Skip to main content

Regulation of the Hypoxia-Inducible Factor-1α

ARNT is not necessary for hypoxic induction of HIF-1α in the nucleus

  • Chapter
Oxygen Sensing

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 475))

Summary

Hypoxia-inducible factor-1 (HIF-1) is a master regulator of mammalian oxygen homeostasis. HIF-1 consists of two subunits, HIF-1α and the aryl hydrocarbon receptor nuclear translocator (ARNT). Whereas hypoxia prevents ubiquitination and proteasomal degradation of HIF-1α ARNT expression is thought to be oxygen-independent. We and others previously showed that ARNT is indispensable for HIF-1 DNA-binding and transactivation function. To examine the requirement of ARNT for accumulation and nuclear translocation of HIF-1α in hypoxia, we used ARNT-mutant mouse hepatoma and ARNT-deficient embryonic stem cells. As shown by immunofluorescence, HIF-1α accumulation in the nucleus of hypoxic cells did not require ARNT, demonstrating that nuclear translocation is intrinsic to HIF-1α During biochemical separation, both HIF-1α and ARNT tend to leak from the nuclei in the absence of the corresponding subunit, suggesting that heterodimerization is required for stable association within the nuclear compartment. Nuclear stabilization of the heterodimer might also explain the hypoxically increased total cellular ARNT levels observed in some of the cell lines examined.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bunn, H. F., and Poyton, R. O., 1996, Oxygen sensing and molecular adaptation to hypoxia. Physiol. Rev. 76: 839–885.

    Google Scholar 

  • Camenisch, G., Tini, M., Chilov, D., Kvietikova, I., Srinivas, V., Caro, J., Spielmann, P., Wenger, R. H., and Gassmann, M., 1999, General applicability of chicken egg yolk antibodies: the performance of IgY immunoglobulins raised against the hypoxia-inducible factor 1α FASEB J. 13: 81–88.

    Google Scholar 

  • Carmeliet, P., Dor, Y., Herbert, J. M, Fukumura, D., Brusselmans, K., Dewerchin, M., Neeman, M., Bono, F., Abramovitch, R., Maxwell, P., Koch, C. J., Ratcliffe, P., Moons, L., Jain, R. K., Collen, D., and Keshet, E., 1998, Role of HIF-1α in hypoxia-mediated apoptosis, cell proliferation and tumour angiogenesis. Nature 394: 485–490.

    Google Scholar 

  • Chilov, D., Camenisch, G., Kvietikova, I., Ziegler, U., Gassmann, M., and Wenger, R. H., 1999, Induction and nuclear translocation of hypoxia-inducible factor-1 (HIF-1): heterodimerization with ARNT is not necessary for nuclear accumulation of HIF-1α J. Cell Sci. 112: 1203–1212.

    Google Scholar 

  • Ema, M., Hirota, K., Mimura, J., Abe, H., Yodoi, J., Sogawa, K., Poellinger, L., and Fujii-Kuriyama, Y., 1999, Molecular mechanisms of transcription activation by HLF and HIFI-α in response to hypoxia: their stabilization and redox signal-induced interaction with CBP/p300. EMBO J. 18: 1905–1914.

    Google Scholar 

  • Forsythe, J. A., Jiang, B. H., Iyer, N. V., Agani, F., Leung, S. W., Koos, R. D., and Semenza, G. L., 1996, Activation of vascular endothelial growth factor gene transcription by hypoxia-inducible factor 1. Mol. Cell. Biol. 16: 4604–4613.

    Google Scholar 

  • Gassmann, M., Kvietikova, I., Rolfs, A., and Wenger, R. H., 1997, Oxygen-and dioxin-regulated gene expression in mouse hepatoma cells. Kidney Int. 51:567–574.

    Google Scholar 

  • Gassmann, M., and Wenger, R. H., 1997, HIF-1, a mediator of the molecularresponse to hypoxia. News Physiol. Sci. 12: 214–218.

    Google Scholar 

  • Gradin, K., McGuire, J., Wenger, R. H., Kvietikova, I., Whitelaw, M. L., Toftgard, R., Tora, L., Gassmann, M., and Poellinger, L., 1996, Functional interference between hypoxia and dioxin signal transduction pathways: competition for recruitment of the Arnt transcription factor. Mol. Cell. Biol. 16: 5221–5231.

    Google Scholar 

  • Hankinson, O., 1995, The aryl hydrocarbon receptor complex. Annu. Rev. Pharmacol. Toxicol. 35: 307–340.

    Google Scholar 

  • Hoffman, E. C., Reyes, H., Chu, F. F., Sander, F., Conley, L. H., Brooks, B. A., and Hankinson, O., 1991, Cloning of a factor required for activity of the Ah (dioxin) receptor. Science 252: 954–958.

    Google Scholar 

  • Hord, N. G., and Perdew, G. H., 1994, Physicochemical and immunocytochemical analysis of the aryl hydrocarbon receptor nuclear translocator: characterization of two monoclonal antibodies to the aryl hydrocarbon receptor nuclear translocator. Mol. Pharmacol. 46: 618–626.

    Google Scholar 

  • Huang, E. L., Gu, J., Schau, M., and Bunn, H. F., 1998, Regulation of hypoxia-inducible factor 1α is mediated by an oxygen-dependent domain via the ubiquitin-proteasome pathway. Proc. Natl. Acad. Sci. U.S.A. 95: 7987–7992.

    Google Scholar 

  • Huang, L. E., Arany, Z., Livingston, D. M., and Bunn, H. F., 1996, Activation of hypoxia-inducible transcription factor depends primarily upon redox-sensitive stabilization of its subunit. J. Biol. Chem. 271: 32253–32259.

    Google Scholar 

  • Iyer, N. V., Kotch, L. E., Agani, F., Leung, S. W., Laughner, E., Wenger, R. H., Gassmann, M., Gearhart, J. D., Lawler, A. M., Yu, A. Y., and Semenza, G. L., 1998, Cellular and developmental control of O2 homeostasis by hypoxia-inducible factor 1α. Genes Dev. 12: 149–162.

    Google Scholar 

  • Jiang, B. H., Agani, F., Passaniti, A., and Semenza, G. L., 1997, V-SRC induces expression of hypoxia-inducible factor 1 (HIF-1) and transcription of genes encoding vascular endothelial growth factor and enolase 1: involvement of HIF-1 in tumor progression. Cancer Res. 57: 5328–5335.

    Google Scholar 

  • Jiang, B. H., Rue, E., Wang, G. L., Roe, R., and Semenza, G. L., 1996, Dimerization, DNA binding, and transactivation properties of hypoxia-inducible factor 1. J. Biol. Chem. 271: 17771–17778.

    Google Scholar 

  • Jiang, B. H., Semenza, G. L., Bauer, C., and Marti, H. H., 1996, Hypoxia-inducible factor 1 levels vary exponentially over a physiologically relevant range of O2 tension. Am. J. Physiol. 271: C1172–1180.

    Google Scholar 

  • Jiang, B. H., Zheng, J. Z., Leung, S. W., Roe, R., and Semenza, G. L., 1997, Transactivation and inhibitory domains of hypoxia-inducible factor 1α Modulation of transcriptional activity by oxygen tension. J. Biol. Chem. 272: 19253–19260.

    Google Scholar 

  • Kallio, P. J., Pongratz, I., Gradin, K., McGuire, J., and Poellinger, L., 1997, Activation of hypoxia-inducible factor 1α posttranscriptional regulation and conformational change by recruitment of the Arnt transcription factor. Proc. Natl. Acad. Sci. U.S.A. 94: 5667–5672.

    Google Scholar 

  • Kallio, P. J., Wilson, W. J., S, O. B., Makino, Y., and Poellinger, L., 1999, Regulation of the hypoxia-inducible transcription factor 1α by the ubiquitin-proteasome pathway. J. Biol. Chem. 274:6519–6525.

    Google Scholar 

  • Kotch, L. E., Lyer, N. V., Laughner, E., and Semenza, G. L., 1999, Defective vascularization of embryos is not associated with VEGF deficiency but with mesenchymal cell death. Dev. Biol. 209: 254–267.

    Google Scholar 

  • Kozak, K. R., Abbott, B., and Hankinson, O., 1997, Arnt-deficient mice and placental differentiation. Dev. Biol. 191: 297–305.

    Google Scholar 

  • Lee, P. J., Jiang, B. H., Chin, B. Y., Lyer, N. V., Alam, J., Semenza, G. L., and Choi, A. M., 1997. Hypoxia-inducible factor-1 mediates transcriptional activation of the heme oxygenase-1 gene in response to hypoxia. J. Biol. Chem. 272: 5375–5381.

    Google Scholar 

  • Liu, Y. X., Christou, H., Morita, T., Laughner, E., Semenza, G. L., and Kourembanas, S., 1998, Carbon monoxide and nitric oxide suppress the hypoxic induction of vascular endothelial growth factor gene via the 5’ enhancer. J. Biol. Chem. 273: 15257–15262.

    Google Scholar 

  • Maltepe, E., Schmidt, J. V., Baunoch, D., Bradfield, C. A., and Simon, M. C., 1997, Abnormal angiogenesis and responses to glucose and oxygen deprivation in mice lacking the protein ARNT. Nature 386: 403–407.

    Google Scholar 

  • Martin, C., Yu, A. Y., Jiang, B. H., Davis, L., Kimberly, D., Hohimer, A. R., and Semenza, G. L., 1998, Cardiac hypertrophy in chronically anemic fetal sheep-increased vascularization is associated with increased myocardial expression of vascular endothelial growth factor and hypoxia-inducible factor 1. Am. J. Obst. Gynecol. 178: 527–534.

    Google Scholar 

  • Maxwell, P. H., Wiesener, M. S., Chang, G. W., Clifford, S. C., Vaux, E. C., Cockman, M. E., Wykoff, C. C., Pugh, C. W., Maher, E. R., and Ratcliffe, P. J., 1999, The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature 399: 271–275.

    Google Scholar 

  • Numayama-Tsuruta, K., Kobayashi, A., Sogawa, K., and Fujii-Kuriyama, Y., 1997, A point mutation responsible for defective function of the aryl-hydrocarbon-receptor nuclear translocator in mutant Hepa-lclc7 cells. Eur. J. Biochem. 246: 486–495.

    Google Scholar 

  • Pollenz, R. S., 1996, The aryl-hydrocarbon receptor, but not the aryl-hydrocarbon receptor nuclear translocator protein, is rapidly depleted in hepatic and nonhepatic culture cells exposed to 2,3,7,8-tetrachlorodibenzo-p-dioxin. Mol. Pharmacol. 49: 391–398.

    Google Scholar 

  • Pollenz, R. S., Sattler, C. A., and Poland, A., 1994, The aryl hydrocarbon receptor and aryl hydrocarbon receptor nuclear translocator protein show distinct subcellular localizations in Hepa 1c1c7 cells by immunofluorescence microscopy. Mol. Pharmacol. 45: 428–438.

    Google Scholar 

  • Ryan, H. E., Lo, J., and Johnson, R. S., 1998, HIF-1α is required for solid tumor formation and embryonic vascularization. EMBO J. 17: 3005–3015.

    Google Scholar 

  • Salceda, S., Beck, I., and Caro, J., 1996, Absolute requirement of aryl hydrocarbon receptor nuclear translocator protein for gene activation by hypoxia. Arch. Biochem. Biophys. 334: 389–394.

    Google Scholar 

  • Salceda, S., and Caro, J., 1997, Hypoxia-inducible factor 1α (HIF-1α protein is rapidly degraded by the ubiquitin-proteasome system under normoxic conditions. Its stabilization by hypoxia depends on redox-induced changes. J. Biol. Chem. 272: 22642–22647.

    Google Scholar 

  • Schmidt, J. V., and Bradfield, C. A., 1996, Ah receptor signaling pathways. Ann. Rev. Cell. Dev. Biol. 12: 55–89.

    Google Scholar 

  • Semenza, G. L., 1998, Hypoxia-inducible factor 1: master regulator of O2 homeostasis. Current Opinion in Genetics & Development 8: 588–594.

    Google Scholar 

  • Tian, H., Hammer, R. E., Matsumoto, A. M., Russell, D. W., and McKnight, S. L., 1998, The hypoxia-responsive transcription factor EPAS1 is essential for catecholamine homeostasis and protection against heart failure during embryonic development. Genes Dev. 12: 3320–3324.

    Google Scholar 

  • Wang, G. L., Jiang, B. H., Rue, E. A., and Semenza, G. L., 1995, Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc. Natl. Acad. Sci. U.S.A. 92: 5510–5514.

    Google Scholar 

  • Wang, G. L., Jiang, B. H., and Semenza, G. L., 1995, Effect of altered redox states on expression and DNA-binding activity of hypoxia-inducible factor 1. Biochem. Biophys. Res. Commun. 212: 550–556.

    Google Scholar 

  • Wang, G. L., Jiang, B. H., and Semenza, G. L., 1995, Effect of protein kinase and phosphatase inhibitors on expression of hypoxia-inducible factor 1. Biochem. Biophys. Res. Commun. 216: 669–675.

    Google Scholar 

  • Wenger, R. H., Camenisch, G., Desbaillets, I., Chilov, D., and Gassmann, M., 1998, Up-regulation of hypoxia-inducible factor-1α is not sufficient for hypoxic/anoxic p53 induction. Cancer Res. 58: 5678–5680.

    Google Scholar 

  • Wenger, R. H., and Gassmann, M., 1997, Oxygen(es) and the hypoxia-inducible factor-1. Biol. Chem. 378: 609–616.

    Google Scholar 

  • Wood, S. M., Gleadle, J. M., Pugh, C. W., Hankinson, O., and Ratcliffe, P. J., 1996, The role of the aryl hydrocarbon receptor nuclear translocator (ARNT) in hypoxic induction of gene expression. Studies in ARNT-deficient cells. J. Biol. Chem. 271: 15117–15123.

    Google Scholar 

  • Yu, A. Y., Shimoda, L. A., Iyer, N. V., Huso, D. L., Sun, X., McWilliams, R., Beaty, T., Sham, J. S., Wiener, C. M., Sylvester, J. T., and Semenza, G. L., 1999, Impaired physiological responses to chronic hypoxia in mice partially deficient for hypoxia-inducible factor 1α. J. Clin. Invest. 103: 691–696.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

Gassmann, M., Chilov, D., Wenger, R.H. (2002). Regulation of the Hypoxia-Inducible Factor-1α. In: Lahiri, S., Prabhakar, N.R., Forster, R.E. (eds) Oxygen Sensing. Advances in Experimental Medicine and Biology, vol 475. Springer, Boston, MA. https://doi.org/10.1007/0-306-46825-5_9

Download citation

  • DOI: https://doi.org/10.1007/0-306-46825-5_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-46367-9

  • Online ISBN: 978-0-306-46825-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics