Skip to main content

Possible Roles of Long-chain Fatty Acyl-CoA Esters in the Fusion of Biomembranes

  • Chapter
Fusion of Biological Membranes and Related Problems

Part of the book series: Subcellular Biochemistry ((SCBI,volume 34))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abumrad, N. A., el-Maghrabi, M. R., Amri, E. Z., Lopez, E., and Grimaldi, P. A., 1993, Cloning of a rat adipocyte membrane protein implicated in binding or transport of long-chain fatty acids that is induced during preadipocyte differentiation. Homology with human CD36, J. Biol. Chem. 268:17665–17668.

    Google Scholar 

  • Ahnert-Hilger, G., and Bigalke, H., 1995, Molecular aspects of tetanus and botulinum neurotoxin poisoning, Prog. Neurobiol. 46:83–96.

    Google Scholar 

  • Alho, H., Costa, E., Ferrero, P., Fujimoto, M., Cosenza-Murphy, D., and Guidotti, A., 1985, Diazepam-binding inhibitor: a neuropeptide located in selected neuronal populations of rat brain, Science 229:179–182.

    Google Scholar 

  • Alho, H., Fremeau, R. T., Jr., Tiedge, H., Wilcox, J., Bovolin, P., Brosius, J., Roberts, J. L., and Costa, E., 1988, Diazepam binding inhibitor gene expression: location in brain and peripheral tissues of rat, Proc. Natl. Acad. Sci. USA 85:7018–7022.

    Google Scholar 

  • Alho, H., Harjuntausta, T., Schultz, R., Pelto-Huikko, M., and Bovolin, P., 1991, Immunohistochemistry of diazepam binding inhibitor (DBI) in the central nervous system and peripheral organs: its possible role as an endogenous regulator of different types of benzodiazepine receptors, Neuropharmacology 30:1381–1386.

    Google Scholar 

  • Alho, H., Vaalasti, A,, Podkletnova, I., and Rechardt, L., 1993, Expression of diazepam-binding inhibitor peptide in human skin: an immunohistochemical and ultrastructural study, J. Invest. Dermatol. 101:800–803.

    Google Scholar 

  • Apodaca, G., Cardone, M. H., Whiteheart, S. W., DasGupta, B. R., and Mostov, K. E., 1996, Reconstitution of transcytosis in SLO-permeabilized MDCK cells: existence of an NSF-dependent fusion mechanism with the apical surface of MDCK cells, Embo. J. 15:1471–1481.

    Google Scholar 

  • Arduini, A., Mancinelli, G., and Ramsay, R. R., 1990, Palmitoyl-L-carnitine, a metabolic intermediate of the fatty acid incorporation pathway in erythrocyte membrane phospholipids, Biochem. Biophys. Res. Commun. 173:212–217.

    Google Scholar 

  • Arduini, A., Tyurin, V., Tyuruna, Y., Arrigoni-Martelli, E., Molajoni, F., Dottori, S., and Federici, G., 1992, Acyl-trafficking in membrane phospholipid fatty acid turnover: the transfer of fatty acid from the acyl-L-carnitine pool to membrane phospholipids in intact human rythrocytes, Biochem. Biophys. Res. Commun. 187:353–358.

    Google Scholar 

  • Arduini, A., Bressan, M., Sciarroni, F., Dottori, S., Calvani, M., and Ramsay, R. R., 1997, Carnitine palmitoyltransferase and acyl-coA binding protein: two more players in the membrane phospholipid fatty acid turnover of human red cells? [letter], Biochem. J. 325:811–814.

    Google Scholar 

  • Balch, W. E., Dunphy, W. G., Braell, W. A., and Rothman, J. E., 1984a, Reconstitution of the transport of protein between successive compartments of the Golgi measured by the coupled incorporation of N-acetylglucosamine, Cell 39:405–416.

    Google Scholar 

  • Balch, W. E., Glick, B. S., and Rothman, J. E., 1984b, Sequential intermediates in the pathway of intercompartmental transport in a cell-free system, Cell 39:525–536.

    Google Scholar 

  • Balch, W. E., and Rothman, J. E., 1985, Characterization of protein transport between successive compartments of the Golgi apparatus: asymmetric properties of donor and acceptor activities in a cell-free system, Arch. Biochem. Biophys. 240:413–425.

    Google Scholar 

  • Balch, W. E., Kahn, R. A., and Schwaninger, R., 1992, ADP-ribosylation factor is required for vesicular trafficking between the endoplasmic reticulum and the cis-Golgi compartment, J. Biol. Chem. 267:13053–13061.

    Google Scholar 

  • Banhegyi, G., Csala, M., Mandl, J., Burchell, A., Burchell, B., Marcolongo, P., Fulceri, R., and Benedetti, A., 1996, Fatty acyl-CoA esters and the permeability of rat liver microsomal vesicles, Biochem. J. 320:343–344.

    Google Scholar 

  • Barbour, R. L., and Chan, S. H., 1979, Regulation of palmitoyl-CoA inhibition of mitochondrial adenine nucleotide transport by cytosolic fatty acid binding protein, Biochem. Biophys. Res. Commun. 89:1168–1177.

    Google Scholar 

  • Baumert, M., Maycox, P. R., Navone, F., De Camilli, P., and Jahn, R., 1989, Synaptobrevin: an integral membrane protein of 18,000 daltons present in small synaptic vesicles of rat brain, Embo. J. 8:379–384.

    Google Scholar 

  • Beckers, C. J., and Balch, W. E., 1989, Calcium and GTP: essential components in vesicular trafficking between the endoplasmic reticulum and Golgi apparatus, J. Cell Biol. 108:11245–1256

    Google Scholar 

  • Beckers, C. J., Block, M. R., Glick, B. S., Rothman, J. E., and Balch, W. E., 1989, Vesicular transport between the endoplasmic reticulum and the Golgi stack requires the NEM-sensitive fusion protein, Nature 339:397–398.

    Google Scholar 

  • Bennett, M. K., 1995, SNAREs and the specificity of transport vesicle targeting, Curr. Opin. Cell Biol. 7:581–586.

    Google Scholar 

  • Berge, R. K., 1979, Purification and characterization of a long-chain acyl-CoA hydrolase from rat liver microsomes, Biochim. Biophys. Acta. 574:321–333.

    Google Scholar 

  • Berge, R. K., and Farstad, M., 1979, Purification and characterization of long-chain acyl-CoA hydrolase from rat liver mitochondria, Eur. J. Biochem. 96:393–401.

    Google Scholar 

  • Berge, R. K., and Bakke, O. M., 1981, Changes in lipid metabolizing enzymes of hepatic subcellular fractions from rats treated with tiadenol and clofibrate, Biochem. Pharmucol. 30:2251–2256.

    Google Scholar 

  • Berge, R. K., Osmundsen, H., Aarsland, A., and Farstad, M., 1983, The existence of separate peroxisomal pools of free coenzyme a and long-chain acyl-CoA in rat liver, demonstrated by a specific high performance liquid chromatography method, Int. J. Biochem. 15:205–209.

    Google Scholar 

  • Berge, R. K., Hosoy, L. H., and Farstad, M. N., 1984, Influence of dietary status on liver palmitoyl-CoA hydrolase, peroxisomal enzymes, CoASH and long-chain acyl-CoA in rats, Int. J. Biochem. 16:403–410.

    Google Scholar 

  • Berge, R. K., and Aarsland, A., 1985, Correlation between the cellular level of long-chain acyl-CoA, peroxisomal beta-oxidation, and palmitoyl-CoA hydrolase activity in rat liver. Are the two enzyme systems regulated by a substrate-induced mechanism?, Biochim. Biophys. Acta. 837:141–151.

    Google Scholar 

  • Berger, M., and Schmidt, M. F., 1984a, Identification of acyl donors and acceptor proteins for fatty acid acylation in BHK cells infected with Semliki Forest virus, Embo. J. 3:713–719.

    Google Scholar 

  • Berger, M., and Schmidt, M. F., 1984b, Cell-free fatty acid acylation of Semliki Forest viral polypeptides with microsomal membranes from eukaryotic cells, J.Biol. Chem.

    Google Scholar 

  • Berger, M., and Schmidt, M. F., 1986, Characterization of a protein fatty acylesterase present in microsomal membranes of diverse origin. J. Biol. Chem. 261:14912–14918.

    Google Scholar 

  • Berger, K. H., and Yaffe, M. P., 1996, Mitochondrial distribution and inheritance, Experientia 52:1111–1116.

    Google Scholar 

  • Berthiaume, L., Deichaite, I., Peseckis, S., and Resh, M. D., 1994, Regulation of enzymatic activity by active site fatty acylation. A new role for long chain fatty acid acylation of proteins, J. Biol. Chem. 269:6498–6505.

    Google Scholar 

  • Berthiaume, L., and Resh, M. D., 1995, Biochemical characterization of a palmitoyl acyltrans-ferase activity that palmitoylates myristoylated proteins, J. Biol. Chem. 270:22399–22405.

    Google Scholar 

  • Bharadwaj, M., and Bizzozero, O. A., 1995, Myelin PO glycoprotein and a synthetic peptide containing the palmitoylation site are both autoacylated, J. Neurochem. 65:1805–1815.

    Google Scholar 

  • Bi, K., Roth, M. G., and Ktistakis, N. T., 1997, Phosphatidic acid formation by phospholipase D is required for transport from the endoplasmic reticulum to the Golgi complex, Curr. Biol. 7:301–307.

    Google Scholar 

  • Bizzozero, O. A., and Lees, M. B., 1986, Fatty acid acylation of rat brain myelin proteolipid protein in vitro: identification of the lipid donor, J. Neurochem. 46:630–636.

    Google Scholar 

  • Bizzozero, O. A., McGarry, J. F., and Lees, M. B., 1987a, Autoacylation of myelin proteolipid protein with acyl coenzyme A, J. Biol. Chem. 262:13550–13557.

    Google Scholar 

  • Bizzozero, O. A., McGarry, J. F., and Lees, M. B., 1987b, Acylation of endogenous myelin proteolipid protein with different acyl-CoAs, J. Biol. Chem. 262:2138–2145.

    Google Scholar 

  • Bizzozero, O. A., Zuniga, G., and Lees, M. B., 1991, Fatty acid composition of human myelin proteolipid protein in peroxisomal disorders, J. Neurochem. 56:872–878.

    Google Scholar 

  • Bizzozero, O. A., and Good, L. K., 1991, Rapid metabolism of fatty acids covalently bound to myelin proteolipid protein, J. Biol. Chem. 266:97092–17098.

    Google Scholar 

  • Bizzozero, O. A., Leyba, J., and Nunez, D. J., 1992, Characterization of proteolipid protein fatty acylesterase from rat brain myelin, J. Biol. Chem. 267:7886–7894.

    Google Scholar 

  • Blobel, G., and Dobberstein, B., 1975, Transfer of proteins across membranes. I. Presence of proteolytically processed and unprocessed nascent immunoglobulin light chains on membrane-bound ribosomes of murine myeloma, J. Cell Biol. 67:835–451.

    Google Scholar 

  • Block, M. R., Glick, B. S., Wilcox, C. A., Wieland, ET., and Rothman, J. E., 1988, Purification of an N-ethylmaleimide-sensitive protein catalyzing vesicular transport, Proc. Nutl. Acad. Sci. USA 85:7852–7856.

    Google Scholar 

  • Bock, J. B., and Scheller, R.H.,1997, Protein Transport. Afusionof newideas, Nature 387:133–135.

    Google Scholar 

  • Bordewick, U., Heese, M., Borchers, T., Robenek, H., and Spener, F., 1989, Compartmentation of hepatic fatty-acid-binding protein in liver cells and its effect on microsomal phosphatidic acid biosynthesis, Biol. Chem. Hoppe. Seyler. 370:229–238.

    Google Scholar 

  • Bortz, W., and Lynen, F., 1963, Biochem. Z. 337:505–509.

    Google Scholar 

  • Bovolin, P., Schlichting, J., Miyata, M., Ferrarese, C., Guidotti, A., and Alho, H., 1990, Distribution and characterization of diazepam binding inhibitor (DBI) inperipheral tissues of rat, Regul. Pept. 29:267–281.

    Google Scholar 

  • Boylan, J. G., and Hamilton, J. A., 1992, Interactions of acyl-coenzyme A with phosphatidylcholine bilayers and serum albumin, Biochemistry 31:557–567.

    Google Scholar 

  • Brady, P. S., Ramsay, R. R., and Brady, L. J., 1993, Regulation of the long-chain carnitine acyltransferases, Fuseb. J. 7:1039–1044.

    Google Scholar 

  • Braell, W. A., Balch, W. E., Dobbertin, D. C., and Rothman, J. E., 1984, The glycoprotein that is transported between successive compartments of the Golgi in a cell-free system resides in stacks of cisternae, Cell 39:511–524.

    Google Scholar 

  • Brindley, D. N., 1984, Intracellular translocation of phosphatidate phosphohydrolaseandits possible role in the control of glycerolipid synthesis, Prog. Lipid. Res. 23:115–133.

    Google Scholar 

  • Bronfman, M., Morales, M. N., and Orellana, A., 1988, Diacylglycerol activation of protein kinase C is modulated by long-chain acyl-CoA, Biochem. Biophys. Res. Commun. 152:987–992.

    Google Scholar 

  • Brose, N., Petrenko, A. G., Sudhof, T. C., and Jahn, R., 1992, Synaptotagmin: a calcium sensor on the synaptic vesicle surface, Science 256:1021–1025.

    Google Scholar 

  • Broustas, C. G., and Hajra, A. K., 1995, Purification, properties, and specificity of rat brain cytosolic fatty acyl coenzyme A hydrolase, J. Neurochem. 64:2345–2353.

    Google Scholar 

  • Brown, H. A., Gutowski, S., Moomaw, C. R., Slaughter, C., and Sternweis, F! C., 1993, ADP-ribosylation factor, asmallGTP-dependent regulatory protein, stimulates phospholipase D activity, Cell 75:1137–1144.

    Google Scholar 

  • Buccione, R., Di Tullio, G., Caretta, M., Marinetti, M. R., Bizzarri, C., Francavilla, S., Luini, A., and De Matteis, M. A., 1994, Analysis of protein kinase C requirement for exocytosis in permeabilized rat basophilic leukaemia RBL-2H3 cells: a GTP-binding protein(s) as a potential target for protein kinase C, Biochem. J. 298:149–156.

    Google Scholar 

  • Bullough, P. A., Hughson, F. M., Skehel, J. J., and Wiley, D. C., 1994, Structure of influenza haemagglutinin at the pH of membrane fusion, Nature 371:37–43.

    Google Scholar 

  • Burgoyne, R. D., and Morgan, A., 1998, Analysis of regulated exocytosis in adrenal chromaffin cells: insights into NSF/SNAP/SNARE function, Bioessuys 20:328–335.

    Google Scholar 

  • Burnett, D. A., Lysenko, N., Manning, J. A., and Ockner, R. K., 1979, Utilization of long chain fatty acids by rat liver: studies of the role of fatty acid binding protein, Gastroenterology 77:241–249.

    Google Scholar 

  • Burrier, R. E., Manson, C. R., and Brecher, P., 1987, Binding of acyl-CoA to liver fatty acid binding protein: effect on acyl-CoA synthesis, Biochim. Biophys. Acta. 919:221–230.

    Google Scholar 

  • Camp, L. A., and Hofmann, S. L., 1993, Purification and properties of a palmitoyl-protein thioesterase that cleaves palmitate from H-Ras, J. Biol. Chem. 268:22566–22574.

    Google Scholar 

  • Camp, L. A., Verkruyse, L. A., Afendis, S. J., Slaughter, C. A., and Hofmann, S. L., 1994, Molecular cloning and expression of palmitoyl-protein thioesterase, J. Biol. Chem. 269:23212–23219.

    Google Scholar 

  • Cannon, B., Sundin, U., and Rornert, L., 1977, Palmitoyl coenzyme A: a possible physiological regulator of nucleotide binding to brown adipose tissue mitochondria, FEBS Lett. 74:43–46.

    Google Scholar 

  • Cardone, M. H., Smith, B. L., Song, W., Mochly-Rosen, D., and Mostov, K. E., 1994, Phorbol myristate acetate-mediated stimulation of transcytosis and apical recycling in MDCK cells, J. Cell Biol. 124:717–727.

    Google Scholar 

  • Carling, D., Zammit, V. A., and Hardie, D. G., 1987, A common bicyclic protein kinase cascade inactivates the regulatory enzymes of fatty acid and cholesterol biosynthesis, FEBS Lett. 223:217–222.

    Google Scholar 

  • Chavrier, F!, Parton, R. G., Hauri, H. P., Simons, K., and Zerial, M., 1990a, Localization of low molecular weight GTP binding proteins to exocytic and endocytic compartments, Cell 62:317–329.

    Google Scholar 

  • Chavrier, P., Vingron, M., Sander, C., Simons, K., and Zerial, M., 1990b, Molecular cloning of YPT1/SEC4-related cDNAs from an epithelial cell line, Mol. Cell Biol. 10:6578–6585.

    Google Scholar 

  • Chernomordik, L. V., Leikina, E., Frolov, V., Bronk, F!, and Zimmerberg, J., 1997, An early stage of membrane fusion mediated by the low pH conformation of influenza hemagglutinin depends upon membrane lipids, J. Cell Biol. 136:81–93.

    Google Scholar 

  • Chini, E. N., and Dousa, T. P., 1996, Palmitoyl-CoA potentiates the Ca2+ release elicited by cyclic ADP-ribose, Am. J. Physiol. 270: C530–C537.

    Google Scholar 

  • Choi, J. Y., Stukey, J., Hwang, S. Y., and Martin, C. E., 1996, Regulatory elements that control transcription activation and unsaturated fatty acid-mediated repression of the Saccharomyces cerevisiae OLE1 gene, J. Biol. Chem. 271:3581–3589.

    Google Scholar 

  • Clary, D. O., and Rothman, J. E., 1990, Purification of three related peripheral membrane proteins needed for vesicular transport, J. Biol. Chem. 265:10109–10117.

    Google Scholar 

  • Clary, D. O., Griff, I. C., and Rothman, J. E., 1990, SNAPs, a family of NSF attachment proteins involved in intracellular membrane fusion in animals and yeast, Cell 61:709–721.

    Google Scholar 

  • Cockcroft, S., Thomas, G. M., Fensome, A., Geny, B., Cunningham, E., Gout, I., Hiles, I., Totty, N. F., Truong, O., and Hsuan, J. J., 1994, Phospholipase D: a downstream effector of ARF in granulocytes, Science 263:523–536.

    Google Scholar 

  • Comerford, J. G., and Dawson, A. P., 1993, Effects of CoA and acyl-CoAs on GTP-dependent Ca2+ release and vesicle fusion in rat liver microsomal vesicles, Biochem. J. 289:561–567.

    Google Scholar 

  • Conricode, K. M., Brewer, K. A., and Exton, J. H., 1992, Activation of phospholipase D by protein kinase C. Evidence for a phosphorylation-independent mechanism,J. Biol. Chem. 267:7199–7202.

    Google Scholar 

  • Constantinides, P. P., and Steim, J. M., 1985, Physical properties of fatty acyl-CoA. Critical micelle concentrations and micellar size and shape, J. Biol. Chem. 260:7573–7580.

    Google Scholar 

  • Couve, A., Protopopov, V., and Gerst, J. E., 1995, Yeast synaptobrevin homologs are modified posttranslationally by the addition of palmitate, Proc. Natl. Acad. Sci. USA 92:5987–5991.

    Google Scholar 

  • Das, A. K., Dasgupta, B., Bhattacharya, R., and Basu, J., 1997, Purification and biochemical characterization of a protein-palmitoy1 acyltransferase from human erythrocytes, J. Biol. Chem. 272:11021–11025.

    Google Scholar 

  • De Almeida, J. B., Doherty, J., Ausiello, D. A,, and Stow, J. L., 1993, Binding of the cytosolic p200 protein to Golgi membranes is regulated by heterotrimeric G proteins, J. Cell Sci. 106:1239–1248.

    Google Scholar 

  • De Angelis, D. A., Miesenbock, G., Zemelman, B. V., and Rothman, J. E., 1998, PRIM: proximity imaging of green fluorescent protein-tagged polypeptides, Proc. Natl. Acad. Sci. USA 95:12312–12316.

    Google Scholar 

  • De Matteis, M. A,, Santini, G., Kahn, R. A., Di Tullio, G., and Luini, A., 1993, Receptor and protein kinase C-mediatedre gulation of ARF binding to the Golgi complex, Nature 364:818–821.

    Google Scholar 

  • Deeney, J. T., Tornheim, K., Korchak, H. M., Prentki, M., and Corkey, B. E., 1992, Acyl-CoA esters modulate intracellular Ca2+ handling by permeabilized clonal pancreatic beta-cells, J. Biol. Chem. 267:19840–19845.

    Google Scholar 

  • Diaz, R., Mayorga, L. S., Weidman, P. J., Rothman, J. E., and Stahl, P. D., 1989, Vesicle fusion following receptor-mediated endocytosis requires a protein active in Golgi transport, Nature339:398–400.

    Google Scholar 

  • Diaz, C., Lomonte, B., Zamudio, F., and Gutierrez, J. M., 1995, Purification and characterization of myotoxin IV, a phospholipase A2 variant, from Bothrops asper snake venom, Nat. Toxins. 3:26–31.

    Google Scholar 

  • Dolci, E. D., and Palade, G. E., 1985, The biosynthesis and fatty acid acylation of the murine erythrocyte sialoglycoproteins, J. Biol. Chem. 260:10728–10735.

    Google Scholar 

  • Donaldson, J. G., Kahn, R. A., Lippincott-Schwartz, J., and Klausner, R. D., 1991, Binding of ARF and beta-COP to Golgi membranes: possible regulationbya trimeric G protein, Science254:1197–1199.

    Google Scholar 

  • Donaldson, J. G., Finazzi, D., and Klausner, R. D., 1992a, Brefeldin A inhibits Golgi membrane-catalysed exchange of guanine nucleotide onto ARF protein, Nature 360:350–352.

    Google Scholar 

  • Donaldson, J. G., Cassel, D., Kahn, R. A., and Klausner, R. D., 1992b, ADP-ribosylation factor, a small GTP-binding protein, is required for binding of the coatomer protein beta-COP to Golgi membranes, Proc. Natl. Acad. Sci. USA 89:6408–6412.

    Google Scholar 

  • Duden, R., Griffiths, G., Frank, R., Argos, P., and Kreis, T. E., 1991, Beta-COP, a 110kd protein associated with non-clathrin-coated vesicles and the Golgi complex, shows homology to beta-adaptin, Cell 64:649–665.

    Google Scholar 

  • Dumonteil, E., Barre, H., and Meissner, G., 1993, Sarcoplasmic reticulum Ca(2+)-ATPase and ryanodine receptor in cold-acclimated ducklings and thermogenesis, Am. J. Physiol. 265:C507–C513.

    Google Scholar 

  • Dumonteil, E., Barre, H., and Meissner, G., 1994, Effects of palmitoyl carnitine and related metabolites on the avian Ca(2+)-ATPase and Ca2+ release channel, J. Physiol. (Lond) 479:29–39.

    Google Scholar 

  • Duncan, J. A., and Gilman, A. G., 1996, Autoacylation of G protein alpha subunits, J. Biol. Chem. 271:23594–23600.

    Google Scholar 

  • Dunphy, J. T., Greentree, W. K., Manahan, C. L., and Linder, M. E., 1996, G-protein palmitoyltransferase activity is enriched in plasma membranes, J. Biol. Chem. 271:7154–7159.

    Google Scholar 

  • Dunphy, W. G., Fries, E., Urbani, L. J., and Rothman, J. E., 1981, Early and late functions associated with the Golgi apparatus reside in distinct compartments, Proc. Natl. Acad. Sci. USA78:7453–7457.

    Google Scholar 

  • Dunphy, W. G., and Rothman, J. E., 1983, Compartmentation of asparagine-linked oligosaccharide processing in the Golgi apparatus, J. Cell Biol. 97:270–275.

    Google Scholar 

  • Dunphy, W. G., and Rothman, J. E., 1985, Compartmental organization of the Golgi stack, Cell 42:13–21.

    Google Scholar 

  • Dunphy, W. G., Pfeffer, S. R., Clary, D. O., Wattenberg, B. W., Glick, B. S., and Rothman, J. E., 1986, Yeast and mammals utilize similar cytosolic components to drive protein transport through the Golgi complex, Proc. Natl. Acad. Sci. USA 83:1622–1626.

    Google Scholar 

  • Echabe, I., Requero, M. A,, Goni, F. M., Arrondo, J. L., and Alonso, A., 1995,An infrared investigation of palmitoyl-coenzyme A and palmitoylcarnitine interaction with perdeuterated-chain phospholipid bilayers, Eur. J. Biochem. 231:199–203.

    Google Scholar 

  • el Far, O., Charvin, N., Leveque, C., Martin-Moutot, N., Takahashi, M., and Seagar, M. J., 1995, Interaction of a synaptobrevin (VAMP)-syntaxin complex with presynaptic calcium channels, FEBS Lett. 361:101–105.

    Google Scholar 

  • Engberg, S. T., Aoyama, T., Alexson, S. E. H., Hashimoto, T., and Svensson, L. T., 1997, Peroxisome proliferator-induced acyl-CoA thioesterase from rat liver cytosol: molecular cloning and functional expression in Chinese hamster ovary cells, Biochem. J. 323:525–531.

    Google Scholar 

  • Ercolani, L., Stow, J. L., Boyle, J. F., Holtzman, E. J., Lin, H., Grove, J. R., and Ausiello, D. A., 1990, Membrane localization of the pertussis toxin-sensitive G-protein subunits alpha i-2 and alpha i-3 and expression of a metallothionein-alpha i-2 fusion gene in LLC-PK1 cells, Proc. Natl. Acad. Sci. USA 87:4635–4639.

    Google Scholar 

  • Fabbri, M., Bannykh, S., and Balch, W. E., 1994, Export of protein from the endoplasmic reticulum is regulated by a diacylglycerol/phorbol ester binding protein, J. Biol. Chem. 269:26848–26857.

    Google Scholar 

  • Featherstone, C., Griffiths, G., and Warren, G., 1985, Newly synthesized G protein of vesicular stomatitis virus is not transported to the Golgi complex in mitotic cells, J. Cell Biol. 101:2036–2046.

    Google Scholar 

  • Ferrarese, C., Vaccarino, F., Alho, H., Mellstrom, B., Costa, E., and Guidotti, A,, 1987, Subcellular location and neuronal release of diazepam binding inhibitor, J. Neurochern. 48:1093–1102.

    Google Scholar 

  • Fischer, C., Schroth-Diez, B., Herrmann, A., Garten, W., and Klenk, H. D., 1998, Acylation of the influenza hemagglutinin modulates fusion activity, Virology 248:284–294.

    Google Scholar 

  • Ford, D. A., Homer, C. C., and Gross, R. W., 1998, Protein kinase C acylation by palmitoyl coenzyme A facilitates its translocation to membranes, Biochemistry 37:11953–11961.

    Google Scholar 

  • Fries, E., and Rothman, J. E., 1980,Transport of vesicular stomatitis virus glycoprotein in a cell-free extract, Proc. Natl. Acad. Sci. USA 77:3870–3874.

    Google Scholar 

  • Frolov, A., Cho, T. H., Billheimer, J. T., and Schroeder, F., 1996, Sterol carrier protein-2, a new fatty acyl coenzyme A-binding protein, J. Biol. Chem. 271:31878–31884.

    Google Scholar 

  • Frolov, A., Cho, T. H., Murphy, E. J., and Schroeder, E, 1997, Isoforms of rat liver fatty acid binding protein differ in structure and affinity for fatty acids and fatty acyl CoAs, Biochemistry 36:6545–6555.

    Google Scholar 

  • Fujimoto, T., Stroud, E., Whatley, R. E., Prescott, S. M., Muszbek, L., Laposata, M., and McEver, R. F?, 1993, P-selectin is acylated with palmitic acid and stearic acid at cysteine 766 through a thioester linkage, J. Biol. Chem. 268:11394–113400.

    Google Scholar 

  • Fulceri, R., Gamberucci, A., Bellomo, G., Giunti, R., and Benedetti, A,, 1993, CoA and fatty acyl-CoA derivatives mobilize calcium from a liver reticular pool, Biochem. J. 295:663–669.

    Google Scholar 

  • Fulceri, R., Nori, A., Gamberucci, A., Volpe, P., Giunti, R., and Benedetti, A,, 1994, Fatty acyl-CoA esters induce calcium release from terminal cisternae of skeletal muscle, Cell Calcium. 15:109–116.

    Google Scholar 

  • Fulceri, R., Gamberucci, A., Scott, H. M., Giunti, R., Burchell, A., and Benedetti, A., 1995, Fatty acyl-CoA esters inhibit glucose-6-phosphatase in rat liver microsomes, Biochem. J. 307:391–397.

    Google Scholar 

  • Fulceri, R., Knudsen, J., Giunti, R., Volpe, P., Nori, A., and Benedetti, A., 1997, Fatty acyl-CoA-acyl-CoA-binding protein complexes activate the Ca2+ release channel of skeletal muscle sarcoplasmic reticulum, Biochem. J. 325:423–428.

    Google Scholar 

  • Fyrst, H., Knudsen, J., Schott, M. A., Lubin, B. H., and Kuypers, F. A., 1995, Detection of acyl-CoA-binding protein in human red blood cells and investigation of its role in membrane phospholipid renewal, Biochem. J. 306:793–799.

    Google Scholar 

  • Frergeman, N. J., Sigurskjold, B. W., Kragelund, B. B., Andersen, K. V., and Knudsen, J., 1996, Thermodynamics of ligand binding to acyl-coenzyme A binding protein studied by titration calorimetry, Biochemistry 35:14118–14126.

    Google Scholar 

  • Faergeman, N. J., and Knudsen, J., 1997, Role of long-chain fatty acyl-CoA esters in the regulation of metabolism and in cell signalling, Biochem. J. 323:1–12.

    Google Scholar 

  • Glick, B. S., and Rothman, J. E., 1987, Possible role for fatty acyl-coenzyme A in intracellular protein transport, Nature 326:309–312.

    Google Scholar 

  • Goda, Y., 1997, SNAREs and regulated vesicle exocytosis, Proc. Natl. Acad. Sci. USA 94:769–772.

    Google Scholar 

  • Goldstein, J. L., Anderson, R. G., and Brown, M. S., 1979, Coated pits, coated vesicles, and receptor-mediatedendocytosis, Nature 279:679–685.

    Google Scholar 

  • Goni, F. M., Requero, M. A., and Alonso, A., 1996, Palmitoylcarnitine, a surface-active metabolite, FEBS Lett. 390:1–5.

    Google Scholar 

  • Gonzalo, S., and Linder, M. E., 1998, SNAP-25 palmitoylation and plasma membrane targeting require a functional secretory pathway, Mol. Biol. Cell 9:585–597.

    Google Scholar 

  • Gossett, R. E., Frolov, A. A., Roths, J. B., Behnke, W. D., Kier, A. B., and Schroeder, F., 1996, Acyl-CoA binding proteins: multiplicity and function [published erratum appears in Lipids 1996 Nov;31(11):1209], Lipids 31:895–918.

    Google Scholar 

  • Goud, B., Salminen, A., Walworth, N. C., and Novick, P. J., 1988, A GTP-binding protein required for secretion rapidly associates with secretory vesicles and the plasma membrane in yeast, Cell 53:753–768.

    Google Scholar 

  • Grataroli, R., Termine, E., Portugal, H., Pauli, A. M., Lafont, H., and Nalbone, G., 1991, Subcellular localization of rat gastric phospholipase A2, Biochim. Biophys. Acta. 1082:130–135.

    Google Scholar 

  • Grinstead, G. F., Trzaskos, J. M., Billheimer, J. T., and Gaylor, J. L., 1983, Cytosolic modulators of activities of microsomal enzymes of cholesterol biosynthesis. Effects of Acyl-CoA inhibition and cytosolic Z-protein, Biochim. Biophys. Acta. 751:41–51.

    Google Scholar 

  • Gutierrez, L., and Magee, A. I., 1991, Characterization of an acyltransferase acting on p21N-ras protein in a cell-free system, Biochim. Biophys. Acta. 1078:147–154.

    Google Scholar 

  • Haas, A., and Wickner, W., 1996, Homotypic vacuole fusion requires Sec17p (yeast alpha-SNAP) and Sec18p (yeast NSF), Embo. J. 15:3296–3305.

    Google Scholar 

  • Hallak, H., Muszbek, L., Laposata, M., Belmonte, E., Brass, L. F., and Manning, D. R., 1994, Covalent binding of arachidonate to G protein alpha subunits of human platelets, J. Biol. Chem. 269:4713–4716.

    Google Scholar 

  • Halle-Smith, S. C., Murray, A. G., and Selwyn, M. J., 1988, Palmitoyl-CoA inhibits the mitochondrial inner membrane anion-conducting channel, FEBS Lett. 236:155–158.

    Google Scholar 

  • Halperin, M. L., Robinson, B. H., and Fritz, I. B., 1972, Effects of palmitoyl CoA on citrate and malate transport by rat liver mitochondria, Proc. Natl. Acad. Sci. USA 69:1003–1007.

    Google Scholar 

  • Hancock, J. F., Magee, A. I., Childs, J. E., and Marshall, C. J., 1989, All ras proteins are polyisoprenylated but only some are palmitoylated, Cell 57:1167–1177.

    Google Scholar 

  • Hansen, H. O., Grunnet, I., and Knudsen, J., 1984a, Triacylglycerol synthesis in goat mammary gland. The effect of ATP, Mg2+ and glycerol 3-phosphate on the esterification of fatty acids synthesized de novo, Biochem. J. 220:513–519.

    Google Scholar 

  • Hansen, H. O., Grunnet, I., and Knudsen, J., 1984b, Triacylglycerol synthesis in goat mammary gland. Factors influencing the esterification of fatty acids synthesized de novo, Biochem. J. 220:521–527.

    Google Scholar 

  • Haq, R. U., Tsao, F., and Shrago, E., 1987, Relation of lung fatty acid binding protein to the biosynthesis of pulmonary phosphatidic acid and phosphatidylcholine, J. Lipid. Res. 28:216–220.

    Google Scholar 

  • Haubruck, H., Prange, R., Vorgias, C., and Gallwitz, D., 1989, The ras-related mouse ypt1 protein can functionally replace the YPT1 gene product in yeast, Embo. J. 8:1427–1432.

    Google Scholar 

  • Hay, J. C., and Scheller, R. H., 1997, SNAREs and NSF in targeted membrane fusion, Curr. Opin. Cell Biol. 9:505–512.

    Google Scholar 

  • Hayashi, T., Yamasaki, S., Nauenburg, S., Binz, T., and Niemann, H., 1995, Disassembly of the reconstituted synaptic vesicle membrane fusion complex in vitro, Embo. J. 14:2317–2325.

    Google Scholar 

  • Helms, J. B., and Rothman, J. E., 1992, Inhibition by brefeldin A of a Golgi membrane enzyme that catalyses exchange of guanine nucleotide bound to ARF, Nature 360:352–354.

    Google Scholar 

  • Hertz, R., Magenheim, J., Berman, I., and Bar-Tana, J., 1998, Fatty acyl-CoA thioesters are ligands of hepatic nuclear factor-4alpha, Nature 392:512–516.

    Google Scholar 

  • Hess, D. T., Slater, T. M., Wilson, M. C., and Skene, J. H., 1992, The 25 kDa synaptosomal-associated protein SNAP-25 is the major methionine-rich polypeptide in rapid axonal transport and a major substrate for palmitoylation in adult CNS, J. Neurosci. 12:4634–4641.

    Google Scholar 

  • Hofmann, S. L., Lee, L. A., Lu, J. Y., and Verkruyse, L. A., 1997, Palmitoyl-protein thioesterase and the molecular pathogenesis of infantile neuronal ceroid lipofuscinosis, Neuropediatrics 28:27–30.

    Google Scholar 

  • Hubbell, T., Behnke, W. D., Woodford, J. K., and Schroeder, F., 1994, Recombinant liver fatty acid binding protein interacts with fatty acyl-coenzyme A, Biochemistry 33:3327–3334.

    Google Scholar 

  • Idell-Wenger, J. A., Grotyohann, L. W., and Neely, J. R., 1978, Coenzyme A and carnitine distribution in normal and ischemic hearts, J. Biol. Chem. 253:431–318.

    Google Scholar 

  • Iiri, T., Backlund, P. S., Jr., Jones, T. L., Wedegaertner, P. B., and Bourne, H. R., 1996, Reciprocal regulation of Gs alpha by palmitate and the beta gamma subunit, Proc. Natl. Acad. Sci. USA 93:14592–14597.

    Google Scholar 

  • Iritani, N., Fukuda, E., and Inoguchi, K., 1980, A possible role of Z protein in dietary control of hepatic triacylglycerol synthesis, J. Nutr. Sci. Vitaminol (Tokyo) 26:271–217.

    Google Scholar 

  • Jepson, C. A., and Yeaman, S. J., 1992, Inhibition of hormone-sensitive lipase by intermediary lipid metabolites, FEBS Lett. 310:197–200.

    Google Scholar 

  • Jin, H., Subbarao, K., Bagai, S., Leser, G. P., Murphy, B. R., and Lamb, R. A., 1996, Palmitylation of the influenza virus hemagglutinin (H3) is not essential for virus assembly or infectivity, J. Virol. 70:1406–1414.

    Google Scholar 

  • Jin, H., Leser, G. P., Zhang, J., and Lamb, R. A,, 1997, Influenza virus hemagglutinin and neuraminidase cytoplasmic tails control particle shape, Embo. J. 16:1236–1247.

    Google Scholar 

  • Jolly, C. A., Hubbell, T., Behnke, W. D., and Schroeder, F., 1997, Fatty acid binding protein: stimulation of microsomal phosphatidic acid formation, Arch. Biochem. Biophys. 341:112–121.

    Google Scholar 

  • Juguelin, H., Bessoule, J. J., and Cassagne, C., 1991, Interaction of amphiphilic substrates (acyl-CoAs) and their metabolites (free fatty acids) with microsomes from mouse sciatic nerves, Biochim. Biophys. Acta. 1068:41–51.

    Google Scholar 

  • Kabcenell, A. K., and Atkinson, P. H., 1985, Processing of the rough endoplasmic reticulum membrane glycoproteins of rotavirus SA11, J. Cell Biol. 101:1270–1280.

    Google Scholar 

  • Kahn, R. A., and Gilman, A. G., 1986, The protein cofactor necessary for ADP-ribosylation of Gs by cholera toxin is itself a GTP binding protein, J. Biol. Chem. 261:7906–7911.

    Google Scholar 

  • Kahn, R. A., Kern, E G., Clark, J., Gelmann, E. P., and Rulka, C., 1991, Human ADP-ribosylation factors. A functionally conserved family of GTP-binding proteins, J. Biol. Chem. 266:2606–2614.

    Google Scholar 

  • Kakar, S. S., Huang, W. H., and Askari, A., 1987, Control of cardiac sodium pump by long-chain acyl coenzymes A, J. Biol. Chem. 262:42–45.

    Google Scholar 

  • Kamiryo, T., Parthasarathy, S., and Numa, S., 1976, Evidence that acyl coenzyme A synthetase activity is required for repression of yeast acetyl coenzyme A carboxylase by exogenous fatty acids, Proc. Natl. Acad. Sci. USA 73:386–390.

    Google Scholar 

  • Karrenbauer, A,, Jeckel, D., Just, W., Birk, R., Schmidt, R. R., Rothman, J. E., and Wieland, F. T., 1990, The rate of bulk flow from the Golgi to the plasma membrane, Cell 63:259–267.

    Google Scholar 

  • Kasinathan, C., Grzelinska, E., Okazaki, K., Slomiany, B. L., and Slomiany, A., 1990, Purification of protein fatty acyltransferase and determination of its distribution and topology, J. Biol. Chem. 265:5139–5144.

    Google Scholar 

  • Kemble, G. W., Danieli, T., and White, J. M., 1994, Lipid-anchored influenza hemagglutinin promotes hemifusion, not complete fusion, Cell 76:383–391.

    Google Scholar 

  • Ketterer, B., Tipping, E., Hackney, J. F., and Beale, D., 1976, A low-molecular-weight protein from rat liver that resembles ligandin in its binding properties, Biochem. J. 155:511–521.

    Google Scholar 

  • Klausner, R. D., Donaldson, J. G., and Lippincott-Schwartz, J., 1992, Brefeldin A: insights into the control of membrane traffic and organelle structure, J. Cell Biol. 116:1071–1080.

    Google Scholar 

  • Klenk, H. D., and Garten, W., 1994, Host cell proteases controlling virus pathogenicity, Trends. Microbiol. 2:39–43.

    Google Scholar 

  • Knudsen, J., and Grunnet, I., 1982, Transacylation as a chain-termination mechanism in fatty acid synthesis by mammalian fatty acid synthetase. Synthesis of medium-chain-length (C8-Cl2) acyl-CoA esters by goat mammary-gland fatty acid synthetase, Biochem. J. 202:139–143.

    Google Scholar 

  • Knudsen, J., Faegeman, N. J., Skott, H., Hummel, R., Borsting, C., Rose, T. M., Andersen, J. S., Hojrup, P., Roepstorff, P., and Kristiansen, K., 1994, Yeast acyl-CoA-binding protein: acyl-CoA-binding affinity and effect on intracellular acyl-CoA pool size, Biochem. J. 302:479–485.

    Google Scholar 

  • Kobayashi, A,, and Fujisawa, S., 1994, Effect of L-carnitine on mitochondrial acyl CoA esters in the ischemic dog heart, J. Mol. Cell Cardiol. 26:499–508.

    Google Scholar 

  • Kolmer, M., Roos, C., Tirronen, M., Myohanen, S., and Alho, H., 1994, Tissue-specific expression of the diazepam-binding inhibitor in Drosophila melanogaster: cloning, structure, and localization of the gene, Mol. Cell Biol. 14:6983–6995.

    Google Scholar 

  • Ktistakis, N. T., Linder, M. E., and Roth, M. G., 1992, Action of brefeldin A blocked by activation of a pertussis-toxin-sensitive G protein, Nature 356:344–346.

    Google Scholar 

  • Ktistakis, N.T., Brown, H.A., Sternweis, P. C., and Roth, M. G., 1995, Phospholipase D is present on Golgi-enriched membranes and its activation by ADP ribosylation factor is sensitive to brefeldin A, Proc. Natl. Acad. Sci. USA 92:4952–4956.

    Google Scholar 

  • Ktistakis, N. T., Brown, H. A., Waters, M. G., Sternweis, P. C., and Roth, M. G., 1996, Evidence that phospholipase Dmediates ADP ribosylation factor-dependent formation of Golgi coated vesicles, J. Cell Biol. 134:295–306.

    Google Scholar 

  • Lambrecht, B., and Schmidt, M. F., 1986, Membrane fusion induced by influenza virus hemagglutinin requires protein bound fatty acids, FEBS Lett. 202:127–32.

    Google Scholar 

  • Larsson, O., Deeney, J. T., Branstrom, R., Berggren, P. O., and Corkey, B. E., 1996, Activation of the ATP-sensitiveK+ channel by long chain acyl-CoA. A role in modulation of pancreatic beta-cell glucose sensitivity, J. Biol. Chem. 271:10623–10626.

    Google Scholar 

  • Lawrence, J. B., Moreau, P., Cassagne, C., and Morre, D. J., 1994, Acyl transfer reactions associated with cis Golgi apparatus of rat liver, Biochim. Biophys. Acta. l210:146–150.

    Google Scholar 

  • Lehel, C., Olah, Z., Jakab, G., and Anderson, W. B., 1995, Protein kinase C epsilon is localized to the Golgi via its zinc-finger domain and modulates Golgi function, Proc. Natl. Acad. Sci. USA 92:1406–1410.

    Google Scholar 

  • Lehrer, G., Panini, S. R., Rogers, D. H., and Rudney, H., 1981, Modulation of rat liver 3-hydroxy-3-methylglutaryl coenzyme A reductase by lipid inhibitors, substrates, and cytosolic factors, J. Biol. Chem. 256:5612–5619.

    Google Scholar 

  • Lenzen, C. U., Steinmann, D., Whiteheart, S. W., and Weis, W. I., 1998, Crystal structure of the hexamerization domain of N-ethylmaleimide-sensitive fusion protein, Cell 94:525–536.

    Google Scholar 

  • Leventis, R., Juel, G., Knudsen, J. K., and Silvius, J. R., 1997, Acyl-CoA binding proteins inhibit the nonenzymic S-acylation of cysteinyl-containing peptide sequences by long-chain acyl-CoAs, Biochemistry 36:5546–5553.

    Google Scholar 

  • Lewis, M. J., Rayner, J. C., and Pelham, H. R., 1997, A novel SNARE complex implicated in vesicle fusion with the endoplasmic reticulum, Embo. J. 16:3017–3024.

    Google Scholar 

  • Leyte, A., Barr, F. A., Kehlenbach, R. H., and Huttner, W. B., 1992, Multiple trimeric G-proteins on the trans-Golgi network exert stimulatory and inhibitory effects on secretory vesicle formation, Embo. J. 11:4795–4804.

    Google Scholar 

  • Li, Q.L., Yamamoto, N., Inoue, A., and Morisawa, S., 1990, Fatty acyl-CoAsare potent inhibitors of the nuclear thyroid hormone receptor in vitro, J. Biochem. (Tokyo) 107:699–702.

    Google Scholar 

  • Li, Q., Yamamoto, N., Morisawa, S., and Inoue, A., 1993, Fatty acyl-CoA binding activity of the nuclear thyroid hormone receptor, J. Cell Biochem. 51:458–464.

    Google Scholar 

  • Lindquist, P. J., Svensson, L. T., and Alexson, S. E., 1998, Molecular cloning of the peroxisome proliferator-induced 46-kDa cytosolic acyl-CoA thioesterase from mouse and rat liver-recombinant expression in Escherichia coli, tissue expression, and nutritional regulation, Eur.J. Biochem. 251:631–640.

    Google Scholar 

  • Linial, M., 1997, SNARE proteins-why so many, why so few?, J. Neurochem. 69:1781–1792.

    Google Scholar 

  • Lunzer, M. A., Manning, J. A., and Ockner, R. K., 1977, Inhibition of rat liver acetyl coenzyme A carboxylase by long chain acyl coenzyme A and fatty acid. Modulation by fatty acid-binding protein, J. Biol. Chem. 252:5483–5487.

    Google Scholar 

  • Lynen, F., Matsuhashi, M., Numa, S., and Schweizer, E., 1963, The cellular control of fatty acid synthesis at the enzymatic level, Biochem. Soc. Symp. 24:43–56.

    Google Scholar 

  • Mack, D., Berger, M., Schmidt, M. F., and Kruppa, J., 1987, Cell-free fatty acylation of microsomal integrated and detergent-solubilized glycoprotein of vesicular stomatitis virus, J.Biol.Chem. 262:4297–4302

    Google Scholar 

  • Magee, A. I., Gutierrez, L., McKay, I. A., Marshall, C. J., and Hall, A., 1987, Dynamic fatty acylation of p21N-ras, Embo. l. 6:3353–3357.

    Google Scholar 

  • Majumdar, S., Rossi, M. W., Fujiki, T., Phillips, W. A., Disa, S., Queen, C. E, Johnston, R. B., Jr., Rosen, O. M., Corkey, B. E., and Korchak, H. M., 1991, Protein kinase C isotypes and signaling in neutrophils. Differential substrate specificities of a translocatable calcium-and phospholipid-dependent beta-protein kinase C and a phospholipid-dependent protein kinase which is inhibited by long chain fatty acyl coenzyme A, J. Biol. Chem. 266:9285–9294.

    Google Scholar 

  • Malhotra, V., Orci, L., Glick, B. S., Block, M. R., and Rothman, J. E., 1988, Role of an N-ethylmaleimide-sensitive transport component inpromoting fusion of transport vesicles with cisternae of the Golgi stack, Cell 54:221–227.

    Google Scholar 

  • Malhotra, V., Serafini, T., Orci, L., Shepherd, J. C., and Rothman, J. E., 1989, Purification of a novel class of coated vesicles mediating biosynthetic protein transport through the Golgi stack, Cell 58:329–336.

    Google Scholar 

  • Mandrup, S., Hummel, R., Ravn, S., Jensen, G., Andreasen, P. H., Gregersen, N., Knudsen, J., and Kristiansen, K., 1992, Acyl-CoA-binding protein/diazepam-binding inhibitor gene and pseudogenes. A typical housekeeping gene family, J. Mol. Biol. 228:1011–1022.

    Google Scholar 

  • Mandrup, S., Jepsen, R., Skott, H., Rosendal, J., Hojrup, P., Kristiansen, K., and Knudsen, J., 1993, Effect of heterologous expression of acyl-CoA-binding protein on acyl-CoA level and composition in yeast, Biochem. J. 290:369–374.

    Google Scholar 

  • Markin, V. S., Kozlov, M. M., and Borovjagin, V. L., 1984, On the theory of membrane fusion. The stalk mechanism, Gen. Physiol. Biophys. 3:361–377.

    Google Scholar 

  • Martin, G., Schoonjans, K., Lefebvre, A. M., Staels, B., and Auwerx, J., 1997, Coordinate regulation of the expression of the fatty acid transport protein and acyl-CoA synthetase genes by PPARalpha and PPARgamma activators, J. Biol. Chem. 272:28210–28217.

    Google Scholar 

  • Matveeva, E., and Whiteheart, S. W., 1998, The effects of SNAP/SNARE complexes on the ATPase of NSF, FEBS Lett. 435:211–214.

    Google Scholar 

  • Mayer, A., Wickner, W., and Haas, A., 1996, Sec18p (NSF)-driven release of Sec17p (alpha-SNAP) can precede docking and fusion of yeast vacuoles, Cell 85:83–94.

    Google Scholar 

  • McIlhinney, R. A., 1989, Acylation of cell proteins, Biochem. Soc. Trans. 17:861–863.

    Google Scholar 

  • Melancon, P., Glick, B. S., Malhotra, V., Weidman, E J., Serafini, T., Gleason, M. L., Orci, L., and Rothman, J. E., 1987, Involvement of GTP-binding “G” proteins in transport through the Golgi stack, Cell 51:1053–1062.

    Google Scholar 

  • Melikyan, G. B., Jin, H., Lamb, R. A., and Cohen, F. S., 1997, The role of the cytoplasmic tail region of influenza virus hemagglutinin in formation and growth of fusion pores, Virology 235:118–128.

    Google Scholar 

  • Michel, J. B., and Michel, T., 1997, The role of palmitoyl-protein thioesterase in the palmitoylation of endothelial nitric oxide synthase, FEBS Lett. 405:356–362.

    Google Scholar 

  • Mikkelsen, J., and Knudsen, J., 1987, Acyl-CoA-binding protein from cow. Binding characteristics and cellular and tissue distribution, Biochem. J. 248:709–714.

    Google Scholar 

  • Mikkelsen, J., Hojrup, P., Hansen, H. F., Hansen, J. K., and Knudsen, J., 1985, Evidence that the medium-chain acyltransferase of lactating-goat mammary-gland fatty acid synthetase is identical with the acetyl/malonyltransferase, Biochem. J. 227:981–985.

    Google Scholar 

  • Milligan, G., Parenti, M., and Magee, A. I., 1995, The dynamic role of palmitoylation in signal transduction, Trends. Biochem. Sci. 20:181–187.

    Google Scholar 

  • Mishkin, S., and Turcotte, R., 1974a, The binding of long chain fatty acid CoA to Z, a cytoplasmic protein present in liver and other tissues of the rat, Biochem. Biophys. Res. Commun. 57:918–926.

    Google Scholar 

  • Mishkin, S., and Turcotte, R., 1974b, Stimulation of monoacylglycerophosphate formation by Z. protein, Biochem. Biophys. Res. Commun. 60:376–381.

    Google Scholar 

  • Mochida, S., Sheng, Z. H., Baker, C., Kobayashi, H., and Catterall, W. A., 1996, Inhibition of neurotransmission by peptides containing the synaptic protein interaction site of N-type Ca2+ channels, Neuron 17:781–788.

    Google Scholar 

  • Moench, S. J., Terry, C. E., and Dewey, T. G., 1994, Fluorescence labeling of the palmitoylation sites of rhodopsin, Biochemistry 33:5783–5790.

    Google Scholar 

  • Mogensen, I. B., Schulenberg, H., Hansen, H. O., Spener, F., and Knudsen, J., 1987, A novel acyl-CoA-binding protein from bovine liver. Effect on fatty acid synthesis, Biochem. J. 241:189–192.

    Google Scholar 

  • Molenaar, C. M., Prange, R., and Gallwitz, D., 1988, A carboxyl-terminal cysteine residue is required for palmitic acid binding and biological activity of the ras-related yeast YPT1 protein, Embo. J. 7:971–976.

    Google Scholar 

  • Montecucco, C., Papini, E., and Schiavo, G., 1996, Bacterial protein toxins and cell vesicle trafficking, Experientia 52:1026–1032.

    Google Scholar 

  • Moore, K. H., Dandurand, D. M., and Kiechle, F. L., 1992, Fasting induced alterations in mitochondrial palmitoyl-CoA metabolism may inhibit adipocyte pyruvate dehydrogenase activity, Int. J. Biochem. 24:809–814.

    Google Scholar 

  • Moreau, P., and Morre, D. J., 1991, Cell-free transfer of membrane lipids. Evidence for lipid processing, J. Biol. Chem. 266:4329–4333.

    Google Scholar 

  • Mumby, S. M., 1997, Reversible palmitoylation of signaling proteins, Curr. Opin. Cell Biol. 9:148–154.

    Google Scholar 

  • Mundy, D. I., 1995, Protein palmitoylation in membrane trafficking, Biochem. Soc. Trans. 23:572–576.

    Google Scholar 

  • Mundy, D. I., and Warren, G., 1992, Mitosis and inhibition of intracellular transport stimulate palmitoylation of a 62-kD protein, J. Cell Biol. 116:135–146.

    Google Scholar 

  • Murthy, M. S., and Pande, S. V., 1987, Some differences in the properties of carnitine palmitoyltransferase activities of the mitochondrial outer and inner membranes, Biochem. J. 248:727–733.

    Google Scholar 

  • Nadler, M. J., Hu, X. E., Cassady, J. M., and Geahlen, R. L., 1994, Posttranslational acylation of the transferrin receptor in LSTRA cells with myristate, palmitate and stearate: evidence for distinct acyltransferases, Biochim. Biophys. Acta. 1213:100–106.

    Google Scholar 

  • Naeve, C. W., and Williams, D., 1990, Fatty acids on the A/Japan/305/57 influenza virus hemagglutinin have a role in membrane fusion, Embo. J. 9:3857–3866.

    Google Scholar 

  • Naim, H. Y., Amameh, B., Ktistakis, N. T., and Roth, M. G., 1992, Effects of altering palmitylation sites on biosynthesis and function of the influenza virus hemagglutinin, J. Virol. 66:7585–7588.

    Google Scholar 

  • Nesher, M., and Boneh, A., 1994, Effect of fatty acids and their acyl-CoA esters on protein kinase C activity in fibroblasts: possible implications in fatty acid oxidation defects, Biochim. Biophys. Acta. l221:66–72.

    Google Scholar 

  • Nichols, B. J., Ungermann, C., Pelham, H. R., Wickner, W. T., and Haas, A., 1997, Homotypic vacuolar fusion mediated by t-and V-SNAREs, Nature 387:199–202.

    Google Scholar 

  • Novick, F’., and Zerial, M., 1997, The diversity of Rab proteins in vesicle transport, Curr. Opin. Cell Biol. 9:496–504.

    Google Scholar 

  • Noy, N., Donnelly, T. M., and Zakim, D., 1986, Physical-chemical model for the entry of water-insoluble compounds into cells. Studies of fatty acid uptake by the liver, Biochemistry 25:2013–2021.

    Google Scholar 

  • O’Brien, F’. J., St. Jules, R. S., Reddy, T. S., Bazan, N. G., and Zatz, M., 1987, Acylation of disc membrane rhodopsin may be nonenzymatic, J. Biol. Chem. 262:5210–5215.

    Google Scholar 

  • O’Connor, V. M., Shamotienko, O., Grishin, E., and Betz, H., 1993, On the structure of the ’synaptosecretosome’. Evidence foraneurexin/synaptotagmin/syntaxin/Ca2+ channel complex, FEBS Lett. 326:255–260.

    Google Scholar 

  • O’Doherty, P. J., and Kuksis, A., 1975, Stimulation of triacylglycerol synthesis by Z protein in rat liver and intestinal mucosa, FEBS Lett. 60:256–258.

    Google Scholar 

  • O’Dowd, B. F., Hnatowich, M., Caron, M. G., Lefkowitz, R. J., and Bouvier, M., 1989, Palmitoylation of the human beta 2-adrenergic receptor. Mutation of Cys341 in the carboxyl tail leads to an uncoupled nonpalmitoylated form of the receptor, J. Biol. Chem. 264:7564–7569.

    Google Scholar 

  • Ockner, R. K., and Manning, J. A., 1976, Fatty acid binding protein. Role in esterification of absorbed long chain fatty acid in rat intestine, J. Clin. Invest. 58:632–641.

    Google Scholar 

  • Ogiwara, H., Tanabe, T., Nikawa, J., and Numa, S., 1978, Inhibition of rat-liver acetyl-coenzyme-A carboxylase by palmitoyl-coenzyme A. Formation of equimolar enzyme-inhibitor complex, Eur. J. Biochem. 89:33–41.

    Google Scholar 

  • Olson, E. N., and Spizz, G., 1986, Fatty acylation of cellular proteins. Temporal and subcellular differences between palmitate and myristate acylation, J. Biol. Chem. 261:2458–2466.

    Google Scholar 

  • Olson, E. N., Glaser, L., and Merlie, J. P., 1984, Alpha and beta subunits of the nicotinic acetylcholine receptor contain covalently bound lipid, J. Biol. Chem. 259:5364–5367.

    Google Scholar 

  • Oram, J. F., Wenger, J. I., and Neely, J. R., 1975, Regulation of long chain fatty acid activation in heart muscle, J. Biol. Chem. 250:73–78.

    Google Scholar 

  • Orci, L., Malhotra, V., Amherdt, M., Serafini, T., and Rothman, J. E., 1989, Dissection of a single round of vesicular transport: sequential intermediates for intercisternal movement in the Golgi stack, Cell 56:357–368.

    Google Scholar 

  • Orci, L., Tagaya, M., Amherdt, M., Perrelet, A., Donaldson, J. G., Lippincott-Schwartz, J., Klausner, R. D., and Rothman, J. E., 1991, Brefeldin A, a drug that blocks secretion, prevents the assembly of non-clathrin-coated buds on Golgi cisternae, Cell 64:1183–1195.

    Google Scholar 

  • Orci, L., Palmer, D. J., Ravazzola, M., Perrelet, A., Amherdt, M., and Rothman, J. E., 1993a, Budding from Golgi membranes requires the coatomer complex of non-clathrin coat proteins, Nature 362:648–652.

    Google Scholar 

  • Orci, L., Palmer, D. J., Amherdt, M., and Rothman, J. E., 1993b, Coated vesicle assembly in the Golgi requires only coatomer and ARF proteins from the cytosol, Nature 364:732–734.

    Google Scholar 

  • Ostermann, J., Orci, L., Tani, K., Amherdt, M., Ravazzola, M., Elazar, Z., and Rothman, J. E., 1993, Stepwise assembly of functionally active transport vesicles, Cell 75:1015–1025.

    Google Scholar 

  • Oyler, G. A., Higgins, G. A., Hart, R.A., Battenberg, E., Billingsley, M., Bloom, F. E., and Wilson, M. C., 1989, The identification of a novel synaptosomal-associated protein, SNAP-25, differentially expressed by neuronal subpopulations, J. Cell Biol. 109:3039–3052.

    Google Scholar 

  • Palade, G., 1975, Intracellular aspects of the process of protein synthesis, Science 189:347–358.

    Google Scholar 

  • Palmer, D. J., Helms, J. B., Beckers, C. J., Orci, L., and Rothman, J. E., 1993, Binding of coatomer to Golgi membranes requires ADP-ribosylation factor, J.Biol. Chem. 268:12083–12089.

    Google Scholar 

  • Pande, S. V., 1973, Reversal by CoA of palmityl-CoA inhibition of long chain acyl-CoA synthetase activity, Biochim. Biophys. Acta. 306:15–20.

    Google Scholar 

  • Paulussen, R. J., and Veerkamp, J. H., 1990, Intracellular fatty-acid-binding proteins. Characteristics and function, Subcell. Biochem. 16:175–226.

    Google Scholar 

  • Paulussen, R. J., van der Logt, C. P., and Veerkamp, J. H., 1988, Characterization and binding properties of fatty acid-binding proteins from human, pig, and rat heart, Arch. Biochem. Biophys. 264:533–545.

    Google Scholar 

  • Peitzsch, R. M., and McLaughlin, S., 1993, Binding of acylated peptides and fatty acids to phospholipid vesicles: pertinence to myristoylated proteins, Biochemistry 32:10436–10443.

    Google Scholar 

  • Pelham, H. R., Banfield, D. K., and Lewis, M. J., 1995, SNAREs involved in traffic through the Golgi complex, Cold. Spring. Harb. Symp. Quant. Biol. 60:105–111.

    Google Scholar 

  • Pellegrini, L. L., O’Connor, V., Lottspeich, F., and Betz, H., 1995, Clostridial neurotoxins compromise the stability of a low energy SNARE complex mediating NSF activation of synaptic vesicle fusion, Embo. J. 14:4705–4713.

    Google Scholar 

  • Pfanner, N., Orci, L., Glick, B. S., Amherdt, M., Arden, S. R., Malhotra, V., and Rothman, J. E., 1989, Fatty acyl-coenzyme A is required for budding of transport vesicles from Golgi cisternae, Cell 59:95–102.

    Google Scholar 

  • Pfanner, N., Glick, B. S., Arden, S. R., and Rothman, J. E., 1990, Fatty acylation promotes fusion of transport vesicles with Golgi cisternae, J. Cell Biol. 110:955–961.

    Google Scholar 

  • Philipp, H. C., Schroth, B., Veit, M., Krumbiegel, M., Herrmann, A., and Schmidt, M. F., 1995, Assessment of fusogenic properties of influenza virus hemagglutinin deacylated by sitedirected mutagenesis and hydroxylamine treatment, Virology 210:20–28.

    Google Scholar 

  • Plutner, H., Cox, A. D., Pind, S., Khosravi-Far, R., Bourne, J. R., Schwaninger, R., Der, C. J., and Balch, W. E., 1991, Rab1b regulates vesicular transport between the endoplasmic reticulum and successive Golgi compartments, J. Cell Biol. 115:31–43.

    Google Scholar 

  • Polokoff, M. A., and Bell, R. M., 1978, Limited palmitoyl-CoA penetration into microsomal vesicles as evidenced by a highly latent ethanol acyltransferase activity, J. Biol. Chem. 253:7173–7178.

    Google Scholar 

  • Ponimaskin, E., and Schmidt, M. F. G., 1998, Domain-structure of cytoplasmic border region is main determinant for palmitoylation of influenza virus hemagglutinin (H7), Virology 249:325–335.

    Google Scholar 

  • Powell, G. L., Grothusen, J. R., Zimmerman, J. K., Evans, C. A., and Fish, W. W., 1981, A re-examination of some properties offatty acyl-CoA micelles, J. Biol.Chem. 256:12740–12747.

    Google Scholar 

  • Powell, P. J., Lau, S. M., Killian, D., and Thorpe, C., 1987, Interaction of acyl coenzyme A substrates and analogues with pig kidney medium-chain acyl-coA dehydrogenase, Biochemistry 26:3704–3710.

    Google Scholar 

  • Pusch, W., Balvers, M., Hunt, N., and Ivell, R., 1996, A novel endozepine-like peptide (ELP) is exclusively expressed in male germ cells, Mol. Cell Endocrinol. 122:69–80.

    Google Scholar 

  • Qanbar, R., and Possmayer, F., 1994, A quantitative method for detecting surfactant-associated protein C in pulmonary surfactant, Anal. Biochem. 216:262–270.

    Google Scholar 

  • Quesnel, S., and Silvius, J. R., 1994, Cysteine-containing peptide sequences exhibit facile uncatalyzed transacylation and acyl-CoA-dependent acylation at the lipid bilayer interface, Biochemistry 33:13340–13348.

    Google Scholar 

  • Raman, N., and DiRusso, C. C., 1995, Analysis of acyl coenzyme A binding to the transcription factor FadR and identification of amino acid residues in the carboxyl terminus required for ligand binding, J. Biol. Chem. 270:1092–1097.

    Google Scholar 

  • Ramsay, R. R., and Arduini, A., 1993, The carnitine acyltransferases and their role in modulating acyl-CoA pools, Arch. Biochem. Biophys. 302:307–314.

    Google Scholar 

  • Rasmussen, J. T., Borchers, T., and Knudsen, J., 1990, Comparison of the binding affinities of acyl-CoA-bindingprotein and fatty-acid-binding protein for long-chainacyl-CoA esters, Biochem. J. 265:849–855.

    Google Scholar 

  • Rasmussen, J. T., Rosendal, J., and Knudsen, J., 1993, Interaction of acyl-CoA binding protein (ACBP) on processes for which acyl-CoA is a substrate, product or inhibitor, Biochem. J. 292:907–913.

    Google Scholar 

  • Rasmussen, J. T., Faergeman, N. J., Kristiansen, K., and Knudsen, J., 1994, Acyl-CoA-binding protein (ACBP) can mediate intermembrane acyl-CoA transport and donate acyl-CoA for beta-oxidation and glycerolipid synthesis, Biochem. J. 299:165–170.

    Google Scholar 

  • Requero, M. A., Goni, F. M., and Alonso, A., 1995a, The membrane-perturbing properties of palmitoyl-coenzyme A and palmitoylcarnitine. A comparative study, Biochemistry 34:10400–10405.

    Google Scholar 

  • Requero, M. A., Gonzalez, M., Goni, F. M., Alonso, A., and Fidelio, G., 1995b, Differential penetration of fatty acyl-coenzyme A and fatty acylcarnitines into phospholipid monolayers, FEBS Lett. 357:75–78.

    Google Scholar 

  • Rich, G. T., Comerford, J. G., Graham, S., and Dawson, A. P., 1995, Effects of CoA and acyl-CoA on Ca(2+)-permeability of endoplasmic-reticulum membranes from rat liver, Biochem.J. 306:703–708.

    Google Scholar 

  • Rolf, B., Oudenampsen-Kruger, E., Borchers, T., Faergeman, N. J., Knudsen, J., Lezius, A., and Spener, F., 1995, Analysis of the ligand binding properties of recombinant bovine livertype fatty acid binding protein, Biochim. Biophys. Acta. l259:245–253.

    Google Scholar 

  • Rosendal, J., Ertbjerg, P., and Knudsen, J., 1993, Characterization of ligand binding to acyl-CoA-binding protein, Biochem. J. 290:321–326.

    Google Scholar 

  • Ross, N. W., and Braun, P. E., 1988, Acylation in vitro of the myelin proteolipid protein and comparison with acylation in vitro acylation of a cysteineoccurs nonenzymatically, J. Neuroscí. Res. 21:35–44.

    Google Scholar 

  • Rothman, J.E., and Wieland, F.T., 1996, Protein sorting by transport vesicles, Science 272:227–234.

    Google Scholar 

  • Rothman, J. E., and Söllner, T. H., 1997, Throttles and dampers: controlling the engine of membrane fusion, Science 276:1212–1213.

    Google Scholar 

  • Rothman, J. E., Miller, R. L., and Urbani, L. J., 1984a, Intercompartmental transport in the Golgi complex is a dissociative process: facile transfer of membrane protein between two Golgi populations, J. Cell Biol. 99:260–271.

    Google Scholar 

  • Rothman, J. E., Urbani, L. J., and Brands, R., 1984b, Transport of protein between cytoplasmic membranes of fused cells: correspondence to processes reconstituted in a cell-free system, J. Cell Biol. 99:248–259.

    Google Scholar 

  • Rys-Sikora, K. E., Ghosh, T. K., and Gill, D. L., 1994, Modification of GTP-activated calcium translocation by fatty acyl-CoA esters. Evidence for a GTP-induced prefusion event, J. Biol. Chem. 269:31607–31613.

    Google Scholar 

  • Saito, N., Kose, A., Ito, A., Hosoda, K., Mori, M., Hirata, M., Ogita, K., Kikkawa, U., Ono, Y., Igarashi, K. et al., 1989, Immunocytochemical localization of beta II subspecies of protein kinase C in rat brain, Proc. Natl. Acad. Sci. USA 86:3409–3413.

    Google Scholar 

  • Saitoh, S., Takahashi, K., Nabeshima, K., Yamashita, Y., Nakaseko, Y., Hirata, A., and Yanagida, M., 1996, Aberrant mitosis in fission yeast mutants defective in fatty acid synthetase and acetyl CoA carboxylase, J. Cell Biol. 134:949–961.

    Google Scholar 

  • Scallen, T. J., Noland, B. J., Gavey, K. L., Bass, N. M., Ockner, R. K., Chanderbhan, R., and Vahouny, G. V., 1985, Sterol carrier protein 2 and fatty acid-binding protein. Separate and distinct physiological functions, J. Biol. Chem. 260:4733–4739.

    Google Scholar 

  • Schaffer, J. E., and Lodish, H. F., 1994, Expression cloning and characterization of a novel adipocyte long chain fatty acid transport protein [see comments], Cell 79:427–436.

    Google Scholar 

  • Schiavo, G., Gmachl, M. J., Stenbeck, G., Söllner, T. H., and Rothman, J. E., 1995, A possible docking and fusion particle for synaptic transmission, Nature 378:733–736.

    Google Scholar 

  • Schiavo, G., Gu, Q. M., Prestwich, G. D., Söllner, T. H., and Rothman, J. E., 1996, Calcium-dependent switching of the specificity of phosphoinositide binding to synaptotagmin, Proc. Natl. Acad. Sci. USA 93:13327–13332.

    Google Scholar 

  • Schiavo, G., Stenbeck, G., Rothman, J. E., and Söllner, T. H., 1997, Binding of the synaptic vesicle v-SNARE, synaptotagmin, to the plasma membrane t-SNARE, SNAP-25, can explain docked vesicles at neurotoxin-treated, Proc. Natl. Acad. Sci. USA 94:997–1001.

    Google Scholar 

  • Schjerling, C. K., Hummel, R., Hansen, J. K., Borsting, C., Mikkelsen, J. M., Kristiansen, K., and Knudsen, J., 1996, Disruption of the gene encoding the acyl-CoA-binding protein (ACB1) perturbs acyl-CoA metabolism in Saccharomyces cerevisiae, J. Biol. Chem. 271:22514–22521.

    Google Scholar 

  • Schmidt, M. F., and Schlesinger, M. J., 1980, Relation of fatty acid attachment to the translation and maturation of vesicular stomatitis and Sindbis virus membrane glycoproteins, J. Biol. Chem. 255:3334–3339.

    Google Scholar 

  • Schmidt, M. F., and Lambrecht, B., 1985, On the structure of the acyl linkage and the function of fatty acyl chains in the influenza virus haemagglutinin and the glycoproteins of Semliki Forest virus, J. Gen. Virol. 66:2635–2647.

    Google Scholar 

  • Schmidt, M. F., and Burns, G. R., 1989, Hydrophobic modifications of membrane proteins by palmitoylation in vitro, Biochem. Soc. Trans. 17:625–626.

    Google Scholar 

  • Schmidt, M. F., Bracha, M., and Schlesinger, M. J., 1979, Evidence for covalent attachment of fatty acids to Sindbis virus glycoproteins, Proc. Natl. Acad. Sci. USA 76:1687–1691.

    Google Scholar 

  • Schneiter, R., and Kohlwein, S. D., 1997, Organelle structure, function, and inheritance in yeast: a role for fatty acid synthesis?, Cell 88:431–434.

    Google Scholar 

  • Schneiter, R., Hitomi, M., Ivessa, A. S., Fasch, E. V., Kohlwein, S. D., and Tartakoff, A. M., 1996, A yeast acetyl coenzyme A carboxylase mutant links very-long-chain fatty acid synthesis to the structure and function of the nuclear membrane-porecomplex, Mol. Cell Biol. 16:7161–7172.

    Google Scholar 

  • Schultz, A. M., Henderson, L. E., and Oroszlan, S., 1988, Fatty acylation of proteins, Annu. Rev. Cell Biol. 4:611–647.

    Google Scholar 

  • Schwaninger, R., Plutner, H., Bokoch, G. M., and Balch, W. E., 1992, Multiple GTP-binding proteins regulate vesicular transport from the ER to Golgi membranes, J. Cell Biol. 119:1077–1096.

    Google Scholar 

  • Seedorf, U., Raabe, M., Ellinghaus, P., Kannenberg, F., Fobker, M., Engel, T., Denis, S., Wouters, F., Wirtz, K. W., Wanders, R. J., Maeda, N., and Assmann, G., 1998, Defective peroxisomal catabolism of branched fatty acyl coenzyme A in mice lacking the sterol carrier protein-2/sterol carrier protein-x gene function, Genes. Dev. 12:1189–1201.

    Google Scholar 

  • Segev, N., 1991, Mediation of the attachment or fusion step in vesicular transport by the GTP-binding Ypt1 protein, Science 252:1553–1556.

    Google Scholar 

  • Serafini, T., Orci, L., Amherdt, M., Brunner, M., Kahn, R. A., and Rothman, J. E., 1991a, ADP-ribosylation factor is a subunit of the coat of Golgi-derived COP-coated vesicles: a novel role for a GTP-binding protein, Cell 67:239–253.

    Google Scholar 

  • Serafini, T., Stenbeck, G., Brecht, A., Lottspeich, F., Orci, L., Rothman, J. E., and Wieland, F. T., 1991b, A coat subunit of Golgi-derived non-clathrin-coated vesicles with homology to the clathrin-coated vesicle coat protein beta-adaptin, Nature 349215–220.

    Google Scholar 

  • Sheng, Z. H., Rettig, J., Takahashi, M., and Catterall, W. A., 1994, Identification of a syntaxin-binding site on N-type calcium channels, Neuron 13:1303–1313.

    Google Scholar 

  • Shoyab, M., Gentry, L. E., Marquardt, H., and Todaro, G. J., 1986, Isolation and characterization of a putative endogenous benzodiazepineoid (endozepine) from bovine and human brain, J. Biol. Chem. 261:11968–11973.

    Google Scholar 

  • Siliprandi, D., Biban, C., Testa, S., Toninello, A., and Siliprandi, N., 1992, Effects of palmitoyl CoA and palmitoyl carnitine on the membrane potential and Mg2+ content of rat heart mitochondria, Mol. Cell Biochem. 116:117–123.

    Google Scholar 

  • Simon, J. P., Ivanov, I. E., Adesnik, M., and Sabatini, D. D., 1996a, The production of post-Golgi vesicles requires a protein kinase C-like molecule, but not its phosphorylating activity, J. Cell Biol. 135:355–370.

    Google Scholar 

  • Simon, J. P., Ivanov, I. E., Shopsin, B., Hersh, D., Adesnik, M., and Sabatini, D. D., 1996b, The in vitro generation of post-Golgi vesicles carrying viral envelope glycoproteins requires an ARF-like GTP-binding protein and a protein kinase C associated with the Golgi apparatus, J. Biol. Chem. 271:16952–16961.

    Google Scholar 

  • Singer, W. D., Brown, H. A., Jiang, X., and Sternweis, P. C., 1996, Regulation of phospholipase D by protein kinaseC issynergistic with ADP-ribosylation factor and independentof protein kinase activity, J. Biol. Chem. 271:4504–4510.

    Google Scholar 

  • Singer, W. D., Brown, H. A., and Sternweis, P. C., 1997, Regulation of eukaryotic phosphatidylinositol-specific phospholipase C and phospholipase D, Annu. Rev. Biochem. 66:475–509.

    Google Scholar 

  • Sleeman, M. W., Donegan, N. P., Heller-Harrison, R., Lane, W. S., and Czech, M. P., 1998, Association of acyl-CoA synthetase-1 with GLUT4-containing vesicles, J. Biol. Chem. 273:3132–3125.

    Google Scholar 

  • Slomiany, B. L., Murty, V. L., Sarosiek, J., Piotrowski, J., and Slomiany, A., 1988, Role of associated and covalently bound lipids in salivary mucin hydrophobicity: effect of proteolysis and disulfide bridge reduction, Biochem. Biophys. Res. Commun. 151:1046–1053.

    Google Scholar 

  • Slomiany, A., Grzelinska, E., Kasinathan, C., Yamaki, K., Palecz, D., and Slomiany, B. L., 1992, Function of intracellular phospholipase A2 in vectorial transport of apoproteins from ER to Golgi, Int. J. Biochem. 24:1397–1406.

    Google Scholar 

  • Söllner, T., Bennett, M. K., Whiteheart, S. W., Scheller, R. H., and Rothman, J. E., 1993a, A proteinassembly-disassembly pathway in vitro that may correspond to sequential steps of synaptic vesicle docking, activation, and fusion, Cell 75:409–418.

    Google Scholar 

  • Söllner, T., Whiteheart, S. W., Brunner, M., Erdjument-Bromage, H., Geromanos, S., Tempst, P., and Rothman, J. E., 1993b, SNAP receptors implicated in vesicle targeting and fusion, Nature 362:318–324.

    Google Scholar 

  • Sorrentino, D., Stump, D., Potter, B. J., Robinson, R. B., White, R., Kiang, C. L., and Berk, P. D., 1988, Oleate uptake by cardiac myocytes is carrier mediated and involves a 40-kD plasma membrane fatty acid binding protein similar to that in liver, adipose tissue, and gut, J. Clin. Invest. 82:928–935.

    Google Scholar 

  • Spitsberg, V. L., Matitashvili, E., and Gorewit, R. C., 1995, Association and coexpression of fatty-acid-binding protein and glycoprotein CD36 in the bovine mammary gland, Eur. J. Biochem. 230:872–878.

    Google Scholar 

  • Steinhauer, D. A., Wharton, S. A., Wiley, D. C., and Skehel, J. J., 1991, Deacylation of the hemag-glutinin of influenza A/Aichi/2/68 has no effect on membrane fusion properties, Virology 184:445–448.

    Google Scholar 

  • Stenbeck, G., Schreiner, R., Herrmann, D., Auerbach, S., Lottspeich, E, Rothman, J. E., and Wieland, F. T., 1992, Gamma-COP, a coat subunit of non-clathrin-coated vesicles with homology to Sec21p, FEBS Lett. 314:195–198.

    Google Scholar 

  • Sterchele, P. F., Vanden Heuvel, J. P., Davis, J. W. N., Shrago, E., Knudsen, J., and Peterson, R. E., 1994, Induction of hepatic acyl-CoA-binding protein and liver fatty acid-binding protein by perfluorodecanoic acid in rats. Lack of correlation with hepatic long-chain acyl-CoA levels, Biochem. Pharmacol. 48:955–966.

    Google Scholar 

  • Stewart, L. C., and Yaffe, M. P., 1991, A role for unsaturated fatty acids in mitochondrial movement and inheritance, J. Cell Biol. 115:1249–1257.

    Google Scholar 

  • Storch, J., Bass, N. M., and Kleinfeld, A. M., 1989, Studies of the fatty acid-binding site of rat liver fatty acid-binding protein using fluorescent fatty acids, J. Biol. Chem. 264:8708–8713.

    Google Scholar 

  • Stow, J. L., de Almeida, J. B., Narula, N., Holtzman, E. J., Ercolani, L., and Ausiello, D. A., 1991, A heterotrimeric G protein, G alpha i-3, on Golgi membranes regulates the secretion of a heparan sulfate proteoglycan in LLC-PK1 epithelial cells, J. Cell Biol. 114:1113–1124.

    Google Scholar 

  • Stukey, J. E., McDonough, V. M., and Martin, C. E., 1989, Isolation and characterization of OLE1, a geneaffecting fatty acid desaturation from Saccharomyces cerevisiae, J. Biol. Chem. 264:16537–16544.

    Google Scholar 

  • Sudhof, T. C., and Rizo, J., 1996, Synaptotagmins: C2-domain proteins that regulate membrane traffic, Neuron 17:379–388.

    Google Scholar 

  • Svensson, L. T., Engberg, S. T., Aoyama, T., Usuda, N., Alexson, S. E., and Hashimoto, T., 1998, Molecular cloning and characterization of a mitochondrial peroxisome proliferator-induced acyl-CoA thioesterase from rat liver, Biochem. J. 329:601–408.

    Google Scholar 

  • Tanigawa, G., Orci, L., Amherdt, M., Ravazzola, M., Helms, J. B., and Rothman, J. E., 1993, Hydrolysis of bound GTP by ARF protein triggers uncoating of Golgi-derived COP-coated vesicles, J. Cell Biol. l23:1365–1371.

    Google Scholar 

  • Tartakoff, A. M., 1983, Perturbation of vesicular traffic with the carboxylic ionophore monensin, Cell 32:1026–1028.

    Google Scholar 

  • Tippett, P. S., and Neet, K. E., 1982a, Specific inhibition of glucokinase by long chain acyl coenzymes A below the critical micelle concentration, J. Biol. Chem. 257:12839–12845.

    Google Scholar 

  • Tippett, P. S., and Neet, K. E., 1982b, An allosteric model for the inhibition of glucokinase by long chain acyl coenzyme A, J. Biol. Chem. 257:12846–12852.

    Google Scholar 

  • Todaro, G. J., Rose, T. M., and Shoyab, M., 1991, Human DBI (endozepine): relationship to a homologous membrane associated protein (MA-DBI), Neuropharmacology 30:1373–1380.

    Google Scholar 

  • Towler, D. A., Gordon, J. I., Adams, S. I, and Glaser, L., 1988, The biology and enzymology of eukaryotic protein acylation, Annu. Rev. Biochem. 57:69–99.

    Google Scholar 

  • Townsend, L. E., Agrawal, D., Benjamins, J. A., and Agrawal, H. C., 1982, In vitro acylation of rat brain myelin proteolipid protein, J. Biol. Chem. 257:9745–9750.

    Google Scholar 

  • Trimble, W. S., Cowan, D. M., and Scheller, R. H., 1988, VAMP-1: a synaptic vesicle-associated integral membrane protein, Proc. Natl. Acad. Sci. USA 85:4538–4542.

    Google Scholar 

  • Tubbs, P. K., and Garland, P. B., 1964, Variations in tissue contents of coenzyme A thio esters and possible metabolic implications, Biochem. J. 93:550–557.

    Google Scholar 

  • Ungermann, C., Nichols, B. J., Pelham, H. R., and Wickner, W., 1998, A vacuolar v-t-SNARE complex, the predominant form in vitro and on isolated vacuoles, is disassembled and activated for docking and fusion, J. Cell Biol. 140:61–69.

    Google Scholar 

  • Van Nieuwenhoven, E. A., Verstijnen, C. P., Abumrad, N. A., Willemsen, P. H., Van Eys, G. J., Van der Vusse, G. J., and Glatz, J. F., 1995, Putative membrane fatty acid translocase and cytoplasmic fatty acid-binding protein are co-expressed in rat heart and skeletal muscles, Biochem. Biophys. Res. Commun. 207:747–752.

    Google Scholar 

  • Veit, M., Kretzschmar, E., Kuroda, K., Garten, W., Schmidt, M. F., Klenk, H. D., and Rott, R., 1991, Site-specific mutagenesis identifies three cysteine residues in the cytoplasmic tail as acylation sites of influenza virus hemagglutinin, J. Virol. 65:2491–2500.

    Google Scholar 

  • Veit, M., Söllner, T. H., and Rothman, J. E., 1996, Multiple palmitoylation of synaptotagmin and the t-SNARE SNAP-25, FEBS Lett. 385:119–123.

    Google Scholar 

  • Vork, M. M., Glatz, J. F., and Van Der Vusse, G. J., 1993, On the mechanism of long chain fatty acid transport in cardiomyocytes as facilitated by cytoplasmic fatty acid-binding protein, J. Theor. Biol. 160:207–222.

    Google Scholar 

  • Waku, K., 1992, Origins and fates of fatty acyl-CoA esters, Biochim. Biophys. Acta. 1124:101–111.

    Google Scholar 

  • Walworth, N. C., Goud, B., Kabcenell, A. K., and Novick, P. J., 1989, Mutational analysis of SEC4 suggest sacyclical mechanism for theregulation of vesicular traffic, Embo. J. 8:1685–1693.

    Google Scholar 

  • Washbourne, P., Pellizzari, R., Rossetto, O., Bortoletto, N., Tugnoli, V., De Grandis, D., Eleopra, R., and Montecucco, C., 1998, On the action of botulinum neurotoxins A and E at cholinergic terminals [In Process Citation], J. Physiol. Park. 92:135–139.

    Google Scholar 

  • Webb, N. R., Rose, T. M., Malik, N., Marquardt, H., Shoyab, M., Todaro, G. J., and Lee, D. C., 1987, Bovine and human cDNA sequences encoding a putative benzodiazepine receptor ligand, Dna. 6:71–79.

    Google Scholar 

  • Weber, T., Zemelman, B. V., McNew, J. A., Westermann, B., Gmachl, M., Parlati, F., Söllner, T. H., and Rothman, J. E., 1998, SNAREpins: minimal machinery for membrane fusion, Cell 92:759–772.

    Google Scholar 

  • Wedegaertner, P. B., Wilson, I. T., and Bourne, H. R., 1995, Lipid modifications of trimeric G proteins, J. Biol. Chem. 270:503–506.

    Google Scholar 

  • Weidman, P. J., Melancon, P., Block, M. R., and Rothman, J. E., 1989, Binding of an N-ethylmaleimide-sensitive fusion protein to Golgi membranes requires both a soluble protein(s) and an integral membrane receptor, J. Cell Biol. 108:1589–1596.

    Google Scholar 

  • Whiteheart, S. W., Brunner, M., Wilson, D. W., Wiedmann, M., and Rothman, J. E., 1992, Soluble N-ethylmaleimide-sensitive fusion attachment proteins (SNAPS) bind to a multi-SNAP receptor complex in Golgi membranes, J. Biol. Chem. 267:12239–12243.

    Google Scholar 

  • Whiteheart, S. W., Griff, I. C., Brunner, M., Clary, D. O., Mayer, T., Buhrow, S. A., and Rothman, J. E., 1993, SNAP family of NSF attachment proteins includes a brain-specific isoform, Nature 362:353–355.

    Google Scholar 

  • Whiteheart, S. W., Rossnagel, K., Buhrow, S. A., Brunner, M., Jaenicke, R., and Rothman, J. E., 1994, N-ethylmaleimide-sensitive fusion protein: a trimeric ATPase whose hydrolysis of ATP is required for membrane fusion, J. Cell Biol. 126:945–954.

    Google Scholar 

  • Whitmer, J. T., Idell-Wenger, J. A., Rovetto, M. J., and Neely, J. R., 1978, Control of fatty acid metabolism in ischemic and hypoxic hearts, J. Biol. Chem. 253:4305–4309.

    Google Scholar 

  • Wilson, D. W., Whiteheart, S. W., Orci, L., and Rothman, J. E., 1991, Intracellular membrane Fusion, Trends. Biochem. Sci. 16:334–337.

    Google Scholar 

  • Wilson, D. W., Whiteheart, S. W., Wiedmann, M., Brunner, M., and Rothman, J. E., 1992, A multisubunit particle implicated in membrane fusion, J. Cell Biol. 117:531–538.

    Google Scholar 

  • Wilson, B. S., Palade, G. E., and Farquhar, M. G., 1993, Endoplasmic reticulum-through-Golgi transport assay based on O-glycosylation of native glycophorin in permeabilized erythroleukemia cells: role for Gi3, Proc. Natl. Acad. Sci. USA 90:1681–1685.

    Google Scholar 

  • Wirtz, K. W., 1997, Phospholipid transfer proteins revisited, Biochem. J. 324:353–360.

    Google Scholar 

  • Woldegiorgis, G., Shrago, E., Gipp, J., and Yatvin, M., 1981, Fatty acyl coenzyme A-sensitive adenine nucleotide transport in a reconstituted liposome system, J. Biol. Chem. 256:12297–12300.

    Google Scholar 

  • Wu-Rideout, M. Y., Elson, C., and Shrago, E., 1976, The role of fatty acid binding protein on the metabolism of fatty acids in isolated rat hepatocytes, Biochem. Biophys. Res. Commun. 71:809–816.

    Google Scholar 

  • Yamada, J., Furihata, T., Tamura, H., Watanabe, T., and Suga, T., 1996, Long-chain acyl-CoA hydrolase fromratbraincytosol: purification, characterization, and immuno histochemical localization, Arch. Biochem. Biophys. 326:106–114.

    Google Scholar 

  • Yamada, J., Furihata, T., Iida, N., Watanabe, T., Hosokawa, M., Satoh, T., Someya, A., Nagaoka, I., and Suga, T., 1997, Molecular cloning and expression of cDNAs encoding rat brain and livercytosoliclong-chainacyl-CoA hydrolases, Biochem. Biophys. Res. Commun. 232:198–203.

    Google Scholar 

  • Yamada, J., Suga, K., Furihata, T., Kitahara, M., Watanabe, T., Hosokawa, M., Satoh, T., and Suga, T., 1998, cDNA cloning and genomic organization of peroxisome proliferator-inducible long-chain acyl-CoA hydrolase from rat liver cytosol, Biochem. Biophys. Res. Commun. 248:608–612.

    Google Scholar 

  • Yamakawa, N., Shimeno, H., Soeda, S., and Nagamatsu, A., 1990, Inhibition of proline endopeptidase activity by acyl-coenzyme A esters, Biochim. Biophys. Acta. 1037:302–36.

    Google Scholar 

  • Zurcher, T., Luo, G., and Palese, P., 1994, Mutations at palmitylation sites of the influenza virus hemagglutinin affect virus formation, J. Virol. 68:5748–5754.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

Faxgeman, N.J., Ballegaard, T., Knudsen, J., Black, P.N., DiRusso, C. (2002). Possible Roles of Long-chain Fatty Acyl-CoA Esters in the Fusion of Biomembranes. In: Hilderson, H., Fuller, S. (eds) Fusion of Biological Membranes and Related Problems. Subcellular Biochemistry, vol 34. Springer, Boston, MA. https://doi.org/10.1007/0-306-46824-7_5

Download citation

  • DOI: https://doi.org/10.1007/0-306-46824-7_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-46313-6

  • Online ISBN: 978-0-306-46824-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics