, M. J., and Stadtman, T. C., 1994, Coordination of selenium to molybdenum in formate dehydrogenase H from Escherichia coli, Proc. Natl. Acad. Sci. (USA) 91:7708–7711.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Greenwood, R. J., Wilson, G. L., Pilbrow, J. R., and Wedd, A. G., 1993, Molybdenum(V) sites in xanthine oxidase and relevant analog complexes: comparison of oxygen-17 hyperfine coupling, J. Am. Chem. Soc. 115:5385–5392.

    Article  CAS  Google Scholar 

  • Hille, R., 1994, The reaction mechanism of oxomolybdenum enzymes, Biochim. Biophys. Acta 1184:143–169.

    Article  CAS  PubMed  Google Scholar 

  • Hille, R., 1996, The mononuclear molybdenum enzymes, Chem. Rev. 96:2757–2816.

    Article  CAS  PubMed  Google Scholar 

  • Hille, R., and Anderson, R. F., 1991, Electron Transfer in Milk Xanthine Oxidase as Studied by Pulse Radiolysis, J. Biol. Chem. 266:5608–5615.

    CAS  PubMed  Google Scholar 

  • Hille, R., and Massey, V., 1986, The equilibration of reducing equivalents within milk xanthine oxidase, J. Biol. Chem. 261:1241–1247.

    CAS  PubMed  Google Scholar 

  • Hille, R., and Sprecher, H., 1987, On the mechanism of action of xanthine oxidase, J. Biol. Chem. 262:10914–10917.

    CAS  PubMed  Google Scholar 

  • Hille, R., and Stewart, R. C., 1984, The interaction of xanthine oxidase with 8-bromoxanthine, J. Biol. Chem. 259:1570–1576.

    CAS  PubMed  Google Scholar 

  • Hille, R., George, G. N., Eidsness, M. K., and Cramer, S. P., 1989, EXAFS of xanthine oxidase complexes with alloxanthine, violapterin, and 6-pteridylaldehyde, Inorg. Chem. 28:4018–4022.

    Article  CAS  Google Scholar 

  • Hille, R., RÈtey, Bartlewski-Hof, U., Reichenbacher, W., and Schink, B., 1999, Mechanistic aspects of molybdenum-containing enzymes, FEMS Microbiol. Rev. 22:489–501.

    Article  Google Scholar 

  • Hilton, J. C., Temple, C. A., and Rajagopalan, K. V., 1999, Re-design of Rhodobacter sphaeroides dimethyl sulfoxide reductase. Enhancement of adenosine N1-oxide reductase activity, J. Biol. Chem. 274:8428–8436.

    Article  CAS  PubMed  Google Scholar 

  • Holm, R. H., 1987, Metal-centered oxygen atom transfer reactions, Chem. Rev. 87:1401–1449.

    Article  CAS  Google Scholar 

  • Holm, R. H., and Donahue, J. P., 1993, A thermodynamic scale for oxygen atom transfer reactions, Polyhedron 12:571–589.

    Article  CAS  Google Scholar 

  • Howes, B. D., Bray, R. C., Richards, R. L., Turner, N. A., Bennett, B., and Lowe, D. J., 1996, Evidence favoring molybdenum-carbon bond formation in xanthine oxidase action: 17O-and 13C-ENDOR and kinetic studies, Biochemistry 35:1432–1443.

    Article  CAS  PubMed  Google Scholar 

  • Huber, R., Hof, P., Duarte, R. O., Moura, J. J. G., Moura, I., LeGall, J., Hille, R., Archer, M., and Rom,,o, M., 1996, A structure-based catalytic mechanism for the xanthine oxidase family of molybdenum enzymes, Proc. Natl. Acad. Sci. (USA) 93:8846–8851.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hunt, J., and Massey, V., 1992, Purification and properties of milk xanthine dehydrogenase, J. Biol. Chem. 267:21479–21485.

    CAS  PubMed  Google Scholar 

  • Hyde, G. E., and Campbell, W. H., 1990, High-level expression in Escherichia coli of the catalytically active flavin domain of corn leaf NADH:nitrate reductase and its comparison to the human NADH:cytochrome b5 reductase, Biochem. Biophys. Res. Commun. 168:1285–1291.

    Article  CAS  PubMed  Google Scholar 

  • Ilich, P., and Hille, R., 1999, Mechanism of formamide hydroxylation catalyzed by a molybdenum-dithiolene complex: a model of xanthine oxidase reactivity, J. Phys. Chem. B. 103:5406–5412.

    Article  CAS  Google Scholar 

  • Inscore, F. E., McNaughton, R., Westcott, B. L., Helton, M. E., Jones, R., Dhawan, I., Enemark, J. H., and Kirk, K. L., 1999, Spectroscopic evidence for a unique bonding interaction inoxo-molybdenum dithiolate complexes: implications for σ electron transfer pathways in the pyranopterin dithiolate centers of enzymes, Inorg. Chem. 38:1401–1410.

    Article  CAS  Google Scholar 

  • Jankielewicz, A., Klimmeck, O., and Kröger, A., 1995, The electron transfer from hydrogenase and formate dehydrogenase to polysulfide reductase in the membrane of Wolinella succinogenes, Biochim. Biophys. Acta 1231:157–162.

    Article  Google Scholar 

  • John, J. L., and Wadman, S. K., 1989, Molybdenum cofactor deficiency, in: The Metabolic Basis of Inherited Disease, 6th edition (C. R. Scriver, A. L. Beaudet, W. S. Sly, and D. L. Valle, eds.), McGraw-Hill, New York, pp. 1463–1475.

    Google Scholar 

  • Johnson, K. K., Rees, D. C., and Adams, M. W. W., 1996, Tungstoenzymes, Chem. Rev. 96:2817–2839.

    Article  CAS  PubMed  Google Scholar 

  • Kaiser, W. M., and Huber, S. C., 1994, Posttranslational regulation of nitrate reductase in higher plants, Plant Physiol. 106:817–821.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khangulov, S. V., Gladyshev, V. N., Dismukes, G. C., and Stadtman, T. C., 1998, Selenium-containing formate dehydrogenase H from Escherichia coli: a molybdopterin enzyme that catalyzes formate oxidation without oxygen transfer, Biochemistry 37:3518–3528.

    Article  CAS  PubMed  Google Scholar 

  • Kim, J. H., and Hille, R., 1994, Studies of substrate binding to xanthine oxidase by using a spin-labeled analog, J. Inorg. Biochem. 55:295–303.

    Article  CAS  PubMed  Google Scholar 

  • Kim, J. H., Ryan, M. G., Knaut, H., and Hille, R., 1996, The reductive half-reaction of xanthine oxidase: a pH dependence and solvent kinetic isotope effect study, J. Biol. Chem. 271:6771–6780.

    Article  CAS  PubMed  Google Scholar 

  • Kisker, C., Schindelin, H., and Rees, D. C., 1997a, Molybdenum-cofactor-containing enzymes: structure and mechanism, Ann. Rev. Biochem. 66:233–268.

    Article  CAS  PubMed  Google Scholar 

  • Kisker, C., Schindelin, H., Pacheco, A., Wehbi, W. A., Garrett, R. M., Rajagopalan, K. V., Enemark, J. H., and Rees, D. C., 1997b, Molecular basis of sulfite oxidase deficiency from the structure of sulfite oxidase, Cell 91:973–983.

    Article  CAS  PubMed  Google Scholar 

  • Kubo, Y., Ogura, N., and Nakagawa, H., 1988, Limited proteolysis of the nitrate reducase from spinach leaves, J. Biol. Chem. 263:19684–19689.

    CAS  PubMed  Google Scholar 

  • Li Calzi, Raviolo, C., Ghibaudi, E., De Gioia, Sahnona, M., Cazzaniga, G., Kurosaki, M., Terao, M., and Garattini, E., 1995, Purification, cDNA cloning and tissue distribution of bovine liver aldehyde oxidase, J. Biol. Chem. 270:31037–31045.

    Article  Google Scholar 

  • Lowe, D. J., and Bray, R. C., 1978, Magnetic coupling of the molybdenum and iron-sulfur centres in xanthine oxidase and xanthine dehydrogenase, Biochem. J. 169:471–479.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu, G., Campbell, W. H., Schneider, G., and Lindqvist, Y., 1994, Crystal structure of the FAD-containing fragment of corn nitrate reductase at 2.5 A resolution: relationship to other flavoprotein reductases, Structure 2:809–821.

    Article  CAS  PubMed  Google Scholar 

  • Lu, G., Lindqvist, Y., Schneider, G., Dwivedi, U., and Campbell, W. H., 1995, Structural studies on corn nitrate reductase: refined structure of the cytochrome b reductase fragment at 2.5 A, its ADP complex and an active-site mutant and modeling of the cytochrome bdomain, J. Mol. Biol. 248:931–948.

    Article  PubMed  Google Scholar 

  • Massey, V., and Edmondson, D., 1970, On the mechanism of inactivation of xanthine oxidase by cyanide, J. Biol. Chem. 245:6595–6598.

    CAS  PubMed  Google Scholar 

  • McAlpine, A. S., McEwan, A. G., and Bailey, S., 1998, The high resolution crystal structure of DMSO reductase in complex with DMSO, J. Mol. Biol. 275:613–623.

    Article  CAS  PubMed  Google Scholar 

  • McAlpine, A. S., McEwan, A. G., Shaw, A. L., and Bailey, S., 1997, Molybdenum active centre of DMSO reductase from Rhodobacter capsulatus: crystal structure of the oxidized enzyme at 1.82 resolution and the dithionite reduced enzyme at 2.8 resolution, J. Biol. Inorg. Chem. 2:690–701.

    Article  CAS  Google Scholar 

  • McCord, J. M., Roy, R. S., and Schaffer, S. W., 1985, Free radicals and myocardial ischemia. The role of xanthine oxidase, Adv. Myocardiol. 5:183–189.

    Article  CAS  PubMed  Google Scholar 

  • McEwan, A. G., Ferguson, S. J., and Jackson, J. B., 1991, Purification and properties of dimethylsulfoxide reductase from Rhodobacter capsulatus, Biochem. J. 274:305–307.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McWhirter, R. B., and Hille, R., 1991, The reductive half-reaction of xanthine oxidase. Spectral intermediates in the hydroxylation of 2-hydroxy-6-methylpurine, J. Biol. Chem. 266:23724–23731.

    CAS  PubMed  Google Scholar 

  • Mendel, R. R., and Schwartz, G., 1999, Molybdoenzymes and molybdenum cofactor in plants, Crit. Rev. Plant Sci. 18:33–69.

    Article  CAS  Google Scholar 

  • Meyer, O., and Rajagopalan, K. V., 1984, Selenite binding to carbon monoxide oxidase from Pseudomonas carboxidovorans. Selenium binds covalently to the protein and activates specifically the CO → methylene blue reaction, J. Biol. Chem. 259:5612–5617.

    CAS  PubMed  Google Scholar 

  • Meyer, O., Frunzke, K., and Mörsdorf, G., 1993, Biochemistry of the aerobic utilization of carbon monoxide, in: Microbial growth on C1 compounds (J. C. Murrell and D. P. Kelly, eds.), Intercept Press, Andover, pp. 433–459.

    Google Scholar 

  • Mondal, M. S., and Mitra, S., 1994, Kinetics and thermodynamics of the molecular mechanism of the reductive half-reaction of xanthine oxidase, Biochemistry 33:10305–10312.

    Article  CAS  PubMed  Google Scholar 

  • Murray, K. N., Watson, J. G., and Chaykin, S., 1966, Catalysis of the direct transfer of oxygen from nicotinamide N-oxide to xanthine by xanthine oxidase, J. Biol. Chem. 241:4798–4801.

    CAS  PubMed  Google Scholar 

  • Nipales, N. S., and Westmoreland, T. D., 1997, Correlation of EPR parameters with electronic structure in the homologous series of low-symmetry complexes Tp*MoOX2 (Tp*=hydrotris(3,5-dmethylpyrazol-1-yl)borate; X=F, Cl, Br), Inorg. Chem. 36:756–757.

    Article  CAS  Google Scholar 

  • Nishino, T., 1994, The conversion of xanthine dehydrogenase to xanthine oxidase and the role of the enzyme in reperfusion injury, J. Biochem. 116:1–6.

    CAS  PubMed  Google Scholar 

  • Nishino, T., and Nishino, T., 1987, Evidence for a tyrosine residue in the nicotinamide adenine dinucleotide binding site of chicken liver xanthine dehydrogenase, Biochemistry 26:3068–3072.

    Article  CAS  PubMed  Google Scholar 

  • Nishino, T., and Nishino, T., 1989, The nicotinamide adenine dinucleotide-binding site of chicken liver xanthine dehydrogenase, J. Biol. Chem. 264:5468–5473.

    CAS  PubMed  Google Scholar 

  • Nishino, T., Nishino, T., Schopfer, L. M., and Massey, V., 1989, The reactivity of chicken liver xanthine dehydrogenase with molecular oxygen, J. Biol. Chem. 264:2518–2527.

    CAS  PubMed  Google Scholar 

  • Palmer, G., and Massey, V., 1969, Spectroscopic studies of xanthine oxidase, J. Biol. Chem. 244:2614–2622.

    CAS  Google Scholar 

  • Pierson, D. E., and Campbell, A., 1990, Cloning and nucleotide sequence of bisC, the structural gene for biotin sulfoxide reductase in Escherichia coli, J. Bacteriol. 172:2194–2198.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pietsch, M. A., and Hall, M. B., 1996, Theoretical studies on models for the oxo-transfer reaction of dioxomolybdenum enzymes, Inorg. Chem. 35:1273–1278.

    Article  CAS  PubMed  Google Scholar 

  • Rajagopalan, K. V., 1992, Novel aspects of the biochemistry of the molybdenum cofactor, Adv. Enzymol. 64:215–290.

    Google Scholar 

  • Rajagopalan, K. V., and Handler, P., 1967, Purification and properties of chicken liver xanthine dehydrogenase, J. Biol. Chem. 242:4097–4107.

    CAS  PubMed  Google Scholar 

  • Rajagopalan, K. V., and Johnson, J. L., 1992, The pterin molybdenum cofactors, J. Biol. Chem. 267:10199–10202.

    CAS  PubMed  Google Scholar 

  • RappÈ, A. K., and Goddard, W. A., III, 1980, Bivalent spectator oxo bonds in metathesis and epoxidation of alkenes, Nature 285:311–314.

    Article  Google Scholar 

  • RappÈ, A. K., and Goddard, W. A., III, 1982, Olefin metathesis. A mechanistic study of high-valent group 6 catalysts, J. Am. Chem. Soc. 104:3287–3289.

    Article  Google Scholar 

  • Ratnam, K., Shiraishi, N., Campbell, W. H., and Hille, R., 1995, Spectroscopic and kinetic characterization of the recombinant wild-type and C242S mutant of the cytochrome b reductase fragment of nitrate reductase, J. Biol. Chem. 270:24067–24072.

    Article  CAS  PubMed  Google Scholar 

  • Ratnam, K., Shiraishi, N., Campbell, W. H., and Hille, R., 1997, Spectroscopic and kinetic characterization of the heme-and flavin-containing cytochrome c reductase fragment of nitrate reductase, J. Biol. Chem. 272:2122–2128.

    Article  CAS  PubMed  Google Scholar 

  • Reichenbecher, W., Rüdiger, A., Kroneck, P. M. H., and Schink, B., 1996, One molecule of molybdopterin guanine dinucleotide is associated with each subunit of the heterodimeric MoóFeóS protein transhydroxylase of Pelobacter acidigallici as determined by SDS/PAGE electrophoresis and mass spectrometry, Eur. J. Biochem. 237:413–419.

    Article  Google Scholar 

  • Ribbe, M., Gadkari, D., and Meyer, O., 1997, N2 fixation by Streptomyces thermoautotrophicus involves a molybdenum-dinitrogenase and a manganese-superoxide oxidoreductase that couple N2 reduction to the oxidation of superoxide produced from O2 by a molybdenumó CO dehydrogenase, J. Biol. Chem. 272:26627–26633.

    Article  CAS  PubMed  Google Scholar 

  • Rom,,o, M. J., Archer, M., Moura, I., Moura, J. J. G., LeGall, J., Engh, R., Schneider, M., Hof, P., and Huber, R., 1995, Crystal structure of the xanthine oxidase-related aldehyde oxidoreductase from D. gigas, Science 270:1170–1176.

    Article  Google Scholar 

  • Rosner, B. M., Rainey, F. A., Kroppenstedt, R. M., and Schink, B., 1997, Acetylene degradation by new isolates of aerobic bacteria and comparison of acetylene hydratase enzymes, FEMS Microbiol. Lett. 148:175–180.

    Article  CAS  PubMed  Google Scholar 

  • Satoh, T., and Kurihara, F. N., 1987, Purification and properties of dimethylsulfoxide reductase containing a molybdenum cofactor from a denitrifier, Rhodopseudomonas sphaeroides f.s. denitrificans, J. Biochem. 102:191–197.

    CAS  PubMed  Google Scholar 

  • Schindelin, H., Kisker, C., Hilton, J., Rajagopalan, K. V., and Rees, D. C., 1996, Crystal structure of DMSO reductase: redox-linked changes in molybdopterin coordination, Science 272:1615–1621.

    Article  CAS  PubMed  Google Scholar 

  • Schindelin, H., Kisker, C., and Rees, D. C., 1997, The molybdenum cofactor: a crystallographic perspective, J. Biol. Inorg. Chem. 2:773–781.

    Article  CAS  Google Scholar 

  • Schmitz, R. A., Albracht, S. P. J., and Thauer, R. K., 1992, A molybdenum and a tungsten isoenzyme of formylmethanofuran dehydrogenase in the thermophilic archaeon Methanobacterium wolfei, Eur. J. Biochem. 209:1013–1018.

    Article  CAS  PubMed  Google Scholar 

  • Schneider, F., Loewe, J., Huber, R., Schindelin, H., and Kisker, C., 1996, Crustal structure of dimethyl sulfoxide reductase from Rhodobacter capsulatus at 1.88 resolution, J. Mol. Biol. 263:53–63.

    Article  CAS  PubMed  Google Scholar 

  • Schübel, U., Kraut, M., Mördorf, G., and Meyer, O., 1996, Molecular characterization of the gene cluster coxMSL encoding the molybdenum-containing carbon monoxide dehydrogenase of Oligotropha carboxidovorans, J. Bacteriol. 177:2197–2203.

    Article  Google Scholar 

  • Schultz, B. E., Gheller, S. F., Muetterties, M. C., Scott, M. J., and Helm, R. H., 1993, Molybdenum-mediated oxygen atom transfer: an improved analogue reaction system of the molybdenum oxotransferases, J. Am. Chem. Soc. 115:2714–2722.

    Article  CAS  Google Scholar 

  • Schultz, B. E., Hille, R., and Holm, R. H., 1995, Direct oxygen atom transfer in the mechanism of action of Rhodobacter sphaeroides dimethylsulfoxide reductase, J. Am. Chem. Soc. 117:827–828.

    Article  CAS  Google Scholar 

  • Shaw, A. L., Hochkoeppler, A., Bonora, P., Zannoni, D., Hanson, G., and McEwan, A. G., 1999, Characterization of DorC from Rhodobacter capsulatus, a c-type cytochrome involved in electron transfer to dimethylsulfoxide reductase, J. Biol. Chem. 274:9911–9914.

    Article  CAS  PubMed  Google Scholar 

  • Stiefel, E. I., 1977a, Proposed molecular mechanism of the action of molybdenum in enzymes: coupled proton and electron transfer, Proc. Natl. Acad. Sci. 70:988–992.

    Article  Google Scholar 

  • Stiefel, E. I., 1977b, The coordination and bioinorganic chemistry of molybdenum, Prog. Inorg. Chem. 21:1–221.

    Article  Google Scholar 

  • Su, W, Mertens, J. A., Kanamaru, K., Campbell, W. H., and Crawford, N. M., 1999, Analysis of wild-type and mutant plant nitrate reductase expressed in the methylotrophic yeast Pichia pastoris, Plant Physiol. 115:1135–1143.

    Article  Google Scholar 

  • Sullivan, E. P., Jr., Hazzard, J. T., Tollin, G., and Enemark, J. H., 1992, Inhibition of intramolecular electron transfer in sulfite oxidase by anion binding, J. Am. Chem. Soc. 114:9662–9663.

    Article  CAS  Google Scholar 

  • Sullivan, E. P., Jr., Hazzard, J. T., Tollin, G., and Enemark, J. H., 1993, Electron transfer in sulfite oxidase: effects of pH and anions on transient kinetics, Biochemistry 32:12465–12470.

    Article  CAS  PubMed  Google Scholar 

  • Swann, J., and Westmoreland, T. D., 1997, Density functional calculations of g values and molybdenum hyperfine coupling constants for a series of molybdenum(V) oxyhalide anions, Inorg. Chem. 36:5348–5357.

    Article  CAS  Google Scholar 

  • Symons, M. C. R., Taiwo, F. A., and Peterson, R. L., 1989, Electron addition to xanthine oxidase, J. Chem. Soc. Faraday Trans. 85:4063–4074.

    Article  CAS  Google Scholar 

  • Thauer, R. K., 1998, Biochemistry of methanogenesis, Microbiology 144:2377–2406.

    Article  CAS  PubMed  Google Scholar 

  • Thomas, G., Potter, L., and Cole, J. A., 1999, The periplasmic nitrate reductase from Escherichia coli: a heterodimeric molybdoprotein with a double-arginine signal sequence and an unusual leader peptide cleavage site, FEMS Microbiol. Lett. 174:167–171.

    Article  CAS  PubMed  Google Scholar 

  • Tanner, S. J., Bray, R. C., and Bergmann, F., 1978, 13C hyperfine splitting of some molybdenum electron paramagnetic resonance signals of xanthine oxidase, Biochem. Soc. Trans. 6:1328–1330.

    Article  CAS  PubMed  Google Scholar 

  • Turner, N. A., Bray, R. C., and Diakun, G. P., 1989, Information from e.x.a.f.s. spectroscopy on the structures of different forms of molybdenum in xanthine oxidase and the catalytic mechanism of the enzyme, Biochem. J. 260:563–571.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Turner, N. A., Doyle, W. A., Ventom, A. M., and Bray, R. C., 1995, Properties of liver aldehyde oxidase and the relationship of the enzyme to xanthine oxidase and dehydrogenase, Eur. J. Biochem. 232:646–657.

    Article  CAS  PubMed  Google Scholar 

  • Vos, J. P., Lopes-Cardozo, M., and Gadella, B. M., 1994, Metabolic and functional aspects of sulfogalactolipids, Biochim. Biophys. Acta 1211:125–149.

    Article  CAS  PubMed  Google Scholar 

  • Weiner, J. H., MacIsaac, D. P., Bishop, R. E., and Bilous, P. T., 1988, Purification and properties of Escherichia coli dimethylsulfoxide reductase, an iron-sulfur molybdoenzyme with broad substrate specificity, J. Bacteriol. 270:2505–2520.

    Google Scholar 

  • Weiner, J. H., Rothery, R. A., Sambasivarao, D., and Trieber, C. A., 1992, Molecular analysis of dimethylsulfoxide reductase: a complex iron-sulfur molybdoenzyme of Escherichia coli, Biochim. Biophys. Acta 1102:1–12.

    Article  CAS  PubMed  Google Scholar 

  • Wootton, J. C., Nicolson, R. E., Cock, J. M., Walters, J. W., Burke, J. F., Doyle, W. A., and Bray, R. C., 1991, Enzymes depending on the pterin molybdenum cofactor: sequence families,spectral properties and possible cofactor binding domains, Biochim. Biophys. Acta 1057:157–185.

    Article  CAS  PubMed  Google Scholar 

  • Xia, M., Dempski, R., and Hille, R., 1999, The reductive half-reaction of xanthine oxidase. Reaction with aldehyde substrates and identification of the catalytically labile oxygen, J. Biol. Chem. 274:3323–3330.

    Article  CAS  PubMed  Google Scholar 

  • Xiao, Z., Young, C. G., Enemark, J. H., and Wedd, A. G., 1992, A single model displaying all the important centers and processes involved in catalysis by molybdoenzymes containing [MoVIO2]2+ active sites, J. Am. Chem. Soc. 114:9194–9195.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Kluwer Academic/Plenum Publishers

About this chapter

Cite this chapter

Hille, R. (2000). Molybdenum Enzymes. In: Holzenburg, A., Scrutton, N.S. (eds) Enzyme-Catalyzed Electron and Radical Transfer. Subcellular Biochemistry, vol 35. Springer, Boston, MA. https://doi.org/10.1007/0-306-46828-X_13

Download citation

  • DOI: https://doi.org/10.1007/0-306-46828-X_13

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-46399-0

  • Online ISBN: 978-0-306-46828-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics