Skip to main content

Part of the book series: Subcellular Biochemistry ((SCBI,volume 34))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Albright, A. V., Shieh, J. T., Itoh, T., Lee, B., Pleasure, D., O’Connor, M. J., Doms, R. W., and Gonzalez-Scarano, F., 1999, Microglia express CCR5, CXCR4, and CCR3, but of these, CCR5 is the prinicpal coreceptor for human immunodeficiency virus type 1 dementia isolates. J. Virol. 73:205–213.

    Google Scholar 

  • Alkhatib, G., Combadiere, C., Broder, C. C., Feng, Y., Kennedy, P. E., Murphy, P. M., and Berger, E. A., 1996, CC CKR5: A RANTES, MIP-lα, MIP-1β receptor as a fusion cofactor for macrophage-tropic HIV-1. Science 272:1955–1958.

    Google Scholar 

  • Ashorn, P. A., Berger, E. A., and Moss, B., 1990, Human immunodeficiency virus envelope glycoprotein/CD4-mediated fusion of nonprimate cells with human cells. J. Virol. 64:2149–2156.

    Google Scholar 

  • Atchison, R. E., Gosling, J., Monteclaro, F. S., Franci, C., Digilio, L., Charo, I. F., and Goldsmith, M., 1996, Multiple extracellular elements of CCR5 and HIV-1entry: dissociation from response to chemokines. Science 274:1924–1926.

    Google Scholar 

  • Berger, E. A., Doms, R. W., Fenyö, E.-M., Korber, B. T. M., Littman, D. R., Moore, J. P., Sattentau, Q. J., Schuitemaker, H., Sodroski, J., and Weiss, R. A., 1998, HIV-1 phenotypes classified by co-receptor usage. Nature 391:240.

    Google Scholar 

  • Berson, J. F., Long, D., Doranz, B. J., Rucker, J., Jirik, F. R., and Doms, R. W., 1996, A seven transmembrane domain receptor involved in fusion and entry of T-cell tropic human immunodeficiency virus type-1 strains. J. Virol. 70:6288–6295.

    Google Scholar 

  • Bieniasz, P. D., Fridell, R. A., Aramori, I., Ferguson, S. S. G., Caron, M. G., and Cullen, B. R., 1997, HIV-1 induced cell fusion is mediated by multiple regions within both the viral envelope and the CCR-5 coreceptor. EMBO J. 16:2599–2609.

    Google Scholar 

  • Bleul, C. C., Farazan, M., Choe, H., Parolin, C., Clark-Lewis, I., Sodroski, J., and Springer, T. A., 1996, The lymphocyte chemoattractant SDF-1 is a ligand for LESTWusin and blocks HIV-1 entry. Nature 382:2329–833.

    Google Scholar 

  • Bleul, C. C., Wu, L., Hoxie, J. A., Springer, T. A., and Mackay, C. R., 1997, The HIV coreceptors CXCR4 and CCR5 are differentially expressed and regulated on human T lymphocytes. Proc. Natl. Acad. Sci. USA 94:1925–1930.

    Google Scholar 

  • Boyd, M.T., Simpson, G. R., Cann, A. J., Johnson, M.A., and Weiss, R.W., 1993, A single amino acid substitution in the V1 loop of human immunodeficiency virus type 1 gp120 alters cellular tropism. J. Virol. 67:3649–3652.

    Google Scholar 

  • Brelot, A., Heveker, N., Adema, K., Hosie, M. J., Willett, B., and Alizon, M., 1999, Effect of mutations in the second extracellular loop of CXCR4 on its utilization by human and feline immunodeficiency viruses. J. Virol. 73:2576–2586.

    Google Scholar 

  • Brelot, A., Heveker, N., Pleskoff, O., Sol, N., and Alizon, M., 1997, Role of the first and third extracellular domains of CXCR-4 in human immunodeficiency virus coreceptor activity. J. Virol. 71:4744–4751.

    Google Scholar 

  • Cao, J., Sullivan, N., Desjardin, E., Parolin, C., Robinson, J., Wyatt, R., and Sodroski, J., 1997, Replication and neutralization of human immunodeficiency virus type 1 lacking the V1 and V2 variable loops of the gp120 envelope glycoprotein. J. Virol. 71:9808–9812.

    Google Scholar 

  • Chan, D. C., Fass, D., Berger, J. M., and Kim, P. S., 1997, Core structure of gp41 from the HIV envelope glycoprotein. Cell 89:263–73.

    Google Scholar 

  • Chan, D. C., and Kim, P. S., 1998, HIV Entry and Its Inhibition. Cell 93:681–684.

    Google Scholar 

  • Chen, J.D., Bai, X., Yang, A.G., Cong, Y., and Chen, S. Y., 1997, Inactivation of HIV-1 chemokine co-receptor CXCR-4 by a novel intrakine strategy. Nature Med. 3:1110–1116.

    Google Scholar 

  • Chen, S. S.-L., 1994, Functional role of the zipper motif region of human immunodeficiency virus type 1 transmembrane protein gp41. J. Virol. 68:2002–2010.

    Google Scholar 

  • Chen, S. S.-L., Lee, C.-N., Lee, W.-R., McIntosh, K., and Lee, T.-H., 1993, Mutational analysis of the leucine zipper-like motif of the human immunodeficiency virus type 1 envelope transmembrane glycoprotein. J. Virol. 67:3615–3619.

    Google Scholar 

  • Cheng-Mayer, C., Seto, D., Tateno, M., and Levy, J. A., 1988, Biological features of HIV that correlate with virulence in the host. Science 240:80–82.

    Google Scholar 

  • Chesebro, B., Buller, R., Portis, J., and Wehrly, K., 1990, Failure of human immunodeficiency virus entry and infection in CD4-positive human brain and skin cells. J. Virol. 64:215–221.

    Google Scholar 

  • Chesebro, B., Nishis, J., Perryman, S., Cann, A., O’Brien, W., Chen, I., and Wehrly, K., 1991, Identification of human immunodeficiency virus envelope gene sequences influencing viral entry into CD4-positive HeLa cells, T-leukemia cells, and macrophages. J. Virol. 65:5782–5789.

    Google Scholar 

  • Cho, M.W., Lee, M. K., Carney, M. C., Berson, J. F., Doms, R.W., and Martin, M.A., 1998, Identification of determinants on a dualtropic human immunodeficiency virus type 1 envelope glycoprotein that confer usage of CXCR4. J. Virol. 72:2509–2515.

    Google Scholar 

  • Choe, H., Farzan, M., Sun, Y., Sullivan, N., Rollins, B., Ponath, P. D., Wu, L., Mackay, C. R., LaRosa, G., Newman, W., Gerard, N., Gerard, C., and Sodroski, J., 1996, The β-chemokine receptors CCR3 and CCR5 facilitate infection by primary HIV-1 isolates. Cell 85:1135–1148.

    Google Scholar 

  • Clapham, P. R., Blanc, D., and Weiss, R. A., 1991, Specific cell surface requirements for infection of CD4-positive cells by human immunodeficiency virus type 1, type 2 and simian immunodeficiency virus. Virology 181:703–715.

    Google Scholar 

  • Cocchi, F., DeVico, A.L., Garzino-Demo, A., Arya, S. K., Gallo, R. C., and Lusso, P., 1995, Identification of RANTES, MIP-lx03B1;, and MIP-1β as the major HIV suppressive factors produced by CD8+ T cells. Science 270:1811–1815.

    Google Scholar 

  • Cocchi, F., DeVico, A. L., Garzino-Demo, A., Cara, A., Gallo, R. C., and Lusso, P., 1996, The V3 domain of the HIV-1 gp120 envelope glycoprotein is critical for chemokine-mediated blockade of infection. Nature Med. 2:1244–1247.

    Google Scholar 

  • Connor, R. I., Mohri, H., Cao, Y., and Ho, D. D., 1993, Increased viral burden and cytopathicity correlate temporally with CD4+ T-lymphocyte decline and clinical progression in human immunodeficiency virus type 1-infected individuals. J. Virol. 67:1772–1777.

    Google Scholar 

  • Dalgleish, A. G., Beverley, P. C., Clapham, P. R., Crawford, D. H., Greeves, M. F., and Weiss, R. A., 1984, The CD4 (T4) antigen is an essential component of the receptor for the AIDS retrovirus. Nature 312:763–767.

    Google Scholar 

  • Dean, M., Carrington, M., Winkler, C., Huttley, G. A., Smith, M. W., Allikmets, R., Goedert, J. J., Buchbinder, S. P., Vittinghoff, E., Gomperts, E., Donfield, S., Vlahov, D., Kaslow, R., Saah, A., Rinaldo, C., Detels, R., Hemophilia Growth and Development Study, Multicenter AIDS Cohort Study, Multicenter Hemophilia Cohort Study, San Francisco City Cohort, ALIVE Study, and O’Brien, S. J., 1996, Genetic resistance of HIV-1 infection and progression to AIDS by a deletion allele of the CKR5 structural gene. Science 273:1856–1862.

    Google Scholar 

  • DeJong, J.-J., Goudsmit, J., Keulen, W., Klaver, B., Krone, W., Tersmette, M., and deRonde, A., 1992, Human immunodeficiency virus type 1 clones chimeric for the envelope V3 domain differ in syncytium formation and replication capacity. J. Virol. 66:757–765.

    Google Scholar 

  • Delahunty, M. D., Rhee, I., Freed, E. O., and Bonifacino, J. S., 1996, Mutational analysis of the fusion peptide of the human immunodeficiency virus type 1: identification of critical glycine residues. Virology 218:94–102.

    Google Scholar 

  • Delwart, E. L., Mosialos, G., and Gilmore, T., 1990, Retroviral envelope glycoproteins contain a “leucine zipper”-like repeat. AIDS Res. Hum. Retroviruses 6:703–706.

    Google Scholar 

  • Deng, H., Liu, R., Ellmeier, W., Choe, S., Unutmaz, D., Burkhart, M., DiMarzio, P., Marmon, S., Sutton, R. E., Hill, C. M., Davis, C. B., Peiper, S. C., Schall, T. J., Littman, D. R., and Landau, N. R., 1996, Identification of a major co-receptor for primary isolates of HIV-1. Nature 381:661–666.

    Google Scholar 

  • Deng, H., Unutmaz, D., Kewalramani, V. N., and Littman, D. R., 1997, Expression cloning of new receptors used by simian and human immunodeficiency viruses. Nature 388:296–300.

    Google Scholar 

  • Dimitrov, D. S., Wiley, R. L., Martin, M. A., and Blumenthal, R., 1992, Kinetics of HIV-1 interactions with sCD4 and CD4+ cells: implications for inhibition of virus infection and initial steps of virus entry into cells. Virol. 187:398–406.

    Google Scholar 

  • Doms, R. W., and Moore, J. P., 1997, HIV-1 coreceptor use: A molecular window into viral tropism. In B. Korber, B. Foley, T. Leitner, G. Myers, B. Hahn, F. McCutchan, J. Mellors, and C. Kuiken. (eds.) Human Retroviruses and AIDS 1997, Los Alamos National Laboratory Theoretical Biology and Biophysics, Los Alamos, New Mexico.

    Google Scholar 

  • Donzella, G. A., Schols, D., Lin, S. W., Esté, J. A., Nagashima, K. A., Maddon, P. J., Allaway, G. P., Sakmar, T. P., Henson, G., De Clerq, E., and Moore, J. P., 1998, AMD3100, a small molecule inhibitor of HIV-1 entry via the CXCR4 co-receptor. Nature Medicine 4:72–77.

    Google Scholar 

  • Doranz, B. J., Grovit-Ferbas, K., Sharron, M. P., Mao, S.-H., Goetz, M. B., Daar, E. S., Doms, R.W., and O’Brien, W.A., 1997, A small-molecule inhibitor directed against the chemokine receptor CXCR4 prevents its use as an HIV-1 coreceptor. J. Exp. Med. 186:1395–1400.

    Google Scholar 

  • Doranz, B. J., Lu, Z., Rucker, J., Zhang, T., Sharron, M., Cen, Y., Wang, Z., Guo, H., Du, J., Accavitti, M. A., Doms, R. W., and Peiper, S. C., 1997, Two distinct CCR5 domains can mediate coreceptor usage by human immunodeficiency virus type 1. J. Virol. 71:6305–6314.

    Google Scholar 

  • Doranz, B. J., Orsini, M. J., Turner, J. D., Hoffman, T. L., Berson, J. F., Hoxie, J. A., Peiper, S. C., Brass, L. F., and Doms, R. W., 1999, Identification of CXCR4 domains that support coreceptor and chemokine receptor functions. J. Virol. 73:2752–2761.

    Google Scholar 

  • Doranz, B. J., Rucker, J., Yi, Y., Smyth, R. J., Samson, M., Peiper, S. C., Parmentier, M., Collman, R. G., and Doms, R. W., 1996, A dual-tropic primary HIV-1 isolate that uses fusin and the b-chemokine receptors CKR-5, CKR-3, and CKR-2b asfusion cofactors. Cell 85: 1149.

    Google Scholar 

  • Dragic, T., Litwin, V., Allaway, G. P., Martin, S. R., Huang, Y., Nagashima, K. A., Cayanan, C., Maddon, P. J., Koup, R. A., Moore, J. P., and Paxton, W. A., 1996, HIV-1 entry into CD4+ cells is mediated by the chemokine receptor CC-CKR-5. Nature 381:667–673.

    Google Scholar 

  • Dragic, T., Trkola, A., Lin, S. W., Nagashima, K. A., Kajumo, F., Zhao, L., Olson, W. C., Wu, L., Mackay, C. R., Allaway, G. P., Sakmar, T. P., Moore, J. P., and Maddon, P. J., 1998, Aminoterminal substitutions in the CCR5 co-receptor impair gp120 binding and human immunodeficiency virus type 1 entry. J. Virol. 72:279–285.

    Google Scholar 

  • Dubay, J. W., Roberts, S. J., Brody, B., and Hunter, E., 1992, Mutations in the leucine zipper of the human immunodeficiency virus type 1 transmembrane glycoprotein affect fusion and infectivity. J. Virol. 66:4748–4756.

    Google Scholar 

  • Dumonceaux, J., Nisole, S., Chanel, C., Quivet, L., Amara, A., Baleux, F., Briand, F., and Hazan, U., 1998, Spontaneous mutations in the env gene of the human immunodeficiency virus type 1NDK isolateareassociated with a CD4-independent entry phenotype. J. Virol. 72:512–519.

    Google Scholar 

  • Earl, P. L., Koenig, S., and Moss, B., 1991, Biological and immunological properties of the HIV-1 envelope glycoprotein: Analysis of proteins with truncations and deletions expressed by recombinant vaccinia viruses. J. Virol. 65:31–41.

    Google Scholar 

  • Edinger, A. L., Blanoain, C., Kuntsman, K. J., Wolinsky, S. M., Parmentier, M., and Doms, R. W., 1999, Functional dissection of CCR5 coreceptor function through the use of CD4-independent simian immunodeficiency virus strains. J. Virol. 73:4062–4073.

    Google Scholar 

  • Edinger, A. L., Hoffman, T. L., Yi, Y., Sharron, M., Collman, R. G., Mitrovic, B., Faulds, D., Hesselgesser, J., Horuk, R., and Doms, R. W., 1998, An orphan seven transmembrane domain receptor expressed widely in brain functions as a coreceptor for HIV-1 and SIV. J. Virol. 72:7934–7940.

    Google Scholar 

  • Edinger, A. L., Mankowski, J. L., Doranz, B. J., Margulies, B. J., Lee, B., Rucker, J., Sharron, M., Hoffman, T. L., Berson, J. F., Zink, M. C., Hirsch, V. M., Clements, J. E., and Doms, R. W., 1997, CD4-independent, CCR5-dependent infection of brain capillary endothelial cells by a neurovirulent simian immunodeficiency virus strain. Proc. Natl. Acad. Sci. USA 94:14742–14741.

    Google Scholar 

  • Endres, M. J., Clapham, P. R., Marsh, M., Ahuja, M., Turner, J. D., McKnight, A., Thomas, J. F., Stoebenau-Haggarty, B., Choe, S., Vance, P. J., Wells, T. N. C., Power, C. A., Sutterwala, S. S., Doms, R. W., Landau, N. R., and Hoxie, J. A., 1996, CD4-independent infection by HIV-2 is mediated by fusid/CXCR4. Cell 81:745–756.

    Google Scholar 

  • Farzan, M., Choe, H., Martin, K., Marcon, L., Hofmann, W., Karlsson, G., Sun, Y., Barrett, P., Marchand, N., Sullivan, N., Gerard, N., Gerard, C., and Sodroski, J., 1997, Two orphan seven-transmembrane segment receptors which are expressed in CD4-positive cells support simian immunodeficiency virus infection. J. Exp. Med. 186:405–411.

    Google Scholar 

  • Farzan, M., Choe, H., Vaca, L., Martin, K., Sun, Y., Desjardins, E., Ruffing, N., Wu, L., Wyatt, R., Gerard, N., Gerard, C., and Sodroski, J., 1998, A tyrosine-rich region in the N terminus of CCR5 is important for human immunodeficiency virus type 1 entry and mediates an association between gp120 and CCR5. J. Virol. 72:1160–1164.

    Google Scholar 

  • Fauci, A., 1996, Host factors and the pathogenesis of HIV-induced disease. Nature 384:529–534.

    Google Scholar 

  • Feng, Y., Broder, C. C., Kennedy, P. E., and Berger, E. A., 1996, HIV-1 entry cofactor: functional cDNA cloningofaseven-transmembrane domain, G-protein coupled receptor. Science 272:872–877.

    Google Scholar 

  • Fenyo, E., Morfeldt-Mason, L., Chiodi, F., Lind, B., VonGegerfelt, A., Albert, J., and Åsjö, B., 1988, Distinct replicative and cytopathic characteristics of human immunodeficiency virus isolates. J. Virol. 62:4414–4419.

    Google Scholar 

  • Forster, R. E., Kremmer, A., Schubel, D., Breitfeld, A., Kleinschmidt, C., Nerl, C., Bernhardt, G., and Lipp, M., 1998, Intracellular and surface expression of the HIV-1 co-receptor CXCR4/fusin on various leukocyte subsets: rapid internalization and recycling upon activation. J. Immnunol. 160:1522–1531.

    Google Scholar 

  • Freed, E. O., Delwart, E. L., Buchschacher, G. L., and Panganiban, A. T., 1992, A mutation in the human immunodeficiency virus type 1 transmembrane glycoprotein gp41 dominantly interferes with fusion and infectivity. Proc. Natl. Acad. Sci. USA 89:70–74.

    Google Scholar 

  • Freed, E. O., Myers, D. J., and Risser, R., 1990, Characterization of the fusion domain of the human immunodeficiency virus type 1 envelope glycoprotein gp41. Proc. Natl. Acad. Sci. USA 87:4650–4654.

    Google Scholar 

  • Groenink, M., Fouchier, R. A. M., Broersen, S., Baker, C. H., Koot, M., Wout, A. B. v. t., Huisman, H. G., Miedema, F., Tersmette, M., and Schuitemaker, H., 1993, Relation of phenotype evolution of HIV-1 to envelope V2 configuration. Science 260:1513–1516.

    Google Scholar 

  • Gwenael, E., Rabut, E., Konner, J. A., Kajumo, F., Moore, J. P., and Drajic, T., 1998, Alanine substitutions of polar and nonpolar residues in the amino-terminal domain of CCR5 differently impair entry of macrophage-and dualtropic isolates of human immunodeficiency virus type 1. J. Virol. 72:3464–3568.

    Google Scholar 

  • Hernandez, L. D., Hoffman, L. R., Wolfsberg, T. G., and White, J. M., 1996, Virus-cell and cell-cell fusion. Ann. Rev. CelI Dev. BioI. 12:627–661.

    Google Scholar 

  • Hesselgesser, J., Halks-Miller, M., DelVecchio, V., Peiper, S. C., Hoxie, J., Kolson, D. L., Taub, D., and Horuk, R., 1997, CD4-independent association between HIV-1gp-120 and CXCR4: functional chemokine receptors are expressed in human neurons. Curr. Biol. 7112–121.

    Google Scholar 

  • Hesselgesser, J., Halks-Miller, M., DelVecchio, V., Peiper, S. C., Hoxie, J., Kolson, D. L., Taub, D., and Horuk, R., 1998, Identification and characterization of the CXCR4 chemokine receptor in human T cell lines: ligand binding, biological activity, and HIV-1 infectivity. J. Immunol. 160:877–883.

    Google Scholar 

  • Hill, C. M., Deng, H., Unutmaz, D., Kewalramani, V. N., Bastiani, L., Gorny, M. K., Zolla-Pazner, S., and Littman, D. R., 1997, Envelope glycoproteins from human immunodeficiency virus types 1 and 2 and simian immunodeficiency virus can use human CCR5 as a coreceptor for viral entry and make direct CD4-dependent interactions with this chemokine receptor. J. Virol. 71:6296–6304.

    Google Scholar 

  • Hill, C. M., Kwon, D., Jones, M., Davis, C. B., Marmon, S., Daugherty, B. L., DeMartino, J. A., Springer, M. S., Unutmaz, D., and Littman, D. R., 1998, The amino terminus of human CCR5 is required for its function as a receptor for diverse human and simian immunodeficiency virus envelope glycoproteins. Virol. 248:357–371.

    Google Scholar 

  • Hoffman, T. L., LaBranche, C. C., Zhang, W., Canziani, G., Robinson, J., Chaiken, I., Hoxie, J. A., and Doms, R. W., 1999, Stable exposure of the coreceptor binding site in a CD4-independent HIV-1 envelope protein. Proc. Natl. Acad. Sci. USA.

    Google Scholar 

  • Hoffman, T.L., Stephens, E. B., Narayan, O., and Doms, R. W., 1998, HIV type I envelope determinants for use of the CCR2b, CCR3, STRL33, and APJ coreceptors. Proc. Natl. Acad. Sci. USA 95:11360–11365.

    Google Scholar 

  • Horuk, R., Hesselgesser, J., Zhou, Y., Faulds, D., Taub, D., Samson, M., Parmentier, M., Rucker, J., Doranz, B. J., and Doms, R. W., 1998, The CC chemokine I309 is a functional ligand for ChemR1/CCR8 and inhibits ChemR1/CCR8 dependent infection by diverse HIV-1 strains. J. Biol. Chem. 273:386–391.

    Google Scholar 

  • Huang, Y., Paxton, W. A., Wolinsky, S. M., Neumann, A. U., Zhang, L., He, T., Kang, S., Ceradini, D., Jin, Z., Yazdanbakhsh, K., Kunstman, K., Erickson, D., Dragon, E., Landau, N. R., Phair, J., Ho, D. D., and Koup, R. A., 1996, The role of a mutant CCR5 allele in HIV-1 transmission and disease progression. Nature Med. 2:1240–1243.

    Google Scholar 

  • Hwang, S. S., Boyle, T. J., Lyerly, H. K., and Cullen, B. R., 1991, Identification of the envelope V3 loop as the primary determinant of cell tropism in HIV-1. Science 253:71–74.

    Google Scholar 

  • Jones, P. L., Korte, T., and Blumenthal, R., 1998, Conformational changes in cell surface HIV-1 envelope glycoproteins are triggered by cooperation between cell surface and CD4 and coreceptors. J. Biol. Chem. 273:404–409.

    Google Scholar 

  • Kilby, J. M., Hopkins, S., Venetta, T. M., DiMassimo, B., Cloud, G. A., Lee, J. Y., Alldredge, L., Hunter, E., Lambert, D., Bolognesi, D., Matthews, T., Johnson, M. R., Nowak, M. A., Shaw, G. M., and Saag, M. S., 1998, Potent suppression of HIV-1 replication in humans by T-20, a peptide inhibitor of gp41-mediated virus entry. Nature Med. 4:1302–1307.

    Google Scholar 

  • Klatzman, D., Champagne, E., Chamaret, S., Gruest, J., Guetard, D., Hercend, T., Gluckman, J. C., and Montagnier, L., 1984, T-lymphocyte T4 molecule behaves as the receptor for human retrovirus LAV. Nature 312:767–768.

    Google Scholar 

  • Koito, A., Harrowe, G., Levy, J. A., and Cheng-Mayer, C., 1994, Functional role of the V1/V2 region of human immunodeficiency virus type 1 envelope glycoprotein gp120 in infection of primary macrophages and soluble CD4 neutralization. J. Virol. 68:2253–2259.

    Google Scholar 

  • Kowalski, M., Potz, J., Basiripour, L., Dorfman, T., Goh, W. C., Tenvillger, E., Dayton, A., Rosen, C., Haseltine, W., and Sodroski, J., 1987, Functional regions of the envelope glycoprotein of human immunodeficiency virus type I. Science 237:1351–1355.

    Google Scholar 

  • Kwong, P. D., Wyatt, R., Robinson, J., Sweet, R. W., Sodroski, J., and Hendrickson, W. A., 1998, Structure of an HIV gp120 envelope glycoprotein in complex with the CD4 receptor and a neutralizing human antibody. Nature 393:648–659.

    Google Scholar 

  • LaCasse, R. A., Follis, K. E., Trahey, M., Scarborough, J. D., Littman, D. R., and Nunberg, J., 1999, Fusion-competent vaccines: broad neutralization of primary isolates of HIV. Science 283:357–362.

    Google Scholar 

  • Lapham, C. K., Ouyang, J., Chandrasekhar, B., Nguyen, N. Y., Dimitrov, D. S., and Golding, H., 1996, Evidence for cell-surface association between fusin and the CD4-gp120 complex in human cell lines. Science 274:602–605.

    Google Scholar 

  • Lavi, E., Srizki, J. M., Ulrich, A. M., Zhang, W., Fu, L., Wang, Q., Connor, M. O., Hoxie, J. A., and gonzalez-Scarano, F., 1997, CXCR-4(Fusin), a co-receptor for the type 1 human immunodeficiency cirus (HIV-l), is expressed in the human brain in a variety of cell types, including microglia and neurons. Am. J. Pathol. 151:1035–1042.

    Google Scholar 

  • Lee, B., Sharron, M., Blanpain, C., Doranz, B. J., Vakili, J., Setoh, P., Berg, E., Liu, G., Guy, H. R., Durell, S. R., Parmentierl, M., Chang, C. N., Gaylord, H., Tsang, M., and Doms, R. W., 1999, Epitope mapping of CCR5 reveals multiple conformational states and distinct but overlappingstructuresinvolvedinchemokineandcoreceptor function. J.Biol.Chem. 274:9617–9626.

    Google Scholar 

  • Lee, B., Sharron, M., Montaner, L. J., Weissman, D., and Doms, R. W., 1999, Quantification of CD4, CCR5, and CXCR4 levels on lymphocyte subsets, dendritic cells, and differentially conditioned monocyte-derived macrophages. Proc. Natl. Acad. Sci. USA In Press.

    Google Scholar 

  • Leonard, C. K., Spellman, M. W., Riddle, L., Harris, R. J., Thomas, J. N., and Gregory, T. J., 1990, Assignment of intrachain disulfide bonds and characterization of potential glycosylation. sites of the type 1 recombinant human immunodeficiency virus envelope glycoprotein (gp120) expressed in Chinese hamster ovary cells. J. Biol. Chem. 265:10373–10382.

    Google Scholar 

  • Liao, F., Alkhatib, G., Peden, K. W. C., Sharma, G., Berger, E. A., and Farber, J. M., 1997, STRL33, a novel chemokine receptor-like protein, functions as a fusion cofactor for both macrophage-tropic and T cell line-tropic HIV-1. J. Exp. Med. 185:2015–2023.

    Google Scholar 

  • Liu, R., Paxton, W. A., Choe, S., Ceradini, D., Martin, S. R., Horuk, R., MacDonald, M. E., Stuhlmann, H., Koup, R. A., and Landau, N. R., 1996, Homozygous defect in HIV-1 core-ceptor accounts for resistance of some multiply-exposed individuals to HIV-1 infection. Cell 86:367–377.

    Google Scholar 

  • Lu, Z., Berson, J. F., Chen, Y., Tumer, J. D., Zhang, T., Sharron, M., Jenks, M. H., Wang, Z., Kim, J., Rucker, J., Hoxie, J. A., Peiper, S. C., and Doms, R. W., 1997, Evolution of HIV-1 coreceptor usage through interactions with distinct CCR5 and CXCR4 domains. Proc. Natl. Acad. Sci. USA 94:6426–6431.

    Google Scholar 

  • Maddon, P. J., Dalgleish, A. G., McDougal, J. S., Clapham, P. R., Weiss, R. A., and Axel, R., 1986, The T4 gene encodes the AIDS virus receptor and is expressed in the immune system and the brain. Cell 47:333–348.

    Google Scholar 

  • Martin, K. A., Wyatt, R., Farzan, M., Choe, H., Marcon, L., Desjardins, E., Robinson, J., Sodroski, J., Gerard, C., and Gerard, N. P., 1997, CD4-independent binding of SIV gp120 to rhesus CCR5. Science 278:1470–1473.

    Google Scholar 

  • McCune, J. M., Rabin, L. B., Feinberg, M. B., Lieberman, M., Kosek, J. C., Reyes, G. R., and Weissman, I. L., 1988, Endoproteolytic cleavage of gp160 is required for the activation of human immunodeficiency virus. Cell 53:55–67.

    Google Scholar 

  • McDougal, J. S., Kennedy, M. S., Sligh, J. M., Cort, S. P., Mawle, A., and Nicholson, J. K. A., 1986, Binding of HTLV-III/LAV to T4+ T cells by a complex of the 110K viral protein and the T4 molecule. Science 231:382–385.

    Google Scholar 

  • McDougal, J. S., Mawie, A., Cort, S., Nicholson, J., Cross, G. D., Scheppler-Campbell, J. A., Hicks, D., and Sligh, J., 1985, Cellular tropism of the human retrovirus HTLVIII/LAV. 1. Role of T-cell activation and expression of the T4 antigen. J. Immunol. 312:3151–3162.

    Google Scholar 

  • Michael, N. L., Chang, G., Louie, L. G., Mascola, J. R., Dondero, D., Birx, D. L., and Sheppard, H. W., 1997, The role of viral phenotype and CCR-5 gene defects in HIV-1 transmission and disease progression. Nature Med. 3:338–340.

    Google Scholar 

  • Moore, J. P., and Ho, D. D., 1995, HIV-1 neutralization: The consequences of viral adaptation to growth on transformed T cells. AIDS 9 (suppl A): S117–S136.

    Google Scholar 

  • Murakami, T., Nakajima, T., Koyanagi, Y., Tachibana, K., Fujii, N., Tamamura, H., Yoshida, N., Waki, M., Matsumoto, A., Yoshie, O., Kishimoto, T., Yamamoto, N., and Nagasawa, T., 1997, A small molecule CXCR4 inhibitor that blocks T cell line-tropic HIV-1 infection. Journal of Experimental Medicine 186:1389–1393.

    Google Scholar 

  • Nagasaw, T., Hirota, S., Tachibana, K., Takakura, N., Nishikawa, S., Kitamura, Y., Yoshida, N., Kikutani, H., and Kishimoto, T., 1996, Defects of B-cell lymphopoiesis and bone-marrow myelopoiesis in mice lacking the CXC chemokine PBSF/SDF-1. Nature 382:635–638.

    Google Scholar 

  • Oberlin, E., Amara, A., Bachelene, F., Bessia, C., Virelizier, J.-L., Arenzana-Seisdedos, F., Schwartz, O., Heard, J.-M., Clark-Lewis, I., Legler, D. F., Loetscher, M., Baggiolini, M., and Moser, B., 1996, The CXC chemokine SDF-1 is the ligand for LESTR/fusin and prevents infection by T-cell line-adapted HIV-1. Nature 382:833–835.

    Google Scholar 

  • Ostrowski, M. A., Justement, S. J., Cantanzaro, A., Hallahan, C. A., Ehler, L. A., Mizell, S. B., Kumar, P. N., Mican, J. A., Chan, T. W., and Fauci, A. S., 1998, Expression of chemokine receptors CXCR4 and CCR5 in HIV-1 infected individuals. J. Immunol. 161:3195–3201.

    Google Scholar 

  • Picard, L., Wilkinson, D. A., McKnight, A., Gray, P. W., Hoxie, J. A., Clapham, P. R., and Weiss, R. A., 1997, Role of the amino-terminal domain of CXCR-4 in human immunodeficiency virus type 1 entry. Virology 231:105–111.

    Google Scholar 

  • Platt, E. J., Madani, N., Kosak, S. L., and Kabat, D., 1997, Infectious properties of human immunodeficiency virus type 1 mutants with distinct affinities for the CD4 receptor. J. Virol. 71:883–890.

    Google Scholar 

  • Platt, E. J., Wehrly, K., Kuhnman, S. E., Chesbro, B., and Kabat, D., 1998, Effects of CCR5 and CD4 cell surface concentrations on infectionsby macrophage-tropic isolates of human immunodeficiency virus type 1. J. Virol. 72:2855–2864.

    Google Scholar 

  • Reeves, J. D., McKnight, A., Potempa, S., Simmons, G., Gray, P. W., Power, C. A., Wells, T., Weiss, R. A., and Talbot, S. J., 1997, CD4-independent infection by HIV-2 (ROD/B): Use of the 7-transmembrane receptors CXCR-4, CCR-3, and V28 for entry. Virology 231:130–134.

    Google Scholar 

  • Rizzuto, C. D., Wyatt, R., Hernandez-Ramos, N., Sun, Y., Kwong, P. D., Hendrickson, W. A., and Sodroski, J., 1998, A conserved HIV gp120 glycoprotein structure involved in chemokine receptor binding. Science 280:1949–1953.

    Google Scholar 

  • Rollins, B., 1997, Chemokines. Blood 90:909–928.

    Google Scholar 

  • Roos, M. T. L., Lange, J. M. A., Goede, R. E. Y. d., Coutinho, R. A,, Schellekens, P. T. A., Miedema, F., and Tersmette, M., 1992, Viral phenotype and immune response in primary human immunodeficiency virus type 1 infection. J. Infect. Dis. 165:427–432.

    Google Scholar 

  • Ross, T. M., and Cullen, B. R., 1998, The ability of HIV type 1 to use CCR3 as a coreceptor is controlled by envelope V1/V2 sequences acting in conjunction with a CCR5-tropic V3 loop. Proc. Natl. Acad. Sci. USA 95:7682–7686.

    Google Scholar 

  • Rottman, J. B., Ganley, K. P., Williams, K., Wu, L., Mackay, C. R., and Ringler, D. J., 1997, Cellular localization of the chemokine receptor CCR5. Am. J. Pathol. 151:1341–1351.

    Google Scholar 

  • Rucker, J., Edinger, A. L., Sharron, M., Samson, M., Lee, B., Berson, J. F., Yi, Y., Collman, R. G., Doranz, B. J., Parmentier, M., and Doms, R. W., 1997, Utilization of chemokine receptors, orphan receptors, and herpesvirus encoded receptors by diverse human and simian immunodeficiency viruses. J. Virol. 71:8999–9007.

    Google Scholar 

  • Rucker, J., Samson, M., Doranz, B. J., Libert, F., Berson, J., Yi, Y., Collman, R. G., Vassart, G., Broder, C. C., Doms, R. W., and Parmentier, M., 1996, Regions in β-chemokine receptors CKR-5 and CKR-2b that determine HIV-1 cofactor specificity. Cell 87:437–446.

    Google Scholar 

  • Ryu, S.-E., Kwong, P. D., Truneh, A., Porter, T. G., Arthos, J., Rosenberg, M., Dai, X., Xuong, N., Axel, R., Sweet, R. W., and Hendrickson, W. A., 1991, Crystal structure of an HIV-binding recombinant fragment of human CD4. Nature 348:419–426.

    Google Scholar 

  • Ryu, S. E., Truneh, A., Sweet, R. W., and Hendrickson, W. A., 1994, Structure of an HIV and MHC binding fragmentfrom human CD4 as refined in two crystal lattices. Structure 2:59–74.

    Google Scholar 

  • Samson, M., Edinger, A. L., Stordeur, P., Rucker, J., Verhasselt, V., Sharron, M., Govaerts, C., Mollereau, C., Vassart, G., Doms, R. W., and Parmentier, M., 1998, ChemR23, a putative chemoattractant receptor is expressed in monocyte derived dendritic cells and macrophages and is a coreceptor for SIV and some primary HIV-1 strains. Eur. J. Immunol. 28:1689–1700.

    Google Scholar 

  • Samson, M., Labbe, O., Mollereau, C., Vassart, G., and Parmentier, M., 1996, Molecular cloning and functional expression of a new human CC-chemokine receptor gene. Biochemistry 35:3362–3367.

    Google Scholar 

  • Samson, M., LaRosa, G., Libert, F., Paindavoine, P., Detheux, M., Vassart, G., and Parmentier, M., 1997, The second extracellular loop of CCR5 is the major determinant of ligand specificity. J. Biol. Chem. 272:24934–24941.

    Google Scholar 

  • Samson, M., Libert, E, Doranz, B. J., Rucker, J., Liesnard, C., Farber, C.-M., Saragosti, S., Lapoumèroulie, C., Cogniaux, J., Forceille, C., Muyldermans, G., Verhofstede, C., Burtonboy, G., Georges, M., Imai, T., Rana, S., Yi, Y., Smyth, R. J., Collman, R. G., Doms, R. W., Vassart, G., and Parmentier, M., 1996, Resistance to HIV-1 infection of Caucasian individuals bearing mutant alleles of the CCR5 chemokine receptor gene. Nature 382:722–725.

    Google Scholar 

  • Schols, D., Struyf, S., Van Damme, J., Esté, J. A., Henson, G., and De Clerq, E., 1997, Inhibition of T-tropic HIV strains by selective antagonization of the chemokine receptor CXCR4. Journal of Experimental Medicine 186:1383–1388.

    Google Scholar 

  • Schuitemaker, H., Koot, M., Koostra, N. A., Dercksen, M. W., Goede, R. E. Y. d., Steenwijk, R. P. v., Lange, J. M. A., Schattenkerk, J. K. M. E., Miedema, F., and Tersmette, M., 1992, Biological phenotype of human immunodeficiency virus type 1 clones at different stages of infection: Progression of disease is associated with a shift from monocytotropic to T-cell tropic populations. J. Virol. 66:1354–1360.

    Google Scholar 

  • Shioda, T., Levy, J. A,, and Cheng-Mayer, C., 1992, Small amino acid changes in the V3 hypervariable region of gp120 can affect the T-cell-line and macrophage tropism of human immunodeficiency virus type 1. Proc. Natl. Acad. Sci. USA 89:9434–9438.

    Google Scholar 

  • Siciliano, S. J., Kuhmann, S. E., Weng, Y., Madani, N., Springer, M. S., Lineberger, J. E., Danzeisen, R., Miller, M. D., Kavanaugh, M. P., Martino, J. A., and Kabat, D., 1999, A critical site in the core of the CCR5 chemokine receptor required for binding and infectivity of human immunodeficiency virus type 1. J. Biol. Chem. 274:1905–1913.

    Google Scholar 

  • Simmons, G., Reeves, J. D., McKnight, A., Dejucq, N., Hibbitts, S., Power, C. A., Aarons, E., Schols, D., Clerq, E. D., Proudfoot, A. E., and Clapham, P. R., 1998, CXCR4 as a functional coreceptor for human immunodeficiency virus type 1 infection of primary macrophages. J. Virol. 72:8453–8457.

    Google Scholar 

  • Speck, R. F., Wehrly, K., Platt, E. J., Atchison, R. E., Charo, I. F., Kabat, D., Chesebro, B., and Goldsmith, M. A., 1997, Selective employment of chemokine receptors as human immunodeficiency virus type 1 coreceptors determined by individual amino acids within the envelope V3 loop. J. Virol. 71:7136–7139.

    Google Scholar 

  • Tachibana, K., Hirota, S., Iizasa, H., Yoshida, H., Kawabata, K., Kataoka, Y., Kitamura, Y., Matsushima, K., Yoshida, N., Nishikawa, S., Kishimoto, T., and Nagasawa, T., 1998, The chemokine receptor CXCR4 is essential for vascularization of the gastointestinal tract. Nature 393:591–594.

    Google Scholar 

  • Tersmette, M., Gruters, R., Wolf, F. d., Goede, R. E. Y. d., Lange, J. M. A., Schellekens, P. T. A., Goudsmit, J., Huisman, H. G., and Meidema, F., 1989, Evidence for a role of virulent human immunodeficiency virus (HIV) variants in the pathogenesis of acquired immunodeficiency virus syndrome: Studies on sequential isolates. J. Virol. 63:2118–2125.

    Google Scholar 

  • Tersmette, M., Lange, J. M. A., Goed, R. E. Y. d., Wolf, F. d., Schattenkerk, J. K. M. E., Schellekens, P.T. A., Coutinho, R. A., Huisman, H. G., Goudsmit, J., and Meidema, F., 1989, Association between biological properties of human immunodeficiency virus variants and risk for AIDS and AIDS mortality. Lancet. 1:983–985.

    Google Scholar 

  • Trkola, A., Dragic, T., Arthos, J., Binley, J. M., Olson, W. C., Allaway, G. P., Cheng-Mayer, C., Robinson, J., Maddon, P. J., and Moore, J. P., 1996, CD4-dependent, antibody-sensitive interactions between HIV-1 and its co-receptor CCR-5. Nature 384:184–187.

    Google Scholar 

  • Trono, D., 1994, Molecular biology of HIV. Clin. Lab. Med. 4:203–220.

    Google Scholar 

  • Turner, B. G., and Summers, M. F., 1999, Structural biology of HIV. J. Mol. Med. 285:1–32.

    Google Scholar 

  • Tuttle, D. L., Harrison, J. K., Anders, C., Sleasman, J. W., and Goodenow, M. M., 1998, Expression of CCR5 increases during monocyte differentiation and directly mediates macrophage suscepitibility to infection by HIV-1. Am. J. Pathol. 152:367–178.

    Google Scholar 

  • Vallat, A.-V., Girolami, U.D., He, J., Mhashilkar, A., Marasco, W., Shi, B., Gray, F., Bell, J., Keohane, C., Smith, T. W., and Gabuzda, D., 1998, Localization of HIV-1 co-receptors CCR5 and CXCR4 in the brains of children with AIDS. Am. J. Pathol. 152:167–178.

    Google Scholar 

  • Wang, J., Yan, Y., Garrett, T. P. J., Liu, J., Rodgers, D. W., Garlick, R. L., Tarr, G. E., Husain, Y., Reinherz, E. L., and Harrison, S. C., 1990, Atomic structure of a fragment of human CD4 containing two immunoglobulin-like domains. Nature 348:411–418.

    Google Scholar 

  • Wang, Z., Berson, J. F., Zhang, T., Cen, Y., Sun, Y., Sharron, M., Lu, Z., and Peiper, S. C., 1998, CXCR4 sequences involved in coreceptor determination of human immunodeficiency virus type-1 tropism. J. Biol. Chem. 273:15007–15015.

    Google Scholar 

  • Weiss, C. D., Barnett, S. W., Calcalano, N., Killeen, N., Littman, D. R., and White, J. M., 1996, Studies of HIV-1 envelope glycoprotein-mediated fusion using a simple fluorescence assay. AIDS 10:241–246.

    Google Scholar 

  • Weissenhorn, W., Dessen, A., Harrison, S. C., Skehel, J. J., and Wiley, D. C., 1997, Atomic structure of the ectodomain from HIV-1 gp41. Nature 387:426–430.

    Google Scholar 

  • Wild, C., Dubay, J. W., Greenwell, T., Baird, T., Oas, T. G., McDanal, C., Hunter, E., and Matthews, T., 1994, Propensity for a leucine zipper-like domain of human immunodeficiency virus type 1 gp41 to form oligomers correlates with a role in virus-induced fusion rather than assembly of the glycoprotein complex. Proc. Nail. Acad. Sci. USA 91:12676–12680.

    Google Scholar 

  • Wild, C., Greenwell, T., Shugars, D., Rimsky-Clarke, L., and Matthews, T., 1995, The inhibitory activity of an HIV type 1 peptide correlates with its ability to interact with a leucine zipper structure. AIDS Res. Hum. Retroviruses 11:323–325.

    Google Scholar 

  • Wild, C., Oas, T., McDanal, C., Bolognesi, D., and Matthews, T., 1992, A synthetic peptide inhibitor of human immunodeficiency virus replication: Correlation between solution structure and viral inhibition. Proc. Natl. Acad. Sci. USA 89:10537–10541.

    Google Scholar 

  • Wild, C. T., Shugars, D. C., Greenwell, T. K., McDanal, C. B., and Matthews, T. J., 1994, Peptides corresponding to a predictive alpha-helical domain of human immunodeficiency virus type1 gp41 are potent inhibitors of virus infection. Proc. Nail. Acad. Sci. USA 91:9770–9774.

    Google Scholar 

  • Wu, L., Gerard, N. P., Wyatt, R., Choe, H., Parolin, C., Ruffing, N., Borsetti, A., Cardoso, A. A., Desjardin, E., Newman, W., Gerard, C., and Sodroski, J., 1996, CD4-induced interaction of primary HIV-1 gp120 glycoproteins with the chemokine receptor CCR5. Nature 384:179–187.

    Google Scholar 

  • Wu, L., LaRosa, G., Kassam, N., Gordon, C. J., Heath, H., Ruffing, N., Chen, H., Humblias, J., Samson, M., Parmentier, M., Moore, J. P, and Mackay, C. R., 1997, Interaction of chemokine receptor CCR5 with its ligands: multiple domains for HIV-1 gp120 binding and a single domain for chemokine binding. J. Exp. Med. 186:1373–1381.

    Google Scholar 

  • Wyatt, R., and Sodroski, J., 1998, The HIV-1 envelope glycoproteins: Fusogens, antigens, and immunogens. Science 280:1884–1888.

    Google Scholar 

  • Yi, Y., Rana, S., Turner, J. D., Gaddis, N., and Collman, R. G., 1998, CXCR4 is expressed by primary macrophages and supports CCR5-independent infection by dual-tropicbut not T-tropic isolates of HIV-1. J. Virol. 72:772–777.

    Google Scholar 

  • Zhang, L., He, T., Talal, A., Wang, G., Frankel, S. S., and Ho, D. D., 1998, In vivo distribution of the human immunodeficiency virushimian immunodeficiency virus coreceptors: CXCR4, CCR3, and CCR5. J. Virol. 73:5035–5045.

    Google Scholar 

  • Zhang, L., He, T., Talal, A., Wang, G., Frankel, S. S., and Ho, D. D., 1998, In vivo distribution of the human immunodeficiency virus/simian immunodeficiey virus coreceptors: CXCR4, CCR3, and CCR5. J. Virol. 73:5035–5045.

    Google Scholar 

  • Zhang, Y., and Moore, J. P., 1999, Will multiple coreceptors need to be targeted by inhibitors of human immunodeficiency virus type 1 entry? J. Virol. 73:3443–3448.

    Google Scholar 

  • Zhu, T., Mo, H., Wang, N., Nam, D. S., Cao, Y., Koup, R. A., and Ho, D. D., 1993, Genotypic and phenotypic characterization of HIV-1 in patients with primary infection. Science 261:1179–1181.

    Google Scholar 

  • Zou, Y., Kottmann, A. H., Kuroda, M., Taniuchi, I., and Littman, D. R., 1998, Function of the chemokine receptor CXCR4 in haematopoiesis and in cerebellar development. Nature 393:595–599.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

McManus, C.M., Doms, R.W. (2002). Fusion Mediated by the HIV-1 Envelope Protein. In: Hilderson, H., Fuller, S. (eds) Fusion of Biological Membranes and Related Problems. Subcellular Biochemistry, vol 34. Springer, Boston, MA. https://doi.org/10.1007/0-306-46824-7_12

Download citation

  • DOI: https://doi.org/10.1007/0-306-46824-7_12

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-46313-6

  • Online ISBN: 978-0-306-46824-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics