Skip to main content

The Full Complement of Yeast Ypt/Rab-GTPases and Their Involvement in Exo- and Endocytic Trafficking

  • Chapter

Part of the book series: Subcellular Biochemistry ((SCBI,volume 34))

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aalto, M. K., Ronne, H., and Keränen, S., 1993, Yeast syntaxins Sso1p and Sso2p belong to a family of related membrane proteins that function in vesicular transport, EMBO J. 12: 4095–4104.

    Google Scholar 

  • Abeliovich, H., Grote, E., Novick, P., and Ferro-Novick, S., 1998, Tlg2p, a yeast syntaxin homolog that resides on the Golgi and endocytic structures, J. Biol. Chem 273: 11719–11727.

    Google Scholar 

  • Araki, S., Kikuchi, A., Hata, Y., Isomura, M., and Takai, Y., 1990, Regulation of reversible binding of smg p25A, a ras p21-like GTP-binding protein, to synaptic plasma membranes and vesicles by its specific regulatory protein, GDP dissociation inhibitor, J. Biol. Chem. 265:13007–13015.

    Google Scholar 

  • Armstrong, J., Craighead, M. W., Watson, R., Ponnambalam, S., and Bowden, S., 1993, Schizosaccharomyces pombe ypt5: a homologue of the rab5 endosome fusion regulator, Mol. Biol. Cell 4:583–592.

    Google Scholar 

  • Armstrong, J., Pidoux, A., Bowden, S., Craighead, M., Bone, N., and Robinson, E., 1994, The ypt proteins of Schizosaccharomyces pornbe, Biochem. Soc. Trans. 22:460–463.

    Google Scholar 

  • Bacon, R. A., Salminen, A., Ruohola, H., Novick, P., and Ferro-Novick, S., 1989, The GTP-binding protein Ypt1 is required for transport in vitro: the Golgi apparatus is defective in ypt1 mutants, J. Cell Biol. 109:1015–1022.

    Google Scholar 

  • Baker, D., Wuestehube, L., Schekman, R., Botstein, D., and Segev, N., 1990, GTP-binding Ypt1 protein and Ca2+ function independently in a cell-free protein transport reaction, Proc. Natl. Acad. Sci. USA. 87:355–359.

    Google Scholar 

  • Becherer, K. A., Rieder, S. E., Emr, S. D., and Jones, E. W., 1996, Novel syntaxin homologue, Pep12p, required for the sorting of lumenal hydrolases to the lysosome-like vacuole in yeast, Mol. Biol. Cell 7:579–594.

    Google Scholar 

  • Becker, J., Tan, T. J., Trepte, H.-H., and Gallwitz, D., 1991, Mutational analysis of the putative effector domain of the GTP-binding Ypt1 protein in yeast suggests specific regulation by a novel GAP activity, EMBO J. 10:785–792.

    Google Scholar 

  • Bednarek, S. Y., Orci, L., and Schekman, R., 1996, Traffic COPs and the formation of vesicle coats, Trends Cell Biol. 6:468–473.

    Google Scholar 

  • Bednarek, S. Y., Reynolds, T. L., Schroeder, M., Grabowski, R., Hengst, L., Gallwitz, D., and Raikhel, N. V. A., 1994, small GTP-binding protein from Arabidopsis thaliana functionally complements the yeast YPT6 null mutant, Plant Physiol. 104:591–596.

    Google Scholar 

  • Benito-Moreno, R. M., Miaczynska, M., Bauer, B. E., Schweyen, R. J., and Ragnini, A,, 1994, Mrs6p, the yeast homologue of themammalian choroideraemia protein: immunological evidence for its function as the Ypt1p Rab escort protein, Curr. Genet. 27:23–25.

    Google Scholar 

  • Benli, M., Döring, F., Robinson, D. G., Yang, X., and Gallwitz, D., 1996, Two GTPase isoforms, Ypt31p and Ypt32p, are essential for Golgi function in yeast, EMBO J. 15:6460–6475.

    Google Scholar 

  • Bennett, M. K., and Scheller, R. H., 1993, The molecular machinery for secretion is conserved from yeast to neurons, Proc. Natl. Acad. Sci. USA. 90:2559–2563.

    Google Scholar 

  • Beranger, F., Paterson, H., Powers, S., de Gunzburg, J., and Hancock, J., 1994, The effector domain of Rab6, plus a highly hydrophobic C terminus, is required for Golgi apparatus localization, Mol. Cell. Biol. 14:744–758.

    Google Scholar 

  • Bode, H. P., Dumschat, M., Garotti, S., and Fuhrmann, G. F., 1995, Iron sequestration by the yeast vacuole, Eur. J. Biochem. 228:337–342.

    Google Scholar 

  • Boguski, M. S., and McCormick, F., 1993, Proteins regulating Ras and its relatives, Nature 366:643–654.

    Google Scholar 

  • Bokoch, G. M., and Der, C. J., 1993, Emerging concepts in the Ras superfamily of GTP-binding proteins, FASEB J. 7:750–759.

    Google Scholar 

  • Bollag, G., and McCormick, F., 1991, Differential regulation of rasGAP and neurofibromatosis gene product activities, Nature 351:576–519.

    Google Scholar 

  • Bone, N., Miilar, J. B. A., Toda, T., and Armstrong, J., 1998, Regulated vacuole fusion and fission in Schizosaccharomyces pombe: an osmotic response dependent on MAP kinases, Current Biol. 8:135–144.

    Google Scholar 

  • Bourne, H. R., 1995, GTPases: a family of molecular switches and clocks, Philos. Trans. R. Soc. Lond. B. Biol. Sci. 349:283–289.

    Google Scholar 

  • Bourne, H. R., Sanders, D. A., and McConnick, F., 1990, The GTPase superfamily: a conserved switch for diverse cell functions, Nature 348:125–132.

    Google Scholar 

  • Bowser, R., and Novick, P., 1991, Sec15 protein, an essential component of the exocytotic apparatus, is associated with the plasma membrane and with a soluble 19.5S particle, J. Cell Biol. 112:1117–1131.

    Google Scholar 

  • Bowser, R., Muller, H., Govindan, B., and Novick, P., 1992, Sec8p and Sec15p are components of a plasma membrane-associated 19.5S particle that may function downstream of Sec4p to control exocytosis, J. Cell Biol. 118:1041–1056.

    Google Scholar 

  • Brennwald, P., and Novick, P., 1993, Interactions of three domains distinguishing the Rasrelated GTP-binding proteins Ypt1 and Sec4, Nature 362:560–563.

    Google Scholar 

  • Brennwald, P., Kearns, B., Champion, K., Kerônen, S., Bankaitis, V., and Novick, P., 1994, Sec9 is a SNAP-25-like component of a yeast SNARE complex that may be the effector of Sec4 function in exocytosis, Cell 79:245–258.

    Google Scholar 

  • Brondyk, W. H., McKiernan, C. J., Fortner, K. A., Stabila, P., Holz, R. W., and Macara I. G., 1995, Interaction cloning of Rabin3, a novel protein that associates with the Ras-like GTPase Rab3A, Mol. Cell. Biol. 15:1137–1143.

    Google Scholar 

  • Buczynski, G., Bush, J., Zhang, L., Rodriguez-Paris, J., and Cardelli, J., 1997, Evidence for a recycling role for Rab7 in regulating a late step in endocytosis and in retention of lysosomal enzymes in Dictyostelium discoideum. Mol. Biol. Cell. 8:1343–1360.

    Google Scholar 

  • Bush, J., Franek, K., Daniel, J., Spiegelman, G. B., Weeks, G., and Cardelli, J., 1993, Cloning and characterization of five novel Dictyostelium discoideum Rab-relatedgenes. Gene 136: 55–60.

    Google Scholar 

  • Burd, C. G., Peterson, M., Cowles, C. R., and Emr, S. D., 1997, A novel Sec 18p/NSF-dependent complex required for Golgi-to-endosome transport in yeast, Mol. Biol. Cell 8:1089–1104.

    Google Scholar 

  • Cao, X., Ballew, N., and Barlowe, C., 1998, Initial docking of ER-derived vesicles requires Uso1p and Ypt1p but is independent of SNARE proteins, EMBO J. 17:2156–2165.

    Google Scholar 

  • Chavrier, P., Parton, R. G., Hauri, H. P., Simons, K., and Zerial, M., 1990a, Localization of low molecular weight GTPbinding proteins to exocytic and endocytic compartments, Cell 62:317–329.

    Google Scholar 

  • Chavrier, P., Vingron, M., Sander, C., Simons, K., and Zerial, M., 1990b, Molecular cloning of YPT1/SEC4-related cDNAs from an epithelial cell line, Mol. Cell. Biol. 10:6578–6585.

    Google Scholar 

  • Chavrier, P., Gorvel, J. P., Stelzer, E., Simons, K., Gruenberg, J., and Zerial, M., 1991, Hypervariable C-terminal domain of Rab proteins acts as a targeting signal, Nature 353:769–772.

    Google Scholar 

  • Chen, W., Feng, Y., Chen, D., and Wandinger-Ness, A., 1998, Rab11 is required for trans-golgi network-to-plasma membrane transport and a preferential target for GDP dissociation inhibitor, Mol. Biol. CeII 9:3241–3257.

    Google Scholar 

  • Chen, Y., and Roxby, R., 1996, Characterization of a Phytophthora infestans gene involved in vesicle transport, Gene 181:89–94.

    Google Scholar 

  • Clement M., Fournier, H., de Repentigny, L., and Belhumeur, P., 1998, Isolation and characterization of the Candida albicans SEC4 gene, Yeast 14:675–480.

    Google Scholar 

  • Collins, R. N., Brennwald, P., Garrett, M., Lauring, A., and Novick, P., 1997, Interactions of nucleotide release factor Dss4p with Sec4p in the post-Golgi secretory pathway of yeast, J. Biol. Chem 272:18281–18289.

    Google Scholar 

  • Conibear, E., and Stevens, T. H., 1998, Multiple sorting pathways between the late golgi and the vacuole in yeast, Biochim. Biophys. Acta 1404:211–230.

    Google Scholar 

  • Cosson, P., and Letourneur, F., 1997, Coatomer (COPI)-coated vesicles: role in intracellular transport and protein sorting, Curr. Opin. Cell Biol. 9:484–487.

    Google Scholar 

  • Cullen, P. J., Hsuan, J. J., Thong, O., Letcher, A. J., Jackson, T. R., Dawson, A. P., and Irvine, R. F., 1995, Identification of a specific Ins(l,3,4,5)P4-binding protein as a member of the GAP1 family, Nature 376:527–530.

    Google Scholar 

  • Darsow, T., Rieder, S. E., and Emr, S. D., 1997, A multispecificity syntaxin homologue, Vam3p, essential for autophagic and biosynthetic protein transport to the vacuole, J. Cell Biol. 138:517–529.

    Google Scholar 

  • Darsow, T., Burd, C. G., and Emr, S. D., 1998, Acidic di-leucine motif essential for AP-3-dependent sorting and restriction of the functional specificity of the Vam3p vacuolar t-SNARE, J. Cell Biol. 142:913–922.

    Google Scholar 

  • Dascher, C., Ossig, R., Gallwitz, D., and Schmitt, H. D., 1991, Identification and structure of four yeast genes (SLY) that are able to suppress the functional loss of YPT1, a member of the RAS superfamily, Mol. Cell. Biol. 11:872–885.

    Google Scholar 

  • DeRisi, J. L., Iyer, V. R., and Brown, P. O., 1997, Exploring the metabolic and genetic control of gene expression on a genomic scale, Science 278:680–686.

    Google Scholar 

  • Dirac-Svejstrup, A. B., Sumizawa, T., and Pfeffer, S. R., 1997, Identification of a GDI displacement factor that releases endosomal Rab GTPases from Rab-GDI, EMBO J. 16:465–472.

    Google Scholar 

  • Doignon, F., Biteau, N., Crouzet, M., and Aigle, M., 1993, The complete sequence of a 19,482 bp segment located on the right arm of chromosome II from Saccharomyces cerevisiae, Yeast 9:189–199.

    Google Scholar 

  • Du, L.-L., Collins, R. N., and Novick, P. J., 1998, Identification of a Sec4p GTPase-activating Protein (GAP) as a novel member of a Rab GAP family, J. Biol. Chem. 273:3253–3256.

    Google Scholar 

  • Ellis, E. M., and Reid, G. A., 1994, Assembly of Mitochondrial Membranes, in: Subcellular Biochemistry, Volume 22 (A. H. Maddy and J. R. Harris, eds.), Plenum Press, New York, pp. 151–182.

    Google Scholar 

  • Emr, S. D., and Malhotra, V., 1997, Membranes and sorting, Curr. Opin. Cell Biol. 9:475–476.

    Google Scholar 

  • Fabry, S., Jacobsen, A., Huber, H., Palme, K., and Schmitt, R., 1993, Structure, expression, and phylogentic relationships of a family of ypt genes encoding small G-proteins in the green alga Volvox carteri., Curr. Genet. 3:229–240.

    Google Scholar 

  • Fabry, S., Steigerwald, R., Bernklau, C., Dietmaier, W., and Schmitt, R., 1995, Structure-function analysis of small G proteins from Volvox and Chlamydomonas by complementation of Saccharomyces cerevisiae YPT/SEC mutations, Mol. Gen. Genet. 247:265–274.

    Google Scholar 

  • Farquhar, M. G., and Palade, G. E., 1981, The Golgi apparatus (complex)-(1954–1981)—from artifact to center stage, J. Cell Biol. 91:77S–103S.

    Google Scholar 

  • Fasano, O., 1995a, Ras1p, in: Guidebook to the small GTPases (M. Zerial and L. A. Huber, eds.), Oxford University Press, Oxford, pp. 172–174.

    Google Scholar 

  • Fasano, O., 1995b, Ras2p, in: Guidebook to the small GTPases (M. Zerial and L. A. Huber, eds.), Oxford University Press, Oxford, pp. 175–181.

    Google Scholar 

  • Feng, Y., Press, B., and Wandinger-Ness, A., 1995, Rab 7: an important regulator of late endocytic membrane traffic, J. Cell Biol. 131:1435–1452.

    Google Scholar 

  • Ferro-Novick, S., and Jahn, R., 1994, Vesicle fusion from yeast to man, Nature 370:191–193.

    Google Scholar 

  • Field, H., and Field, M. C., 1997, Tandem duplication of Rab genes followed by sequence divergence and acquisition of distinct functions in Trypanosoma brucei, J. Bioi.Chem. 272: 10498–10505.

    Google Scholar 

  • Field, C., and Schekman, R., 1980, Localized secretion of acid phosphatase reflects the pattern of cell surface growth in Saccharomyces cerevisiae, J. Cell Biol. 86:123–128.

    Google Scholar 

  • Finger, F. P., and Novick, P., 1997, Sec3p is involved in secretion and morphogenesis in Saccharomyces cerevisiae, Mol. Biol. Cell. 8:647–462.

    Google Scholar 

  • Finger, F. P., and Novick, P., 1998, Spatial regulation of exocytosis: lessons from yeast, J. Cell Biol. 142:609–412.

    Google Scholar 

  • Finger, F. P., Hughes, T. E., and Novick, P., 1998, Sec3p is a spatial landmark for polarized secretion in budding yeast, Cell 92:559–571.

    Google Scholar 

  • Fraga, D., and Hinrichsen, R. D., 1994, The identification of a complex of low-molecular weight GTP-binding proteins homologues from Paramecium tetraurelia by PCR cloning, Gene 147:345–148.

    Google Scholar 

  • Franzusoff, A., and Schekman, R., 1989, Functional compartments of the yeast Golgi apparatus are defined by the sec7 mutation, EMBO J. 8:2695–2702.

    Google Scholar 

  • Fujimura, K., Tanaka, K., Nakano, A., Toh-e, A. J., 1994, The Saccharomyces cerevisiae MS14 gene encodes the yeast counterpart of component Aof Rab geranylgeranyltransferase, J. Biol. Chem. 269:9205–9212.

    Google Scholar 

  • Fukui, K., Sasaki, T., Imazumi, K., Matsuura, Y., Nakanishi, H., and Takai, Y., 1997, Isolation and characterization of a GTPase activating protein specific for the Rab3 subfamily of small G proteins. J. Biol. Chem. 272 8:4655–4658.

    Google Scholar 

  • Gallwitz, D., Donath, C., and Sander, C., 1983, A yeast gene encoding a protein homologous to the human c-has/bas proto-oncogene product, Nature 306:704–707.

    Google Scholar 

  • Gallwitz, D., Becker, J., Benli, M., Hengst, L., Mosrin-Huaman, C., Mundt, M., Tan, T. J., Vollmer, P., and Wichmann, H., 1991, The YPT-branch of the Ras superfamily of GTP-binding proteins in yeast: Functional importance of the putative effector region, in: The superfamily of Ras-related genes, (D. A. Spandidos, ed.), Plenum Press, New York, pp. 121–128.

    Google Scholar 

  • Garrett, M. D., Self, A. J., van Oers, C., and Hall, A., 1989, Identification of distinct cytoplasmic targets for ras/R-ras and rho regulatory proteins, J. Biol. Chem. 264:10–13.

    Google Scholar 

  • Garrett, M. D., Kabcenell, A. K., Zahner, J. E., Kaibuchi, K., Sasaki, T., Takai, Y., Cheney, C. M., and Novick, P. J., 1993, Interaction of Sec4 with GDI proteins from bovine brain, Drosophila melanogaster and Saccharomyces cerevisiae. Conservation of GDI membrane dissociation activity, FEBS Lett. 331:233–238.

    Google Scholar 

  • Garrett, M. D., Zahner, J. E., Cheney, C. M., and Novick, P. J., 1994, GD11 encodes a GDP dissociation inhibitor that plays an essential role in the yeast secretory pathway, EMBO J. 13:1718–1728.

    Google Scholar 

  • Garcia-Ranea, J. A., and Valencia, A., 1998, Distribution and functional diversification of the Ras superfamily in Saccharomyces cerevisiae, FEBS Lett. 434:219–225.

    Google Scholar 

  • Geyer, M., and Wittinghofer, A., 1997, GEFs, GAPs, GDIs and effectors: taking a closer (3D) look at the regulation of Ras-related GTP-binding proteins, Curr. Opin. Struct. Biol. 7:786–792.

    Google Scholar 

  • Götte, M., and Gallwitz, D., 1997, High expression of the yeast syntaxin-related Vam3 protein suppresses the protein transport defects of a pep12 null mutant, FEBS Lett. 411:48–52.

    Google Scholar 

  • Götte, M., and Fischer von Mollard, G., 1998, A new beat for the SNARE drum, Trends Cell. Biol. 8:215–218.

    Google Scholar 

  • Goud, B., Salminen, A., Walworth, N. C., and Novick, P. J., 1988, A GTP-binding protein required for secretion rapidly associates with secretory vesicles and the plasma membrane in yeast, Cell 53:753–768.

    Google Scholar 

  • Grabowski, R., and Gallwitz, D., 1997, High-affinity binding of the yeast cis-Golgi t-SNARE, Sed5p, to wild-typeand mutant Sly1p, a modulator of transport vesicledocking, FEBS Lett. 411:169–172.

    Google Scholar 

  • Haas, A., Scheglmann, D., Lazar, T., Gallwitz, D., and Wickner, W., 1995, The GTPase Ypt7p of Saccharomyces cerevisiae is required on both partner vacuoles for the homotypic fusion step in vacuole inheritance, EMBO J. 14:5258–5270.

    Google Scholar 

  • Haas, A., and Wickner, W., 1996, Homotypic vacuole fusion requires Sec17p (yeast a-SNAP) and Sec18p (yeast NSF), EMBO J. 15:3296–3305.

    Google Scholar 

  • Hall, A., 1998, Rho GTPases and the actin cytoskeleton, Science 279:09–514.

    Google Scholar 

  • Hanson, P. I., Roth, R., Morisaki, H., Jahn, R., and Heuser, J. E., 1997, Structure and conformational changes in NSF and its membrane receptor complexes visualized by quick-freeze/deep-etch electron microscopy, Cell 90:523–535.

    Google Scholar 

  • Hamm-Alvarez, S. F., and Sheetz, M. P., 1998, Microtubule-dependent vesicle transport: modulation of channel and transporter activity in liver and kidney, Physiol. Rev. 78:1109–1129.

    Google Scholar 

  • Haubruck, H., Disela, C., Wagner, P., and Gallwitz, D., 1987, The ras-related ypt protein is an ubiquitous eukaryotic protein: isolation and sequence analysis of mouse cDNA clones highly homologous to the yeast YPT1 gene, EMBO J. 6:4049–4053.

    Google Scholar 

  • Haubruck, H., Prange, R., Vorgias, C., and Gallwitz, D., 1989, The ras-related mouse Ypt1 protein can functionally replace the YPT1 gene product in yeast, EMBO J. 8:1427–1432.

    Google Scholar 

  • Haubruck, H., Engelke, U., Mertins, P., and Gallwitz, D., 1990, Structural and functional analysis of ypt2, an essential Ras-related gene in the fission yeast Schizosaccharomyces pombe encoding a Sec4 protein homologue, EMBO J. 9:1957–1962.

    Google Scholar 

  • Haucke, V., and Schatz, G., 1997, Import of proteins into mitochondria and chloroplasts, Trends Cell Biol. 7:103–106.

    Google Scholar 

  • Hay, J. C., and Scheller, R. H., 1997, SNARE’s and NSF in targeted membrane fusion, Curr. Opin. Cell Biol. 9:505–512.

    Google Scholar 

  • Hendriks, R. J.,, M., and Fuller, S. D., 1994, Compartments of the early secretory pathway, in: Subcellular Biochemistry, Volume 22 (A. H. Maddy and J. R. Harris, eds.), Plenum Press, New York, pp. 101–150.

    Google Scholar 

  • Hengst, L., Lehmeier, T., and Gallwitz, D., 1990, The ryh1 gene in the fission yeast Schizosaccharomyces pombe encoding a GTP-binding protein related to ras, rho and ypt: structure, expression and identification of its human homologue, EMBO J. 9:1949–1955.

    Google Scholar 

  • Hengst, L., Grabowski, R., and Gallwitz, D., 1995, Ypt6p, in: Guidebook to the small GTPases (M. Zerial and L. A. Huber, eds.), Oxford University Press, Oxford, pp. 403–404.

    Google Scholar 

  • Hicke, L., Zanolari, B., Pypaert, M., Rohrer, J., and Riezman, H., 1997, Transport through the yeast endocytic pathway occurs through morphologically distinct compartments and requires an active secretory pathway and Sec18p/N-ethylmaleimide-sensitive fusion protein, Mol. Biol. Cell. 8:13–31.

    Google Scholar 

  • Hilgenfeld, R., 1995, Regulatory GTPases, Curr Opin. Struct. Biol. 5:810–817.

    Google Scholar 

  • Holthuis, J. C., Nichols, B. J., Dhruvakumar, S., and Pelham, H. R., 1998a, Two syntaxin homologues in the TGN/endosomal system of yeast, EMBO J. 17:113–126.

    Google Scholar 

  • Holthuis, J. C., Nichols, B. J., and Pelham, H. R., 1998b, The syntaxin Tlg1p mediates trafficking of chitin synthase III to polarized growth sites in yeast, Mol. Biol. Cell 9:3383–3397.

    Google Scholar 

  • Horazdovsky, B. F., De Wald, D. B., and Emr, S. D., 1995, Protein transport to the yeast vacuole, Curr. Opin. Cell Biol. 7:544–451.

    Google Scholar 

  • Horazdovsky, B.F., Busch, G. R., and Emr, S. D., 1994, VPS21 encodes a Rab5-like GTP-binding protein that is required for the sorting of yeast vacuolar proteins, EMBO J. 13:1297–1309.

    Google Scholar 

  • Horazdovsky, B. F., Cowles, C. R., Mustol, P., Holmes, M., and Emr, S. D., 1996, A novel RING finger protein, Vps8p, functionally interacts with the small GTPase, Vps21p, to facilitate soluble vacuolar protein localization, J. Biol. Chem. 271:33607–33615.

    Google Scholar 

  • Huang, P.-H., and Chiang, H.-L., 1997, Identification of novel vesicles in the cytosol to vacuole protein degradation pathway, J. Cell Biol. 136:803–810.

    Google Scholar 

  • Huber, L. A,, Pimplikar, S., Parton, R. G., Virta, H., Zerial, M., Simons, K., 1993, Rab8, a small GTPase involved in vesicular traffic between the TGN and the basolateral plasma membrane, J. Cell Biol. l23:35–45.

    Google Scholar 

  • Huhse, B., and Kunau, W. H., 1995, Protein import into peroxisomes: an exception to the rule?, Cold Spring Harb. Symp.Quant. Biol. 60:651–562.

    Google Scholar 

  • Jaquemin-Faure, I., Thomas, D., Laporte, J., Cibert, C., and Surdin-Kerjan, Y., 1994, The vacuolar Compartment is required for sulfur amino acid homeostasis in S. cerevisiae. Mol. Gen. Genetics 244:519–529.

    Google Scholar 

  • Jedd, G., Richardson, C., Litt, R., and Segev, N., 1995, The Ypt1 GTPase is essential for the first two steps of the yeast secretory pathway, J. Cell Biol. 131:583–590.

    Google Scholar 

  • Jedd, G., Mulholland, J., and Segev, N., 1997, Two new Ypt GTPasa are required for exit from the yeast trans-Golgi compartment, J. Cell Biol. 137:563–580.

    Google Scholar 

  • Jena, B. P., Brennwald, M. D., Garrett, M. D., Novick, P., and Jamieson, J. D., 1992, Distinct and specific GAP activities in rat pancreas act on the yeast GTP-binding proteins Ypt1 and Sec4, FEBS Lett. 309:5–9.

    Google Scholar 

  • Jiang, Y., Rossi, G., and Ferro-Novick, S., 1993, Bet2p and Mad2p are components of a prenyl-transferase that adds geranylgeranyl onto Ypt1p and Sec4p, Nature 366:84–86.

    Google Scholar 

  • Jones, S., Litt, R. J., Richardson, C. J., and Segev, N., 1995, Requirement of nucleotide exchange factor for Ypt1 GTPase mediated protein transport, J. Cell Biol. 130:1051–1061.

    Google Scholar 

  • Jones, S., Richardson, C. J., Litt, R. J., and Segev, N., 1998, Identification of regulators for Ypt1 GTPase nucIeotide cycling, Mol. Biol. Cell 9:2819–2837.

    Google Scholar 

  • Kee, Y., Yoo, J.-S., Hazuka, C. D., Peterson, K. E., Hsu, S. C., and Scheller, R. H., 1997, Subunit structure of the mammalian exocyst complex, Proc. Natl. Acad. Sci. USA 94:14438–14443.

    Google Scholar 

  • Kim, W. Y., Cheong, N. E., Lee, D. C., Lee, K. O., Je, D. Y., Bahk, J. D., Cho, M. J., and Lee, S. Y., 1996, Isolation of an additional soybean cDNA encoding Ypt/Rab-related small GTP-binding protein and its functional comparison to Sypt using a yeast ypt1-1 mutant, Plant. Mol.Biol. 31:783–792.

    Google Scholar 

  • Kirchhausen, T., Bonifacino, J. S., and Riezman, H., 1997, Linking cargo to vesicle formation: receptor tail interactions with coat proteins, Curr. Opin. Cell Biol. 9:488–495.

    Google Scholar 

  • Kjeldgaard, M., Nyborg, J., and Clark, B. F., 1996, The GTP binding motif variations on a theme, FASEB J. 10:1347–1368.

    Google Scholar 

  • Klappa, P., Zimmermann, M., Dierks, T., and Zimmermann, R., 1993, Components and Mechanisms involved in transport of proteins into the endoplasmic reticulum, in: Subcellular Biochemistry, Volume 21 (N. Borgese and J. R. Hams, eds.), Plenum Press, New York, pp. 17–40.

    Google Scholar 

  • Kuehn, M. J., and Schekman, R., 1997, COPII and secretory cargo capture into transport vesicles, Curr. Opin. CellBiol. 9:477–483.

    Google Scholar 

  • Lai, M. H., Bard, M., and Kirsch, D. R., 1994, Identification of a gene encoding a new Ypt/Rab-like monomeric G-protein in Saccharomyces cerevisiae, Yeast 10:399–402.

    Google Scholar 

  • Lamarche, N., and Hall, A., 1994, GAPs for Rho-related GTPases, Trends Genet. 10:436–440

    Google Scholar 

  • Lazar, T., GŐtte, M., and Gallwitz, D., 1997, Vesicular transport: how many Ypt/Rab-GTPases make a eukaryotic cell?, Trends Biochem. Sci. 22:468–472.

    Google Scholar 

  • Lewis, M. J., Rayner, J. C., and Pelham, H. R, 1997, A novel SNARE complex implicated in vesicle fusion with the endoplasmic reticulum, EMBO J. 16:3017–3024.

    Google Scholar 

  • Li, B., and Warner, J. R., 1996, Mutation of the Rab6 homologue of Saccharomyces cerevisiae, YPT6, inhibits both early Golgi function and ribosome biosynthesis, J. Biol. Chem. 271:16813–16819.

    Google Scholar 

  • Li, B., and Warner, J. R., 1998, Genetic interaction between YPT6 and YPT1 in Saccharomyces cerevisiae, Yeast 14:915–922.

    Google Scholar 

  • Lian, J. P., Stone, S., Jiang, Y., Lyons, P., and Ferro-Novick, S., 1994, Ypt1p implicated in v-SNARE activation, Nature 372:698–701.

    Google Scholar 

  • Lippincott-Schwartz, J., Cole, N., and Presley, J,, 1998a, Unravelling Golgi membrane traffic with green fluorescent protein chimeras, Trends Cell Biol. 8:16–20.

    Google Scholar 

  • Lippincott-Schwartz, J., Cole, N., and Donaldson, J. G., 1998b, Building a secretory apparatus: role of ARF1/COPI in Golgi biogenesis and maintenance, Histochem. Cell Biol. 109:449–462.

    Google Scholar 

  • Lowe, M., Nakamura, N., and Warren, G., 1998, Golgi division and membrane traffic, Trends Cell Biol. 8:40–44.

    Google Scholar 

  • Lupashin, V. V., and Waters, M. G., 1997, t-SNARE activation through transient interaction with a Rab-like guanosine triphosphatase, Science 276:1255–1258.

    Google Scholar 

  • Macara, I. G., Lounsbury, K. M., Richards, S. A., McKiernan, C., and Bar-Sagi, D., 1996, The Ras superfamily of GTPases, FASEB J. 10:625–430.

    Google Scholar 

  • Maltese, W. A., Wilson, A. L., and Erdman, R. A., 1996, Prenylation-dependent interaction of Rab proteins with GDP dissociation inhibitors, Biochem. Soc. Trans. 24:703–708.

    Google Scholar 

  • Manser, E., Leung, T., Monfries, C., Teo, M., Hall, C., and Lim, L., 1992, Diversity and versatility of GTPase activating proteins for the p21rho subfamily of ras G proteins detected by a novel overlay assay, J. Biol. Chem. 267:16025–16028.

    Google Scholar 

  • Martinez, O., Schmidt, A., Salamero, J., Hoflack, B., Roa, M., and Goud, B., 1994, The small GTP-binding protein rab6 functions in intra-Golgi transport, J. Cell Biol. l27:1575–1588.

    Google Scholar 

  • Maurer, K. C., Urbanus, J. H., and Planta, R. J., 1995, Sequence analysis of a 30 kb DNA segment from yeast chromosome XIV carrying a ribosomal protein gene cluster, the genes encoding a plasma membrane protein and a subunit of replication factor C, and a novel putative serine/threonine protein kinase gene, Yeast 11:1303–1310.

    Google Scholar 

  • Mayer, A., Wickner, W., and Haas, A., 1996, Sec18p (NSF)-driven release of Sec17p (a-SNAP) can precede docking and fusion of yeast vacuoles, Cell 85:83–94.

    Google Scholar 

  • Mayer, A., and Wickner, W., 1997, Dockingofyeast vacuoles iscatalyzed by the Ras-like GTPase Ypt7p after symmetric priming by Sec18p (NSF), J. Cell Biol. 136:307–317.

    Google Scholar 

  • Mayer, T., Toucho, N., and Elazar, Z., 1996, Transport between cis and medial Golgi cisternae requires the function of the Ras-related protein Rab6, J. Biol. Chem. 271:16097–16103.

    Google Scholar 

  • McCormick, F., Going for the GAP, 1998, Curr. Biol. 8:R673-474.

    Google Scholar 

  • Melchior, F., and Gerace, L., 1998, Two-way trafficking with Ran, Trends Cell Biol. 8:175–179.

    Google Scholar 

  • Mewes, H. W., Albermann, K., Bähr, M., Frishman, D., Gleissner, A., Hani, J., Heumann, K., Kleine, K., Maierl, A., Oliver, S.G., Pfeiffer, F., and Zollner, A., 1997, Overview of the yeast genome, Nature 387(6632Suppl):7–65.

    Google Scholar 

  • Miaczynska, M., Lorenzetti, S., Bialek, U., Benito-Moreno, R. M., Schweyen, R. J., and Ragnini, A., 1997, The yeast Rab escort protein binds intracellular membranes in vivo and in vitro, J. Biol. Chem. 272:16972–16977.

    Google Scholar 

  • Miyake, S., and Yamamoto, M., 1990, Identification of ras-related, YPT family genes in Schizosaccharomyces pombe, EMBO J. 9:1417–1422.

    Google Scholar 

  • Molenaar, C.M., Prange, R., and Gallwitz, D.,1988, Acarboxyl-terminal cysteine residue is required for palmitic acid binding and biological activity ofthe ras-relatedyeast YPT1 protein, EMBO J. 7:971–976.

    Google Scholar 

  • Mollat, P., Fournier, A,, Yang, C. Z., Alsat, E., Zhang, Y., Evain-Brion, D., Grassi, J., and Thang, M. N., 1994, Species specificity and organ, cellular and subcellular localization of the 100 kDa Ras GTPase activating protein, J. Cell Sci. 107:427–435.

    Google Scholar 

  • Moya, M., Roberts, D., and Novick, P., 1993, DSS4-1 is a dominant suppressor of sec4-8 that encodes a nucleotide exchange protein that aids Sec4p function, Nature 361:460–463.

    Google Scholar 

  • Nakamura, N., Hirata, A., Ohsumi, Y., and Wada, Y., 1997, Vam2/Vps41p and Vam6/Vps39p are components of a protein complex on the vacuolar membranes are involved in the vacuolar assembly in the yeast Saccharomyces cerevisiae, J. Biol. Chem. 272:11344–11349.

    Google Scholar 

  • Narumiya, S., 1996, The small GTPase Rho: cellular functions and signal transduction, J. Biochem. (Tokyo) 120:215–228.

    Google Scholar 

  • Mulholland, J., Wesp, A., Riezman, H., and Botstein, D., 1997, Yeast actin cytoskeleton mutants accumulate a new class of Golgi-derived secretory vesicle, Mol. Biol. Cell. 8:1481–1499.

    Google Scholar 

  • Newman, A. P., and Ferro-Novick, S., 1987, Characterization of new mutants in theearly part of the yeast secretory pathway isolated by a [3H]mannose suicide selection, J. Cell Biol. 105:1587–1594.

    Google Scholar 

  • Nichols, B. J., Ungermann, C., Pelham, H. R. B., Wickner, W. T., and Haas, A., 1997, Homotypic vacuolar fusion mediated by t-and V-SNAREs, Nature 387:199–202.

    Google Scholar 

  • Nickel, W.,and Wieland, F. T., 1997, Biogenesis of COPI-coated transport vesicles, FEBS Lett. 413:395–400.

    Google Scholar 

  • Nuoffer, C., and Balch, W. E., 1994, GTPases-multifunctional molecular switches regulating vesicular traffic, Annu. Rev. Biochem. 63:949–990.

    Google Scholar 

  • Novick P., and Zerial, M., 1997, The diversity of Rab proteins in vesicle transport, Curr. Opin. Cell Biol. 9:496–504.

    Google Scholar 

  • Novick, P., Field, C., and Schekman, R., 1980, Identification of 23 complementation groups required for post-translational events in the yeast secretory pathway, Cell 21:205–215.

    Google Scholar 

  • Ossig, R., Dascher, C., Trepte, H.-H., Schmitt, H.D., and Gallwitz, D., 1991, The yeast SLY gene-products, suppressors of defects in the essential GTP-binding Ypt1 protein, may act in endoplasmic reticulum-to-Golgi transport, Mol. Cell. Biol. 11:2980–2993.

    Google Scholar 

  • Ossig, R., Laufer, W., Schmitt, H.D., and Gallwitz, D., 1995, Functionality and specific membrane localization of transport GTPases carrying C-terminal membrane anchors of synaptobrevin-like proteins, EMBOJ. 14:3645–3653.

    Google Scholar 

  • Palade, G., 1975, Intracellular aspects of the process of protein synthesis, Science 189:347–358.

    Google Scholar 

  • Park, S. H., and Weinberg, R. A., A putative effector of Ral has homology to Rho/Rac GTPase activating proteins, Oncogene 11:2349–2355.

    Google Scholar 

  • Parrini, M. C., Bernardi, A., and Parmeggiani, A., 1996, Determinants of Ras proteins specifying the sensitivity to yeast Ira2p and human p120-GAP. EMBO J. 15:1107–1111.

    Google Scholar 

  • Pelham, H. R., 1998, Getting through the Golgi complex, Trends Cell Biol. 8:45–49.

    Google Scholar 

  • Prescianotto-Baschong, C., and Riezman, H., 1998, Morphology of the yeast endocytic pathway, Mol. Biol. Cell 9:173–189.

    Google Scholar 

  • Quilliam, L. A., Khosravi-Far, R., Huff, S. Y., and Der, C. J., 1995, Guanine nucleotide exchange factors: activators of the Ras superfamily of proteins, Bioessays 17:395–404.

    Google Scholar 

  • Rexach, M. F., and Schekman, R. W., 1991, Distinct biochemical requirements for the budding, targeting and fusion of ER-derived transport vesicles, J. Cell Biol. 114:219–230.

    Google Scholar 

  • Rey, I., Taylor-Hams, P., van Erp, H., and Hall, A., 1994, R-ras interacts with rasGAP, neurofibromin and c-raf but does not regulate cell growth or differentiation, Oncogene 9:685–492.

    Google Scholar 

  • Rieder, S. E., and Emr, S. D., 1997, A novel RING finger protein complex essential for a late step in protein transport to the yeast vacuole, Mol. Biol. Cell 8:2307–2327.

    Google Scholar 

  • Richardson, C. J., Jones, S., Litt, R. J., and Segev, N., 1998, GTP hydrolysis is not important for Ypt1 GTPase function in vesicular transport, Mol. Cell. Biol. 18:827–838.

    Google Scholar 

  • Ridley, A. J., Self, A. J., Kasmi, F., Paterson, H. F., Hall, A., Marshall, C. J., and Ellis, C., 1993, Rho family GTPase activating proteins p190, bcr and rhoGAP show distinct specificities in vitro and in vivo, EMBO J. l2:5151–5160.

    Google Scholar 

  • Robinson, C., 1994, The assembly of Chloroplast Membranes, in: Subcellular Biochemistry, Volume 22 (A. H. Maddy and J. R. Harris, eds.), Plenum Press, New York, pp. 183–195.

    Google Scholar 

  • Robinson, D. G., and Hinz, G., 1997, Vacuole biogenesis and protein transport to the plant vacuole: a comparison with the yeast vacuole and the mammalian lysosome, Protoplasma 19:71–25.

    Google Scholar 

  • Robinson, J. S., Klionsky, D. J., Banta, L. M., and Emr, S. D., 1988, Protein sorting in Saccharomyces cerevisiae: isolation of mutants defective in the delivery and processing of multiple vacuolar hydrolases. Mol. Cell. Biol. 8:4936–4948.

    Google Scholar 

  • Rossi, G., Salminen, A., Rice, L. M., BrÜnger, A. T., and Brennwald, P., 1997, Analysis of a yeast SNARE complex reveals remarkable similarity to the neuronal SNARE complex and a novel function for the C-terminus of the SNAP-25homolog, Sec9, J. Biol. Chem. 272: 16610–16617.

    Google Scholar 

  • Rossi, G., Jiang, Y., Newman, A. P., and Ferro-Novick, S., 1991, Dependence of YPT1 and SEC4 membrane attachment on BET2, Nature 351:158–161.

    Google Scholar 

  • Rothman, J. E., 1994, Mechanisms of intracellular protein transport, Nature 372:55–43.

    Google Scholar 

  • Rowling, P. J. E., and Freedman, R. B., 1993, Folding, assembly, and posttranslational modification of proteins within the lumen of the Endoplasmic Reticulum, in: Subcellular Biochemistry, Volume 21 (N. Borgeseand and J.R. Harris, eds.), Plenum Press, New York, pp. 41–80.

    Google Scholar 

  • Rubinfeld, B., Crosier, W. J., Albert, I., Conroy, L., Clark, R., McCormick, E, and Polakis, P., 1992, Localization of the rap1GAP catalytic domain and sites of phosphorylation by mutational analysis, Mol. Cell. Biol. 12:4634–4642.

    Google Scholar 

  • Rybin, V., Ullrich, O., Rubino, M., Alexandrov, K., Simon, I., Seabra, C., Goody, R., and Zerial, M., 1996, GTPase activity of Rab5 acts as a timer for endocytic membrane fusion, Nature 383:266–269.

    Google Scholar 

  • Sacher, M., Jiang, Y., Barrowman, J., Scarpa, A., Burston, J., Zhang, L., Schieltz, D., Yates, J. R., Abeliovich, H., and Ferro-Novick, S., 1998, TRAPP, a highly conserved novel complex on the cis-Golgi that mediates vesicle docking and fusion. EMBO J. 17:2424–2303.

    Google Scholar 

  • Salminen, A., and Novick, P. J., 1987, A.ras-like protein is required for a post-Golgi event in yeast secretion, Cell 49:527–538.

    Google Scholar 

  • Sato, K., and Wickner, W., 1998, Functional reconstitution of Ypt7p GTPase and a purified vacuole SNARE complex, Science 281:700–702.

    Google Scholar 

  • Scheffzek, K., Ahmadian, M. R., and Wittinghofer, A., 1998, GTPase-activating proteins: helping hands to complement an active site, Trends Biochem. Sci. 23:257–262.

    Google Scholar 

  • Schimmöller, F., Simon, I., and Pfeffer, S. R., 1998, Rab GTPases, directors of vesicle docking, J. Biol. Chem. 273:22161–22164.

    Google Scholar 

  • Schmitt, H. D., Wagner, P., Pfaff, E., and Gallwitz, D., 1986, The ras-related YPT1 gene product in yeast: a GTP-binding protein that might be involved in microtubule organization, Cell 47:401–412.

    Google Scholar 

  • Schmitt, H. D., Puzicha, M., and Gallwitz, D., 1988, Study of a temperature-sensitive mutant of the Ras-related YPT1 gene product in yeast suggests a role in the regulation of intracellular calcium, Cell 53:635–647.

    Google Scholar 

  • Scott, S. V., and Klionsky, D. J., 1997, Nonclassical protein sorting, Trends Cell Biol. 7:225–229.

    Google Scholar 

  • Segev, N., 1991, Mediation of the attachment or fusion step in vesicular transport by the GTP-binding Ypt1 protein, Science 252:1553–1556.

    Google Scholar 

  • Segev, N., and Botstein, D., 1987, The ras-like yeast YPT1 gene is itself essential for growth, sporulation, and starvation response, Mol. Cell. Biol. 7:2367–2377.

    Google Scholar 

  • Segev, N., Mulholland, J., and Botstein, D., 1988, The yeast GTP-binding Ypt1 protein and a mammalian counterpart are associated with the secretion machinery, Cell 52:915–924.

    Google Scholar 

  • Séron, K., Tieaho, V., Prescianotto-Baschong, C., Aust, T., Blondel, M. O., Guillaud, P., Devil-liers, G., Rossanese, O. W., Glick, B. s., Riezman, H., Keranen, s., and Haguenauer-Tsapis, R., 1998, A yeast t-SNARE involved in endocytosis, Mol. Biol. Cell 9:2873–2889.

    Google Scholar 

  • Shirahama, K., Yazaki, Y., Sakano, K., Wada, Y., and Ohsumi, Y., 1996, Vacuolar function in the phosphate homestasis of the yeast S. cerevisiae. Plant and Cell Physiol. 37:1090–1093.

    Google Scholar 

  • Singer-Krüger, B., and Ferro-Novick, S., 1997, Use of a synthetic lethal screen to identify yeast mutants impaired in endocytosis, vacuolar protein sorting and the organization of the cytoskeleton. Eur. J. Cell Biol. 74:365–375.

    Google Scholar 

  • Singer-Küger, B., Frank, R., Crausaz, F., and Riezman, H., 1993, Partial purification and characterization of early and late endosomes from yeast. Identification of four novel proteins. J.Biol. Chem. 268:14376–14386.

    Google Scholar 

  • Singer-Krüger, B., Stenmark, H., Duesterhöft, A., Philippsen, P., Yoo, J.-S., Gallwitz, D., and Zerial, M., 1994, Role of three rab5 like GTPases, Ypt51p, Ypt52p, and Ypt53p, in the endocytic and vacuolar protein sorting pathways of yeast, J. Cell Biol. 125:283–298.

    Google Scholar 

  • Singer-Krüger, B., Stenmark, H., and Zerial, M., 1995, Yeast Ypt51p and mammalian Rab5: Counterparts with similar function in the early endocytic pathway, J. Cell Sci. 108:3509–3521.

    Google Scholar 

  • Simon, I., Zerial, M., and Goody, R. S., 1996, Kinetics of interaction of Rab5 and Rab7 with nucleotides and Magnesium ions, J. Biol. Chem. 271:20470–20478.

    Google Scholar 

  • Søgaard, M., Tani, K., Ye, R. R., Geromanos, S., Tempst, P., Kirchhausen, T., Rothman, J. E., and Söllner, T., 1994, A Rab protein is required for the assembly of SNARE complexes in the docking of transport vesicles, Cell 78:937–948.

    Google Scholar 

  • Soldati, T., Shapiro, A. D., Svejstrup, A. B. D., and Pfeffer, S. R., 1994, Membrane targeting of the small GTPase Rab9 is accompanied by nucleotide exchange, Nature 369:76–78.

    Google Scholar 

  • Söllner, T., Whiteheart, S. W., Brunner, M., Erdjument-Bromage, H., Geromanos, S., Tempst, P., and Rothman, J. E., 1993, SNAP receptors implicat ed in vesicle targeting and fusion, Nature 362:318–324.

    Google Scholar 

  • Spang, A., Matsuoka, K., Hamamoto, S., Schekman, R., Orci, L., 1998, Coatomer, Arf1p, and nucleotide are required to bud coat protein complex I-coated vesicles from large synthetic liposomes, Proc. Natl. Acad. Sci. USA 95:11199–11204.

    Google Scholar 

  • Sprang, S. R., and Coleman, D. E., 1998, Invasion of the nucleotide snatchers: structural insights into the mechanism of G protein GEFs, Cell 95:155–158.

    Google Scholar 

  • Springer, S., and Schekman, R., 1998, Nucleation of COPII vesicular coat complex by endoplasmic reticulum to Golgi vesicle SNAREs, Science 281:698–700.

    Google Scholar 

  • Strom, M., and Gallwitz, D., 1994, Ypt proteins in yeast and their role in intracellular transport, in: GTPases in Biology Volume I (B. F. Dickey and L. Birnbaumer, eds.) Springer Verlag, Berlin, pp. 409–421.

    Google Scholar 

  • Strom, M., Vollmer, P., Tan, T. J., and Gallwitz, D., 1993, A yeast GTPase-activating protein that interacts specifically with a member of the Ypt/Rab family. Nature 361:736–739.

    Google Scholar 

  • Strom, M., Vollmer, P., and Gallwitz, D., 1995, Gyp6p (Ypt6-GAP), in: Guidebook to the small GTPases (M. Zerial and L. A. Huber, eds.), Oxford University Press, Oxford, pp. 408–410.

    Google Scholar 

  • Tan, J., Vollmer, P., and Gallwitz, D., 1991, Identification and partial purification of GTPase-activating proteins from yeast and mammalian cells that preferentially act on Ypt1/Rab1 proteins, FEBS Lett. 291:322–326.

    Google Scholar 

  • Tanaka, K., Lin, B. K., Wood, D. R., and Tamanoi, F., 1991, ZRA2, an upstream negative regulator of RAS in yeast, is a RAS GTPase-activating protein, Proc. Natl. Acad. Sci. USA 88:468–472.

    Google Scholar 

  • TerBush, D. R., and Novick, P., 1995, Sec6, Sec8, and Sec15 are components of a multisubunit complex which localizes to small bud tips in Saccharomyces cerevisiae, J. Cell Biol. 130:299–312.

    Google Scholar 

  • TerBush, D. R., Maurice, T., Roth, D., and Novick, P., 1996, The Exocyst is a multiprotein complex required for exocytosis in S. cerevisiae, EMBO J. 15:6483–6494.

    Google Scholar 

  • Thatcher, J. W., Shaw, J. M., and Dickinson, W. J., 1998, Marginal fitness contributions of nonessential genes in yeast, Proc. Natl. Acad. Sci. USA 95:253–257.

    Google Scholar 

  • Tsukada, M., and Gallwitz, D., 1996, Isolation and characterization of SYS genes from yeast, multicopy suppressors of the functional loss of the transport GTPase Ypt6p, J. Cell Sci. 109:2471–2481.

    Google Scholar 

  • Tsukada, M., Will, E., and Gallwitz, D., 1999, Structural and functional analysis of a novel coiled-coil protein involved in Ypt6 GTPase-regulated protein transport in yeast, Mol. Biol. Cell 10: in press.

    Google Scholar 

  • Ueda, T., Anai, T., Tsukaya, H., Hirata, A., and Uchimiya, H., 1996, Characterization and subcellular localization of a small GTP-binding protein (Ara-4) from Arabidopsis: conditional expression under control of the promoter of the gene for heat-shock protein HSP81-1, Mol. Gen. Genet. 50:533–539.

    Google Scholar 

  • Ullrich, O., Horiuchi, H., Bucci, C., and Zerial, M., 1994, Membrane association of Rab5 mediated by GDP-dissociation inhibitor and accompanied by GDP/GTP exchange, Nature 368:157–160.

    Google Scholar 

  • Ullrich, O., Reinsch, S., Urbe, S., Zerial, M., and Parton, R. G., 1996, Rab11 regulates recycling through the pericentriolar recycling endosome, J. Cell Biol. 135:913–924.

    Google Scholar 

  • Ungermann, C., and Wickner, W., 1998, Vam7p, a vacuolar SNAP-25 homologue, is required for SNARE complex integrity and vacuole docking and fusion, EMBO J. 17:3269–3276.

    Google Scholar 

  • Ungermann, C., Nichols, B. J., Pelham, H. R. B., and Wickner, W., 1998, A vacuolar v-t-SNARE complex, the predominant form in vivo and on isolated vacuoles, is disassembled and activated for docking and fusion, J. Cell Biol. 140:61–69.

    Google Scholar 

  • van den Hazel, H. B., Kielland-Brandt, M. C., and Winther, J. R., 1996, Biosynthesis and function of yeast vacuolar proteases, Yeast l2:1–16.

    Google Scholar 

  • van Veldhoven, P. P., and Mannaerts, G. P., 1994, Assembly of Peroxisomal Membranes, in: Subcellular Biochemistry, Volume 22 (A. H. Maddy and J. R. Harris, eds.), Plenum Press, New York, pp. 231–262.

    Google Scholar 

  • VanRheenen, S. M., Cao, X., Lupashin, V. V., Barlowe, C., and Waters, M. G., 1998, Sec35p, a novel peripheral membrane protein, is required for ER to Golgi vesicle docking, J. Cell Biol. 141:1107–1119.

    Google Scholar 

  • Vollmer, P., and Gallwitz, D., 1995, High expression cloning, purification, and assay of Ypt-GTPase-activating proteins. Meth. Enzymol. 257:118–128.

    Google Scholar 

  • Wada, Y., Ohsumi, Y., and Anraku, Y., 1992, Genes for directing vacuolar morphogenesis in Saccharomyces cerevisiae. I. Isolation and characterization of two classes of vam mutants, J. Biol. Chem. 267:18665–18670.

    Google Scholar 

  • Wada, Y., Ohsumi, Y., Kawai, E., and Ohsumi, M., 1996, Mutational analysis of Vam4/Ypt7p function in the vacuolar biogenesis and morphogenesis in the yeast, Saccharomyces cerevisiae. Protoplasma 191:126–135.

    Google Scholar 

  • Walch-Solimena, C., Collins, R. N., and Novick, P. J., 1997, Sec2p mediates nucleotide exchange on Sec4p and is involved in polarized delivery of post-Golgi vesicles, J. Cell Biol. 137:1495–1509.

    Google Scholar 

  • Waldherr, M., Ragnini, A., Schweyer, R. J., and Boguski, M. S., 1993, MRS6-yeast homologue of the choroideraemia gene. Nat. Genet. 3:193–194.

    Google Scholar 

  • Walworth, N. C., Goud, B., Kabcenell, A. K., and Novick, P. J., 1989, Mutational analysis of SEC4 suggests a cyclical mechanism for the regulation of vesicular traffic, EMBO J. 8:1685–1693.

    Google Scholar 

  • Waterham, H. R., and Cregg, J. M., 1997, Peroxisome biogenesis, BioEssays 19:57–66.

    Google Scholar 

  • Weber, T., Zemelman, B. V., McNew, J. A., Westermann, B., Gmachl, M., Parlati, F., Söllner T. H., Rothman, J. E., 1998, SNAREpins: minimal machinery for membrane fusion, Cell 92:759–772.

    Google Scholar 

  • Wichmann, H., Hengst, L., and Gallwitz, D., 1992, Endocytosis in yeast: evidence for the involvement of a small GTP binding protein (Ypt7p), Cell 71:1131–1142.

    Google Scholar 

  • Witter, D. J., and Poulter, C. D., 1996, Yeast geranylgeranyltransferase type-11: steady state kinetic studies of the recombinant enzyme. Biochemistry 35:10454–10463.

    Google Scholar 

  • Wittinghofer, A., 1998, Signal transduction via Ras, Biol. Chem. 379:933–993.

    Google Scholar 

  • Wittinghofer, A., and Nassar, N., 1996, How Ras-related proteins talk to their effectors, Trends Biochem. Sci. 21:488–491.

    Google Scholar 

  • Wittinghofer, A., and Valencia, A., 1995, Three-dimensional structure of Ras-and Ras-related proteins, in: Guidebook to the small GTPases (M. Zerial and L. A. Huber, eds.), Oxford University Press, Oxford, pp. 20–29.

    Google Scholar 

  • Wu, S. K., Zeng, K., Wilson, I. A., and Balch, W. E., 1996, Structural insights into the function of the Rab GDI superfamily, Trends Biochern. Sci. 21:472–476.

    Google Scholar 

  • Xu, Z., Mayer, A,, Muller, E., Wickner, W., 1997, A heterodimer of thioredoxin and IB2 cooperates with Sec18p (NSF) to promote yeast vacuole inheritance, J. Cell Biol. 136:299–306.

    Google Scholar 

  • Xu, Z., Sato, K., and Wickner, W., 1998, LMA1 binds to vacuoles at Sec18p (NSF), transfers upon ATP hydrolysis to a t-SNARE (Vam3p) complex, and is released during fusion, Cell 93:1125–1134.

    Google Scholar 

  • Yang, X., Matern, H., and Gallwitz, D., 1998, Specific binding to a novel and essential Golgi membrane protein (Yip1p) functionally links the transport GTPases Ypt1p and Ypt31p, EMBO J. 17:4954–4963.

    Google Scholar 

  • Yoo, J.-S., Grabowski, R., Xing, L., Trepte, H.-H., Schmitt, H.-D., and Gallwitz, D., 1999, Functional implications of genetic interactions between genes encoding small GTPases involved in vesicular transport in yeast, Mol. Gen. Genet., in press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

Götte, M., Lazar, T., Yoo, JS., Scheglmann, D., Gallwitz, D. (2002). The Full Complement of Yeast Ypt/Rab-GTPases and Their Involvement in Exo- and Endocytic Trafficking. In: Hilderson, H., Fuller, S. (eds) Fusion of Biological Membranes and Related Problems. Subcellular Biochemistry, vol 34. Springer, Boston, MA. https://doi.org/10.1007/0-306-46824-7_4

Download citation

  • DOI: https://doi.org/10.1007/0-306-46824-7_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-46313-6

  • Online ISBN: 978-0-306-46824-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics