Skip to main content

Oxygen, Homeostasis, and Metabolic Regulation

  • Chapter

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 475))

Abstract

Even a cursory review of the literature today indicates that two views dominate experimental approaches to metabolic regulation. Model I assumes that cell behavior is quite similar to that expected for a bag of enzymes. Model II assumes that 3-D order and structure constrain metabolite behavior and that metabolic regulation theory has to incorporate structure to ever come close to describing reality. The phosphagen system may be used to illustrate that both approaches lead to very productive experimentation and significant advances are being made within both theoretical frameworks. However, communication between the two approaches or the two ‘groups’ is essentially nonexistent and in many cases (our own for example) some experiments are done in one framework and some in the other (implying some potential schizophrenia in the field). In our view, the primary paradox and problem which no one has solved so far is that essentially all metabolite concentrations are remarkably stable (are homeostatic) over large changes in pathway fluxes. For muscle cells O2 is one of the most perfectly homeostatic of all even though O2 delivery and metabolic rate usually correlate in a 1:1 fashion. Four explanations for this behavior are given by traditional metabolic regulation models. Additionally, there is some evidence for universal O2 sensors which could help to get us out of the paradox. In contrast, proponents of an ultrastructurally dominated view of the cell assume intracellular perfusion or convection as the main means for accelerating enzyme-substrate encounter and as a way to account for the data which have been most perplexing so far: the striking lack of correlation between changes in pathway reaction rates and changes in concentrations of pathway substrates and intermediates, including oxygen. The polarization illustrated by these two views of living cells extends throughout the metabolic regulation field (and has caused the field to progress along two surprisingly independent paths with minimal communication between them). The time may have come when cross talk between the two fields may be useful.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alien, P.S., Matheson, G.O., Zhu, G., Gheorgiu, D, Dunlop, R.S., Falconer, T., Stanley, C. and Hochachka, P.W. (1997) Simultaneous 31P magnetic resource spectroscopy of the soleus and gastrocnemius in sherpas during graded calf muscle exercise and recovery. Amer. J. Physiol.., 273, R999–R1007.

    Google Scholar 

  2. Arthur, P.G., M.C. Hogan, P.D. Wagner, and P.W. Hochachka (1992) Modelling the effects of hypoxia on ATP turnover in exercising muscle. J. Appl. Physiol. 73, 737–760.

    CAS  Google Scholar 

  3. Atkinson, D.E. (1977) Cellular energy metabolism and its regulation. Academic Press, New York.

    Google Scholar 

  4. Atkinson, D.E. (1990) Control of Metabolic Processes (Ed. Cornish-Bowden, A. and M.L. Cardenas), Plenum Press, N.Y., pp. 11–27.

    Google Scholar 

  5. Balban, R.S. (1990) Regulation of oxidative phosphorylation in the mammalian cell. Am. J. Physiol. 258, C377–C389.

    Google Scholar 

  6. Betts, D.F. and D.K. Srivastava (1991) The rationalization of high enzyme concentrations in metabolic pathways such as glycolysis. J. Theoret. Biol. 151, 155–167.

    CAS  Google Scholar 

  7. Brooks, S.P. and Storey, K.B. (1991) Where is the glycolytic complex? A cricial evaluation of the present data from muscle tissue. FEBS Lett. 278, 135–138.

    Article  CAS  PubMed  Google Scholar 

  8. Chaen, S., J. Inoue, and H. Sugi (1995) The force-velocity relationship of the ATP-dependent actin-myosin sliding causing cytoplasmic streaming in algal cells studied using a centrifuge microscope. J. Exp. Biol. 198, 1021–1027.

    CAS  PubMed  Google Scholar 

  9. Conley KE. Kushmerick MJ. Jubrias SA. (1998) Glycolysis is independent of oxygenation state in stimulated human skeletal muscle in vivo. J. Physiol. 511, 935–945.

    Article  CAS  PubMed  Google Scholar 

  10. Connett, R.J. and C.R. Honig, (1989) Regulation of VO2max. Do current biochemical hypothesis fit in vivo data? Am. J. Physiol. 256, R898–R906.

    CAS  PubMed  Google Scholar 

  11. Dobson, G.P. and P. W. Hochachka (1987) Role of glycolysis in adenylate depletion and repletion during work and recovery in teleost white muscle. J. exp. Biol. 129, 125–140.

    CAS  PubMed  Google Scholar 

  12. Dobson, G.P., W.S. Parkhouse, J.M. Weber, E. Stuttard, J. Harman, D.H. Snow, and P.W. Hochachka (1988) Metabolic changes in skeletal muscle and blood in greyhounds during 800 m track sprint. Am. J. Physiol. 255, R513–R519.

    CAS  PubMed  Google Scholar 

  13. From, A.H.L., S.D. Zimmer, S.P. Michurski, P. Mohanakrishnan, V.K. Ulstad, W.J. Thomas, and K. Ugurbil (1990) Regulation of oxidative phosphorylation in the intact cell. Biochemistry 29, 3733–3743.

    Article  Google Scholar 

  14. Gayeski, T.E.J. and C.R. Honig (1986) O2 gradients from sarcolemma to cell interior in red muscle at maximal V02. Am. J. Physiol. 251, 789–H799.

    Google Scholar 

  15. Guyton G.P., K.S. Stanek, R.C. Schneider, P.W. Hochachka, W.E. Hurford, D.G. Zapol, G.C. Liggins, and W.M. Zapol (1996) Myoglobin saturation in free-diving Weddell seals. J. Appl. Physiol. 79, 1148–1155.

    Google Scholar 

  16. Harkema SJ. Meyer RA. (1997) Effect of acidosis on control of respiration in skeletal muscle. Am. J. Physiol.. 272, C491–C500.

    CAS  PubMed  Google Scholar 

  17. Hanstock, C.C., R.B. Thompson, M.E. Trump, D. Gheorghiu, P.W. Hochachka, and P.S. Allen (1999) The residual dipolar couopling of the Cr/PCr methyl resonance in resting human medial gastrocnemius muscle. Magn. Res. Med., in press.

    Google Scholar 

  18. Harvey, W.R. and Wieczoreck, H.(1997) Animal plasma membrane energization by chemiosmotic H+ V ATPase control. J. Exp. Biol. 200: 203–216.

    CAS  PubMed  Google Scholar 

  19. Hochachka, P. W. (1994) Muscles and Molecular and Metabolic Machines. CRC Press, Boca Raton, FL pp 1–157.

    Google Scholar 

  20. Hochachka, P.W. (1998) Oxygen — a key regulatory metabolite in metabolic defense against hypoxia. Amer. Zoologist 37, 595–603.

    Google Scholar 

  21. Hochachka, P.W. (1999) Two researchpaths for probing the roles of oxygen in metabolic regulation. Br. J. Med. Biol. Res. 12, 166–176.

    Google Scholar 

  22. Hochachka, P.W. and G.N. Somero (1984) Princeton University Press, Biochemical Adaptation., pp. 1–521.

    Google Scholar 

  23. Hochachka, P.W. and G.O. Matheson (1992) Regulation of ATP turnover over broad dynamic muscle work ranges. J. Appl. Physiol. 73, 570.

    Google Scholar 

  24. Hochachka, P.W. and M. Guppy (1987) Metabolic arrest and the control of biological time. Cambridge, Mass.: Harvard University Press, pp. 1–237.

    Google Scholar 

  25. Hochachka, P.W. and McClelland, G.B.(1997) Cellular metabolic homeostasis during large scale change in ATP turnover rates in muscles. J. Exp. Biol. 200, 381–386.

    CAS  PubMed  Google Scholar 

  26. Hochachka, P.W. and Mossey, M.K.P. (1998) Does muscle creatine phosphokinase have access to the total pool of phosphocreatine + creatine. Amer. J. Physiol., 274, R868–R872.

    CAS  PubMed  Google Scholar 

  27. Hochachka, P.W., B. Emmett and R.K. Suarez (1988) Limits and constraints in the scaling of oxidative and glycolytic enzymes in homeotherms. Can. J. Zool. 66, 1128–1138.

    CAS  Google Scholar 

  28. Hochachka, P.W., Buck, L.T., Doll, C.J., and Land, S.C. Unifying theory of hypoxia tolerance: Molecular/metabolic defense and rescue mechanisms for surviving oxygen lack (1996) Proc. Natl. Acad. Sci. 93, 9493–9498.

    CAS  PubMed  Google Scholar 

  29. Hochachka, P.W., Clark, C.M., Holden, J.E., Stanley, C., Ugurbil, K., and Menon, R.S. (1996). 31P Magnetic Resonance Spectroscopy of the Sherpa heart: A PCr/ATP signature of metabolic defense against hypobaric hypoxia. Proc. Natl. Acad. Sci., U.S.A. 93: 1215–1220.

    CAS  PubMed  Google Scholar 

  30. Hochachka, P.W., M. Bianconcini, W.S. Parkhouse, and G.P. Dobson (1991) Role of actomyosin ATPase in metabolic regulation during intense exercise. Proc. Natl. Acad. Sci. USA, 88, 5764–5768.

    CAS  PubMed  Google Scholar 

  31. Hochachka, P.W., McClelland G.B., Burness, G.P., JF. Staples, and R.K. Suarez (1998) Integrating metabolic pathway fluxes with gene-to-enzyme expression rates. Comp. Biochem. Physiol. B 120, 17–26.

    Google Scholar 

  32. Hogan, M.C., P.G. Arthur, D.E. Bebout, P.W. Hochachka, and P.D. Wagner (1992) The role of O2 in regulating tissue respiration in dog muscle working in situ. J. Appl. Physiol. 73, 728.

    CAS  PubMed  Google Scholar 

  33. Hogan, M.C., Richardson, R.S., and Haseler, L.J. (1999) Human muscle performance and PCr hydrolysis with varied inspired oxygen fractions: a 31P MRS study. J. Appl. Physiol. 86, 1367–1373.

    CAS  PubMed  Google Scholar 

  34. Hogan, M.C., S.S. Kurdak and P.G. Arthur (1996) Effect of gradual reduction in 02 delivery on intracellular homeostasis in contracting skeletal muscle. J. Appl. Physiol. 80, 1313–1321.

    CAS  PubMed  Google Scholar 

  35. Hollenbeck, P.J. (1996) The pattern and mechanism of mitochondrial transport in axons. Frontiers in Bioscience 1: d91–d102.

    CAS  PubMed  Google Scholar 

  36. Honig, C.R., Connett, R.J., and Gayeski, T.E. (1992) 02 transport and its interaction with metabolism, a systems view of aerobic capacity. Med. & Sci. Sports & Exer. 24, 47–53.

    CAS  Google Scholar 

  37. Howard, J. (1998) Molelcular motors: structural adaptations to cellular functions. Nature 391: 239–240.

    Article  CAS  Google Scholar 

  38. Ingwall JS. Creatine kinase knockout mice—what is the phenotype: heart (1998) Magma. 6, 120–121.

    CAS  PubMed  Google Scholar 

  39. In’t Zandt HJ. Wieringa B. Heerschap A. (1998) Creatine kinase knockout mice—what is the phenotype: skeletal muscle. Magma. 6, 122–123.

    CAS  Google Scholar 

  40. Jelicks, L.A. and B.A. Wittenberg (1995) 1H NMR studies of sarcoplasmic oxygenation in the red cell perfused rat heart. Biophys. J. 68, 2129–2136.

    CAS  PubMed  Google Scholar 

  41. Juergens, K.D., Peters, T., and Gros, G. (1994) Diffusivity of myoglobin in intact. Proc. Natl. Acad. Sci. USA 91, 3829–3833.

    Google Scholar 

  42. Kao H.P., Abney, J.R., and Verkman A.S. (1993) Determinants of the translational mobility of a small solute in cell cytoplasm. Journal of Cell Biology 120, 175–184.

    Article  CAS  PubMed  Google Scholar 

  43. Kashiwaya, Y., K. Sato, N. Tshuchiya, S. Thomas, D.A. Fell, R.L. Veech, and J. V. Passonneau. Control of glucose utilization in working perfused rat heart. J. Biol. Chem. 269, 25502–25514; 1994.

    CAS  PubMed  Google Scholar 

  44. Koshland, D.E. (1998) The era of pathway quantification. Science 280, 353–353.

    Google Scholar 

  45. Krendel, M., Sgourdas, G., Bonder, E.M. (1998) Disassembly of actin filaments leads to increased rate and frequency of mitochondrial movements along microtubules. Cell Motility & the Cytoskeleton 40: 368–378.

    CAS  Google Scholar 

  46. Kreis R., Jung, B., Slotboom, J., Felblinger, J., and Boesch, C. (1999) Effect of exercise on the creatine resonances in 1H MR spectra of human skeletal muscle. J. Magn. Resonance 137, 350–357

    CAS  Google Scholar 

  47. Kushmerick, M.J., R.A. Meyer, and T.R. Brown (1992) Regulation of oxygen consumption in fast-and slow-twitch muscle. Am. J. Physiol. 263, C598–C606.

    CAS  PubMed  Google Scholar 

  48. Langford, G.M. (1995) Actin-and microtubule-dependent organelle motors: interrelationships between the two motility systems. Current Opinion in Cell Biology 7, 82–88.

    Article  CAS  PubMed  Google Scholar 

  49. McCormack, J.G. and Denton, R.M. (1990) The role of Ca++ transport and matrix Ca in signal transduction in mammalian tissues. Biochim. Biophys. Acta. 1018, 287–291.

    CAS  PubMed  Google Scholar 

  50. Mermall, V., Post, P.L. and Mooseker, M.S. (1998) Unconventional myosins in cell movement, membrane traffic, and signal transduction. Science 279: 527–533.

    Article  CAS  PubMed  Google Scholar 

  51. Mole, P.A., Chung, Y., Tran, K., Sailasuta, N., Hurd, R, and Jue, T. (1999) Myoglobin desaturation with exercise intensity in human gastrocnemius muscle. Am. J. Physiol. 277: R173–R180.

    CAS  PubMed  Google Scholar 

  52. Norris, A.J., Martin, S.S., Harita, T., Nelson, J.G., Vollenweider, P., Gustafson, T.A., Mueckler, M., Rose, D.W., and Olefsky, J.M. (1996) Evidence for an insulin substrate 1 independent insulin signaling pathway that mediates insulin responsive glucose transporter (GLUT4) translocation. Proc. Natl. Acad. Sci. USA 93: 8401–8406.

    Google Scholar 

  53. Reid, R.J. and N. A. Walker (1983) Adenylate concentrations in Chara: variability, effects of inhibitors, and relationship to protoplasmic streaming. Australian J. Plant Physiol. 10: 373–383.

    CAS  Google Scholar 

  54. Richardson, R.S., E.A. Noyszewski, K.F. Kendrick, J.S. Leigh, and P.D. Wagner (1996) Myoglobin 02 desaturation during exercise. Evidence of limited 02 transport. J. Clin. Invest. 96, 1916–1926.

    Google Scholar 

  55. Rowan, A.N. and E.A. Newsholme, (1979) Changes in the contents of adenine nucleotides and intermediates of glycolysis and the citric acid cycle in flight muscle of the locust upon flight and the relationship to the control ofthe cycle. Biochem. J. 178, 209–216.

    CAS  PubMed  Google Scholar 

  56. Ryan, P.R. and N.A. Walker (1994) The regulation of ammonia uptake in Chara australis. J. Exp. Botany 45: 1057–167.

    CAS  Google Scholar 

  57. Scalettar, B.A., Abney, J.R., and Hackenbrock, C.R. (1991) Dynamics, structure, and function are coupled in the mitochondrial matrix. Proc. Natl. Acad. Sci. USA 88, 8057–8061.

    CAS  PubMed  Google Scholar 

  58. Schmidt-Nielsen, K. (1979) Scaling: Why is Animal Size So Important. Cambridge Univ. Press, Cambridge, UK p 1–241.

    Google Scholar 

  59. Simon, V.R. and L.A. Pon (1996) Actin-based organelle movement. Experientia 52, 1117–1122.

    Article  CAS  PubMed  Google Scholar 

  60. Staples, J.F. and R.K. Suarez (1997) Honeybee flight muscle phosphoglucoseisomerase: matching enzyme capacities to flux requirements at a near-equilibrium reaction. J. Exp. Biol. 200, 1247–1254.

    CAS  PubMed  Google Scholar 

  61. Suarez RK. Lighten JR. Joos B. Roberts SP. Harrison JF (1996) Energy metabolism, enzymatic flux capacities, and metabolic flux rates in flying honeybees. Proc. Natl. Acad. Sci. USA 93(22): 12616–20, 1996

    Article  CAS  PubMed  Google Scholar 

  62. Suarez RK. Staples JF. Lighton JR. West TG.(1997) Relationships between enzymatic flux capacities and metabolic flux rates: nonequilibrium reactions in muscle glycolysis. Proc. Natl. Acad. Sci. USA 94, 7065–7069.

    Article  CAS  PubMed  Google Scholar 

  63. Suarez, R.K. (1992) Hummingbird flight: sustaining the highest massspecific metabolic rates among vertebrates. Experientia 48, 565–570.

    CAS  PubMed  Google Scholar 

  64. Takagi, S. (1997) Photoregulation ofcytoplasmic streaming: cell biological dissection of signal transduction pathway. J. Plant Res. 110: 299–303.

    Google Scholar 

  65. Taylor, C.R., E.R. Weibel, J-M. Weber, R. Vock, J. Hoppeler, T.J. Roberts, and G. Brichon. Design of the oxygen and substrate pathways. I. Model and strategy to test symmorphosis in a network structure. J. Exp. Biol. 199, 1643–1649; 1996.

    CAS  PubMed  Google Scholar 

  66. Thomas, S. And Fell, D.A. (1998) A control analysis exploration of the role of ATP utilization in glycolytic-flux control and glycolytic-metabolite concentration regulation. European J. Biochemistry 258, 956–967.

    CAS  Google Scholar 

  67. Tran, T-K., Sailasuta, N., Kreutzer, U., Hurd, R., Chung, Y., Mole, P., Kuno, S., and Jue, T. (1999) Comparative analysis of NMR and NIRS measurements of intracellular P02 in human skeletal muscle. Am. J. Physiol. 276: R1682–R1690.

    CAS  PubMed  Google Scholar 

  68. Trump, M.E., P.S. Allen, D. Gheorghiu, C.C. Hanstock, and P.W. Hochachka. 1H-MRS evaluation of the phosphocreatine-creatine (PCr/Cr) pool in human muscle. Proc. Intl. Soc. Magn. Res. Med. p 1337, 1997.

    Google Scholar 

  69. Van Dorsten FA. Nederhoff MG. Nicolay K. Van Echteld CJ (1998) 31P NMR studies of creatine kinase flux in M-creatine kinase-deficient mouse heart. American Journal of Physiology. 275, H1191–H1199.

    PubMed  Google Scholar 

  70. Walliman, T. Dolder, M., Schlattner, U., Eder, M., Hornemann, T., O’Gorman E., Ruck, A. and Brdiczka D. (1998) Some new aspects of creatine kinase (CK): compartmentation, structure, function, and regulation for cellular mitochondrial bioenergetics and physiology. BioFactors 8, 229–234.

    Google Scholar 

  71. Wallimann, T., M. Wyss, D. Brdiczka, K. Nicolay, and H.M. Eppenberger (1992) Intracellular compartmentation, structure, and function of creatine kinase isozymes in tissues with high and fluctuating energy demands: the ‘phosphocreatine circuit’ for cellular energy homeostasis. Biochem. J. 281, 21–40.

    CAS  PubMed  Google Scholar 

  72. Wang, D., Kruetzer, U., Chung, Y., and Jue, T. (1997) Myoglobin and hemoglobin rotational diffusion in the cell. Biophys. J. 73, 2764–2770.

    CAS  PubMed  Google Scholar 

  73. Wang, J., Tolan, D.R., and Pagliaro, L. (1997) Metabolic compartmentation in living cells: structural association of aldolase. Exptl. Cell Res. 237, 445–451.

    CAS  PubMed  Google Scholar 

  74. Wegener, G., N.M. Bolas, and A.A.G. Thomas (1991) Locust flight metabolism studied in vivo with 31P NMR spectroscopy. J. Comp. Physiol. B. 161, 247–256.

    Article  CAS  Google Scholar 

  75. Weibel, E.R., C.R. Taylor, and H. Hoppeler. The concept of symmorphosis: A testable hypothesis ofstructure-function relationships. Proc. Natl. Acad. Sci. USA 88, 10357–10361; 1991.

    CAS  PubMed  Google Scholar 

  76. Wheatley D.N. and Clegg, J.S. (1994) What determines the metabolic rate of vertebrate cells. Biosystems 32, 83–92.

    Article  CAS  PubMed  Google Scholar 

  77. Wheatley, D.N. (1998) Diffusion theory, the cell, and the synapse. Biosystems 45, 151–163.

    Article  CAS  PubMed  Google Scholar 

  78. Wojtas, K., N. Slepecky, L. von-Kalm and D. Sullivan. Flight muscle funtion in Drosophila requires colocalization of glycolytic enzymes. Molecular Biology of the Cell. 8: 1665–1675, 1997

    CAS  PubMed  Google Scholar 

  79. Yamaya, M., T. Fukushima, K. Sekizawa, T. Ohrui, and H. Sasaki (1995) Cytoplasmic motility reflects phagocytic activity in alveolar macrophages from dog lungs. Resp. Physiol. 101, 199–205.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

Hochachka, P.W. (2002). Oxygen, Homeostasis, and Metabolic Regulation. In: Lahiri, S., Prabhakar, N.R., Forster, R.E. (eds) Oxygen Sensing. Advances in Experimental Medicine and Biology, vol 475. Springer, Boston, MA. https://doi.org/10.1007/0-306-46825-5_30

Download citation

  • DOI: https://doi.org/10.1007/0-306-46825-5_30

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-46367-9

  • Online ISBN: 978-0-306-46825-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics