Skip to main content

The Secretory Pathway From History to the State of the Art

  • Chapter
Fusion of Biological Membranes and Related Problems

Part of the book series: Subcellular Biochemistry ((SCBI,volume 34))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aalto, M. K., Ronne, H., and Keranen, S., 1993, Yeast syntaxins Sso1p and Sso2p belong to a family of related membrane proteins that function in vesicular transport, EMBO J. l2:4095–4104.

    Google Scholar 

  • Ahle, S., Mann, A., Eichelsbacher, U., and Ungewickell, E., 1988, Structural relationships between clathrin assembly proteins from the Golgi and the plasma membrane, EMBO J. 7:919–929.

    Google Scholar 

  • Amor, J. C., Harrison, D. H., Kahn, R. A,, and Ringe, D., 1994, Structure of the human ADP-ribosylation factor 1 complexed with GDP, Nature 372:704–708.

    Google Scholar 

  • Aridor, M., Bannykh, S. I., Rowe, T., and Balch, W. E., 1995, Sequential coupling between COPII and COPI vesicle coats in endoplasmic reticulum to Golgi transport, J. Cell Biol. 131:87–893.

    Google Scholar 

  • Aridor, M., Weissman, J., Bannykh, S., Nuoffer, C., and Balch, W. E., 1998, Cargo selection by the COPII budding machinery during export from the ER, J. Cell Biol. 141:61–70.

    Google Scholar 

  • Balch, W. E., Dunphy, W. G., Braell, W. A., and Rothman, J. E., 1984a, Reconstitution of the transport of protein between successive compartments of the Golgi measured by the coupled incorporation of N-acetylglucosamine., Cell 39:405–416.

    Google Scholar 

  • Balch, W. E., Glick, B. S., and Rothman, J. E., 1984b, Sequential intermediates in the pathway of intercompartmental transport in a cell-free system, Cell 39:525–536.

    Google Scholar 

  • Balch, W. E., McCaffery, J. M., Plutner, H., and Farquhar, M. G., 1994, Vesicular stomatitis virus glycoprotein is sorted and concentrated during export from the endoplasmic reticulum, Cell 76:841–852.

    Google Scholar 

  • Bannykh, S. I., and Balch, W. E., 1997, Membrane dynamics at the endoplasmic reticulum-Golgi interface, J. Cell Biol. 138:1–4.

    Google Scholar 

  • Bannykh, S. I., Rowe, T., and Balch, W. E., 1996, The organization of endoplasmic reticulum export complexes, J. Cell Biol. 135:19–35.

    Google Scholar 

  • Barlowe, C., 1997, Coupled E R to Golgi transport reconstituted with purified cytosolic proteins, J. Cell Biol. 139:1097–1108.

    Google Scholar 

  • Barlowe, C., 1998, COPII and selective export from the endoplasmic reticulum, Biochim. Biophys. Acta 1401:467–76.

    Google Scholar 

  • Barlowe, C., d’Enfert, C.,and Schekman, R., 1993, Purification and characterization of SAR1p, a small GTP-binding protein required for transport vesicle formation from the endoplasmic reticulum, J. Biol Chem. 268:873–879.

    Google Scholar 

  • Barlowe, C., Orci, L., Yeung, T., Hosobuchi, M., Hamamoto, S., Salama, N., Rexach, M. F., Ravazzola, M., Amherdt, M., and Schekman, R., 1994, COPII: A membrane coat formed by Secproteins that drive vesicle budding from the endoplasmic reticulum, Cell 77:895–908.

    Google Scholar 

  • Barlowe, C., and Schekman, R., 1993, SEC12 encodes a guanine-nucleotide-exchange factor essential for transport vesicle budding from the ER, Nature 365:347–349.

    Google Scholar 

  • Becker, B., Bolinger, B., and Melkonian, M., 1995, Anterogradetransportofalgal scales through the Golgi complex is not mediated by vesicles, Trends Cell Biol. 4:305–307.

    Google Scholar 

  • Belden, W. J., and Barlowe, C., 1996, Erv25p, a component of COPII-coated vesicles, forms a complex with Emp24p that is required for efficient endoplasmic reticulum to Golgi trans-port, J. Biol. Chem. 271:26939–26946.

    Google Scholar 

  • Block, M. R., Glick, B. S., Wilcox, C. A., Wieland, F. T., and Rothman, J. E., 1988, Purification of an N-ethylmaleimide-sensitive protein catalyzing vesicular transport, Proc. Natl. Acad. Sci. USA 85:7895A-7856

    Google Scholar 

  • Boll, W., Ohno, H., Zhou, S. Y., Rapoport, I., Cantley, L. C., Bonifacino, J. S., and Kirchhausen, T., 1996, Sequence requirements for the recognition of tyrosine based endocytic signals by clathrin AP 2 complexes, EMBO J. 15:5789–5795.

    Google Scholar 

  • Bonfanti, L., Mironov, A. A., Martinez Menarguez, J. A., Martella, O., Fusella, A., Baldassarre, M., Buccione, R., Geuze, H. J., and Luini, A., 1998, Procollagen traverses the Golgi stackwithout leaving the lumen of Cisternae: Evidence for cisternal maturation, Cell 95:993–1003.

    Google Scholar 

  • Bremser, M., Nickel, W., Schweikert, M., Ravazzola, M., Amherdt, M., Hughes, C. A., Soellner, T. H., Rothman, J. E., and Wieland, E T., 1999, Coupling of coat assembly and vesicle budding to packaging of putative cargo receptors, Cell 96:495–506.

    Google Scholar 

  • Brown, M. T., Andrade, J., Radhakrishna, H., Donaldson, J. G., Cooper, J. A., and Randazzo, P. A., 1998, ASAP1, a phospholipid-dependent ARF GTPase-activating protein that associ-ates with and is phosphorylated by Src, Mol. Cell. Biol. 18:7038–7051.

    Google Scholar 

  • Bukau, B., and Horwich, A. L., 1998, The Hsp70 and Hsp60 chaperone machines, Cell 92:351–366.

    Google Scholar 

  • Burgess, T. L., and Kelly, R. B., 1987, Constitutive and regulated secretion of proteins, Annu. Rev. Cell Biol. 3:243–293.

    Google Scholar 

  • Campbel, J. L., and Schekman, R., 1997, Selective packaging of cargo molecules into endo-plasmic reticulum derived COPII vesicles, Proc. Natl. Acad. Sci. USA 94:837–842.

    Google Scholar 

  • Chardin, P., and McCormick, F., 1999, Brefeldin A: the advantage of being uncompetitive, Cell 97:153–155.

    Google Scholar 

  • Chardin, P., Paris, S., Antonny, B., Robineau, S., Beraud Dufour, S., Jackson, C. L., and Chabre, M., 1996, A human exchange factor for ARF contains Sec7-and pleckstrin-homology domains, Nature 384:481–484.

    Google Scholar 

  • Chavrier, P., Parton, R. G., Hauri, H. P., Simons, K., and Zerial, M., 1990, Localization of low molecular weight GTP binding proteins to exocytic and endocytic compartments, Cell 62:317–329.

    Google Scholar 

  • Cosson, P., Demolliere, C., Hennecke, S., Duden, R., and Letourneur, F., 1996, Delta and zeta COP, two coatomer subunits homologous to clathrin associated proteins, are involved in ER retrieval, EMBO J. 151:792–1798.

    Google Scholar 

  • Cosson, P., and Letourneur, F., 1994, Coatomer interaction with di-lysine endoplasmic reticu-lum retention motifs, Science 263:1629–1631.

    Google Scholar 

  • Cukierman, E., Huber, I., Rotman, M., and Cassel, D., 1995, The ARF1 GTPaseactivating protein: zinc finger motif and Golgi complex localization, Science 270:1999–2002.

    Google Scholar 

  • Dalton, A. J., and Felix, M. D., 1954, Cytologic and cytochemical characteristics of the Golgi substance of epithelial cells of the epididymis-in situ, in homogenates and after isolation, Am.J.Anat. 94:171–187.

    Google Scholar 

  • Dell’Angelica, E. C., Mullins, C., and Bonifacino, J. S., 1999, AP 4, a novel protein complex related to clathrin adaptors, J. Biol. Chem. 274:7278–7285.

    Google Scholar 

  • Dell’Angelica, E. C., Ohno, H., Ooi, C. E., Rabinovich, E., Roche, K. W., and Bonifacino, J. S., 1997, AP3:anadaptorlikeproteincomplexwithubiquitousexpression, EMBO J. 16:917–928.

    Google Scholar 

  • Dominguez, M., Dejgaard, K., Füllekrug, J., Dahan, S., Fazel, A., Paccaud, J.-P., Thomas, D. Y., Bergeron, J. J. M., and Nilsson, T., 1998, gp25L/emp24/p24 protein family members of the cis-Golgi network bind both COP I and II coatomer, J. Cell Biol. 140:751–765.

    Google Scholar 

  • Donaldson, J. G., Cassel, D., Kahn, R. A., and Klausner, R. D., 1992a, ADP-ribosylation factor, a small GTP-binding protein, is required for binding of the coatomer protein beta-COP to Golgi membranes, Proc. Natl. Acad. Sci. USA 89:6408–6412.

    Google Scholar 

  • Donaldson, J. G., Finazzi, D., and Klausner, R. D., 1992b, Brefeldin A inhibits Golgi membrane-catalysed exchange of guanine nucleotide onto ARF protein, Nature 360:350–352.

    Google Scholar 

  • Duden, R., Griffiths, G., Frank, R., Argos, P., and Kreis, T. E., 1991, Beta-COP, a 110 kd protein associated with non-clathrin-coated vesicles and the Golgi complex, shows homology to beta-adaptin, Cell 64:649–665.

    Google Scholar 

  • Duden, R., Hosobuchi, M., Hamamoto, S., Winey, M., Byers, B., and Schekman, R., 1994, Yeast Beta-and Beta’-coat proteins (COP). Two coatomer subunits essential for endoplasmic reticulum-to-Golgi protein traffic, J. Biol. Chem. 269:24486–24495.

    Google Scholar 

  • Duden, R., Kajikawa, L., Wuestehube, L., and Schekman, R., 1998, epsilon-COP is a structural component of coatomer that functions to stabilize alpha-COP, EMBO J. 17:985–995.

    Google Scholar 

  • Dunphy, W. G., Brands, R., and Rothman, J. E., 1985, Attachment of terminal N-acetylglu-cosamine to asparagine-linked oligosaccharides occurs in central cisternae of the Golgi stack, Cell 40:463–472.

    Google Scholar 

  • Echard, A,, Jollivet, F., Martinez, O., Lacapere, J. J., Rousselet, A., Janoueix-Lerosey, I., and Goud, B., 1998, Interaction of a Golgi-associated kinesin-like protein with Rab6, Science 279:580–585.

    Google Scholar 

  • Espenshade, P., Gimeno, R. E., Holzmacher, E., Teung, P., and Kaiser, C. A,, 1995, Yeast sec16 gene encodes a multidomain vesicle coat protein that interacts with sec23p, J. Cell Biol. 131:311–324.

    Google Scholar 

  • Fass, D., Harrison, S. C., and Kim, P. S., 1996, Retrovirus envelope domain at 1.7 angstrom resolution, Nat. Strut. Biol. 3:465–469.

    Google Scholar 

  • Faulstich, D., Auerbach, S., Orci, L., Ravazzola, M., Wegehingel, S., Lottspeich, F., Stenbeck, G., Harter, C., Wieland, F.T., and Tschochner, H., 1996, Architecture of coatomer: molecular characterization of delta COP and protein interactions within the complex, J. Cell Biol. 135:53–61.

    Google Scholar 

  • Fernandez, I., Ubach, J., Dulubova, I., Zhang, X., Südhoff, T. C., and Rizo, J., 1998, Threedimensional structure of an evolutionarily conserved N-Terminal domain of Syntaxin 1 A, Cell 94:841–849.

    Google Scholar 

  • Fiedler, K., Veit, M., Stamnes, M. A., and Rothman, J. E., 1996, Bimodal interaction of coatomer with the p24 family of putative cargo receptors, Science 273:1396–1399.

    Google Scholar 

  • Friend, D. S., and Farquhar, M. G., 1967, Functions of coated vesicles during protein absorp-tion in the rat vas deferens, J. Cell Biol. 35:357–376.

    Google Scholar 

  • Fuchs, H., 1902, über das Epithel im Nebenhoden der Maus, Anat. Hefte 19:313–347.

    Google Scholar 

  • Gallusser, A., and Kirchhausen, T., 1993, The Beta1 and Beta2 subunits of the AP complexes are the clathrin coat assembly components, EMBO J. 12:5237–5244.

    Google Scholar 

  • Garcia, E. P., McPherson, P. S., Chilcote, T. J., Takei, K., and De Camilli, P. 1995, rbSec1A and B colocalize with syntaxin 1 and SNAP-25 throughout the axon, but are not in a stable complex with syntaxin, J. Cell Biol. l29:105–120.

    Google Scholar 

  • Gerich, B., Orci, L., Tschochner, H., Lottspeich, F., Ravazzola, M., Amherdt, M., Wieland, F., and Harter, C., 1995, Non-clathrin-coat protein alpha is a conserved subunit of coatomer and in Saccharomyces cerevisiae is essential for growth, Proc. Natl. Acad. Sci. USA 92:3229–3233.

    Google Scholar 

  • Gimeno, R. E., Espenshade, P., and Kaiser, C. A., 1995, Sed4 encodes a yeast endoplasmic retic-ulum protein that binds sec16p and participates in vesicle formation, J. Cell Biol. 131:325–338.

    Google Scholar 

  • Gimeno, R. E., Espenshade, P., and Kaiser, C. A., 1996, COPII coat subunit interactions: Sec24p and Sec23p bind to adjacent regions of Sec16p, Mol. Biol. Cell 71:815–1823.

    Google Scholar 

  • Gleeson, P. A., Anderson, T. J., Stow, J. L., Griffiths, G., Toh, B. H., and Matheson, F., 1996, P230 is associated with vesicles budding from the trans Golgi network, J. Cell Sci. l2:2811–2821.

    Google Scholar 

  • Glickman, J. N., Conibear, E., and Pearse, B. M., 1989, Specificity of binding of clathrin adap-tors to signals on the mannose-6-phosphate/insulin-like growth factor II receptor, EMBO J. 8:1041–1047.

    Google Scholar 

  • Goldberg, J., 1999, Structural and functional analysis of the ARF1-ARFGAP complex reveals a role for coatomer in GTP hydrolysis, Cell 96:893–902.

    Google Scholar 

  • Golgi, C., 1898, Intorno alla struttura delle cellule nervoses. XXV. Sulla struttura delle cellule nervose dei ganglin spinali., Bolletino Societa Medico-Chirurgica di Pavia 1:655–665.

    Google Scholar 

  • Gommel, D., Orci, L., Emig., E. M., Hannah, M. J., Ravazzola, M., Nickel, W., Helms, J. B., Wieland, F. T., and Sohn, K., 1999, p24 and p23, the major transmembrane proteins of COPI-coated transport vesicles, form hetero-oligomeric complexes and cycle between the organelles of the early secretory pathway, FEBS Lett. 447:179–185.

    Google Scholar 

  • Griffiths, G., Pepperkok, R., Krijnse, L. J., and Kreis, T. E., 1995, Immunocytochemical local-ization of beta-COP to the ER-Golgi boundary and the TGN, J. Cell Sci. 108:2839–2856.

    Google Scholar 

  • Griffiths, G., and Simons, K., 1986, The trans Golgi network: Sorting at the exit site of the Golgi complex, Science 234:438–443.

    Google Scholar 

  • Gruenberg, J., and Maxfield, F. R., 1995, Membrane transport in the endocytic pathway, Curr. Opin. Cell Biol. 7:552–563.

    Google Scholar 

  • Guo, W., Roth, D., Walch-Solimena, C., and Novick, P. 1999, The exocyst is an effector for Sec4p, targeting secretory vesicles to sites of exocytosis, EMBO J. 18:1071–1080.

    Google Scholar 

  • Hanson, P. I., Roth, R., Morisaki, H., Jahn, R., and Heuser, J. E., 1997, Structure and con-formational changes in NSF and its membrane receptor complexes visualized by quick-freeze/deep-etch electron microscopy, Cell 90:523–535.

    Google Scholar 

  • Hara-Kuge, S., Kuge, O., Orci, L., Amherdt, M., Ravazzola, M., Wieland, F. T., and Rothman, J. E., 1994, En bloc incorporation of coatomer subunits during the assembly of COP-coated vesicles, J. CellBiol. 124:883–892.

    Google Scholar 

  • Harrison-Lavoie, K. J., Lewis, V. A., Hynes, G. M., Collison, K. S., Nutland, E., and Willison, K. R., 1993, A 102 kDa subunit of a Golgi-associated particle has homology to beta subunits of trimeric G proteins, EMBO J. 12:2847–2853.

    Google Scholar 

  • Harter, C., Pavel, J., Coccia, F., Draken, E., Wegehingel, S., Tschochner, H., and Wieland, F., 1996, Nonclathrin coat protein gamma, a subunit of coatomer, binds to the cytoplasmic dilysine motif of membrane proteins of the early secretory pathway, Proc. Natl. Acad. Sci. USA 93:1902–1906.

    Google Scholar 

  • Harter, C., and Wieland, F. T., 1998, A single binding site for dilysine retrieval motifs and p23 within the gamma subunit of coatomer, Proc. Natl. Acad. Sci. USA 95:11649–11654.

    Google Scholar 

  • Hartl, F. U., 1996, Molecular chaperones in cellular protein folding, Nature 381:571–580.

    Google Scholar 

  • Hauri, H. P., and Schweizer, A., 1992, The endoplasmic reticulum-Golgi intermediate partment, Curr. Opin. Cell Biol. 4:600–608.

    Google Scholar 

  • Hayashi, T., McMahon, H., Yamasaki, S., Binz, T., Hata, Y., Suedhof, T. C., and Niemann, H., 1994, Synaptic vesicle membrane fusion complex: Action of clostridial neurotoxins on assembly, EMBO J. l3:5051–5061.

    Google Scholar 

  • Helms, J. B., and Rothman, J. E., 1992, Inhibition by Brefeldin A of a Golgi membrane enzyme that catalyses exchange of a guanine nucleotide bound to ARF, Nature 360:352–354.

    Google Scholar 

  • Hicke, L., Yoshihisa, T., and Schekman, R., 1992, Sec23p and a novel 105-kDa protein function as a multimeric complex to promote vesicle budding and protein transport from the endo plasmic reticulum, Mol. Biol. Cell 3:667–676.

    Google Scholar 

  • Hirst, J., and Robinson, M. S., 1998, Clathrin and adaptors, Biochim. Biophys. Acta 1404:173–193.

    Google Scholar 

  • Hobman, T. C., Zhao, B., Chan, H., and Farquhar, M. G., 1998, Immunoisolation and charac-terization of a subdomain of the endoplasmic reticulum that concentrates proteins involved in COPII vesicle biogenesis, Mol. Biol. Cell 9:1265–1278.

    Google Scholar 

  • Holstein, S. E. H., Ungewickell, H., and Ungewickell, E., 1996, Mechanism of clathrin basket dissociation: separate functions of the DnaJ homologue Auxilin, J. Cell Biol. 135:925–937.

    Google Scholar 

  • Hosobuchi, M., Kreis, T., and Schekman, R., 1992, SEC21 is a gene required for ER to Golgi protein transport that encodes a subunit of a yeast coatomer, Nature 360: 603–605.

    Google Scholar 

  • Huttner, W.B., 1988, Tyrosinesulfationandthesecretorypathway, Annu. Rev. Physiol. 50:363–376.

    Google Scholar 

  • Jackson, M. R., Nilsson, T., and Peterson, P. A., 1990, Identification of a consensus motif for retention of transmembrane proteins in the endoplasmic reticulum, EMBO J. 9:1315–3162.

    Google Scholar 

  • Jackson, M. R., Nilsson, T., and Peterson, P. A., 1993, Retrieval of transmembrane proteins to the endoplasmic reticulum, J. Cell Biol. 121:317–333.

    Google Scholar 

  • Jones, S. M., Crosby, J. R., Salamero, J., and Howell, K. E., 1993, A cytosolic complex of p62 and rab6 associates with TGN38/41 and is involved in budding of exocytic vesicles from the trans-Golgi network, J. Cell Biol. 122:775–788.

    Google Scholar 

  • Jones, S. M., Howell, K. E., Henley, J. R., Cao, H., and McNiven, M. A., 1998, Role of dynamin in the formation of transport vesicles from the trans-Golgi network, Science 279:573–577.

    Google Scholar 

  • Kahn, R. A., Randazzo, P., Serafini, T., Weiss, O., Rulka, C., Clark, J., Amherdt, M., Roller, P., Orci, L., and Rothman, J. E., 1992,The amino terminus of ADP-ribosylation factor (ARF) is a critical determinant of ARF activities and is a potent and specific inhibitor of protein transport, J. Biol Chem. 267:13039–13046.

    Google Scholar 

  • Kaiser, C. A., and Schekman, R., 1990, Distinct sets of SEC genes govern transport vesicle for-mation and fusion early in the secretory pathway, Cell 61:723–733.

    Google Scholar 

  • Kalies, K. U., and Hartmann, E., 1998, Protein translocation into the endoplasmic reticulum ER)-two similar routes with different modes, Eur. J. Biochem. 254:1–5.

    Google Scholar 

  • Keen, J. H., 1987, Clathrin assembly proteins: affinity purification and a model for coat assembly, J. Cell Biol. 105:1989–1998.

    Google Scholar 

  • Keller, P., and Simons, K., 1997, Post-Golgi biosynthetic trafficking, J. Cell Sci. 110:3001–3009.

    Google Scholar 

  • Kirchhausen, T., 1999, Boa constrictor or rattlesnake?, Nature 398:470–471.

    Google Scholar 

  • Kirchhausen, T., Bonifacino, J. S., and Riezman, H., 1997, Linking cargo to vesicle formation: receptor tail interactions with coat proteins, Curr. Opin. Cell Biol. 9:488–495.

    Google Scholar 

  • Klumperman, J., Schweizer, A., Clausen, H., Tang, B. L., Hong, W. J., Oorschot, V., and Hauri, H. P., 1998, The recycling pathway of protein ERGIC-53 and dynamics of the ER-Golgi intermediate compartment, J. Cell Sci. 111:3411–3425.

    Google Scholar 

  • Kornfeld, R., and Kornfeld, S., 1985, Assembly of asparagine-linkedoligosaccharides, Annu Rev Biochem 54:631–64.

    Google Scholar 

  • Krijnse-Locker, J., Ericsson, M., Rottier, P. J., and Griffiths, G., 1994, Characterization of the budding compartment of mouse hepatitis virus: evidence that transport from the RER to the Golgi complex requires only one vesicular transport step, J. Cell Biol. l24:55–70.

    Google Scholar 

  • Ktistakis, N. T., 1998, Signalling molecules and the regulation of intracellular transport, Bioessays 20:495–504.

    Google Scholar 

  • Ktistakis, N. T., Brown, H. A., Waters, M. G., Sternweis, P. C., and Roth, M. G., 1996, Evidence that phospholipase d mediates ADP-ribosylation factor dependent formation Golgi coated vesicles, J. Cell Biol. 134:295–306.

    Google Scholar 

  • Kuehn, M. J., Herrmann, J. M., and Schekman, R., 1998, COPII-cargo interactions direct protein sorting into ER-derived transport vesicles, Nature 391:187–190.

    Google Scholar 

  • Kuge, O., Dascher, C., Orci, L., Rowe, T., Amherdt, M., Plutner, H., Ravazzola, M., Tanigawa, G., Rothman, J. E., and Balch, W. E., 1994, Sar1 promotes vesicle budding from the endoplasmic reticulum but not Golgi compartments, J. Cell Biol. 125:51–65.

    Google Scholar 

  • Kuge, O., Hara, K. S., Orci, L., Ravazzola, M., Amherdt, M., Tanigawa, G., Wieland, F.T., and Rothman, J. E., 1993,Zeta-COP a subunit of coatomer, is required for COP-coated vesicle assembly, J. Cell Biol. 123:1727–1734.

    Google Scholar 

  • Le Borgne, R., and Hoflack, B., 1997, Mannose 6 phosphate receptors regulate the formation of clathrin coated vesicles in the TGN, J. Cell Biol. 137:335–345.

    Google Scholar 

  • Le Borgne, R., and Hoflack, B., 1998, Mechanisms of protein sorting and coat assembly: insights from the clathrin-coated vesicle pathway, Curr. Opin. Cell Biol. 10:499–503.

    Google Scholar 

  • Letourneur, F., Gaynor, E. C., Hennecke, S., Demolliere, C., Duden, R., Emr, S. D., Riezman, H., and Cosson, P., 1994, Coatomer is essential for retrieval of dilysine-tagged proteins to the endoplasmic reticulum, Cell 79:1199–1207

    Google Scholar 

  • Lewis, M. J., and Pelham, H. R., 1992, Ligand-induced redistribution of a human KDEL receptor from the Golgi complex to the endoplasmic reticulum, Cell 68:353–364.

    Google Scholar 

  • Lin, R. C., and Scheller, R. H., 1997, Structural organization of the synaptic exocytosis core complex, Neuron 19:1087–1094.

    Google Scholar 

  • Linial, M., 1997, SNARE proteins-why so many, why so few?, J. Neurochem. 69:1781–1792.

    Google Scholar 

  • Lippincott-Schwartz, J., 1993, Membrane cycling between the ER and Golgi apparatus and its role in biosynthetic transport, Subcell. Biochem. 21:95–119.

    Google Scholar 

  • Lippincott-Schwartz, J., Donaldson, J. G., Schweizer, A., Berger, E. G., Hauri, H. P., Yuan, L. C.,and Klausner, R. D.,1990, Microtubule-dependent retrograde transport of proteins into the ER in the presence of brefeldin A suggests an ER recycling pathway, Cell 60:821–836.

    Google Scholar 

  • Lowe, M., and Kreis, T. E., 1998, Regulation of membrane traffic in animal cells by COPI, Biochim. Biophys. Acta 1404:53–66.

    Google Scholar 

  • Malhotra, V., Orci, L., Glick, B. S., Block, M. R., and Rothman, J. E., 1988, Role of an Nethylmaleimide-sensitive transport component in promoting fusion of transport vesicles with cisternae of the Golgi stack, Cell 54:221–227.

    Google Scholar 

  • Matsuoka, K., Orci, L., Amherdt, M., Bednarek, S.Y., Hamamoto, S., Schekman, R., and Yeung, T., 1998, COPII-coated vesicle formation reconstituted with purified coat proteins and chemically defined liposomes, Cell 93:263–275.

    Google Scholar 

  • Matter, K., and Mellman, I., 1994, Mechanisms of cell polarity: sorting and transport in epithelial cells, Curr. Opin. Cell Biol. 6:545–554.

    Google Scholar 

  • Mayer, A., Wickner, W., and Haas, A., 1996, Sec18p (NSF) driven release of sec17p (alpha SNAP) can precede docking and fusion of yeast vacuoles, Cell 85:83–94.

    Google Scholar 

  • Meacci, E., Tsai, S. C., Adamik, R., Moss, J., and Vaughan, M., 1997, Cytohesin 1, a cytosolic guanine nucleotide exchange protein for ADP ribosylation factor, Proc. Natl. Acad. Sci. USA 94:1745–1748.

    Google Scholar 

  • Mellman, I., 1996, Endocytosis and molecular sorting, Annu. Rev. Cell Dev. Biol. 12:575–625.

    Google Scholar 

  • Mironov, A. A., Weidman, P., and Luini, A,, 1997, Variations on the intracellular transport theme: Maturing cisternae and trafficking tubules, J. Cell Biol. 138:481–484.

    Google Scholar 

  • Mizuno, M., and Singer, S. J., 1993,A soluble secretory protein is first concentrated in the endoplasmic reticulum before transfer to the Golgi apparatus, Proc. Nutl. Acad. Sci. USA 90:5732–5736.

    Google Scholar 

  • Montero, M., Alvarez, J., Scheenen, W. J., Rizzuto, R., Meldolesi, J., and Pozzan, T., 1997, Ca2+ homeostasis in the endoplasmic reticulum: coexistence of high and low [Ca2+] subcompartments in intact HeLa cells, J Cell Biol 139:601–11.

    Google Scholar 

  • Moss, J., and Vaughan, M., 1998, Molecules in the ARF orbit, J. Biol. Chem. 273:21431–21434.

    Google Scholar 

  • Munro, S., and Pelham, H. R. B., 1987, A C-terminal signal prevents secretion of luminal ER proteins, Cell 48:899–907.

    Google Scholar 

  • Nakamura, N., Lowe, M., Levine, T. P., Rabouille, C., and Warren, G., 1997, The vesicle docking protein p115 binds GM130, a cis Golgi matrix protein, in a mitotically regulated manner, Cell 89:445–455.

    Google Scholar 

  • Nakano, A., and Muramatsu, M., 1989, A novel GTP-binding protein, Sar1p, is involved in transport from the endoplasmic reticulum to the Golgi apparatus, J. Cell Biol. 109: 2677–2691.

    Google Scholar 

  • Narula, N., and Stow, J. L., 1995, Distinct coated vesicles labeled for p200 bud from trans-Golgi network membranes, Proc. Natl. Acad. Sci. USA 92:2874–2878.

    Google Scholar 

  • Neer, E. J., Schmidt, C. J., Nambudripad, R., and Smith, T. F., 1994, The ancient regulatory-protein family of WD-repeat proteins, Nature 37:1297–300.

    Google Scholar 

  • Nichols, B. J., and Pelham, H. R. B., 1998, SNARES and membrane fusion in the Golgi apparatus, Biochim. Biophys. Acta 1404:9–31.

    Google Scholar 

  • Nickel, W., Malsam, J., Gorgas, K., Ravazzola, M., Jenne, N., Helms, J. B., and Wieland, F. T., 1998, Uptake by COPI-coated vesicles of both anterograde and retrograde cargo is inhibited by GTP gamma S in vitro, J. Cell Sci. 111:3081–3090.

    Google Scholar 

  • Nickel, W., Sohn, K., Buenning, C., and Wieland, ET., 1997, p23, a major COPI vesicle membrane protein, constitutively cycles through the early secretory pathway, Proc. Natl. Acad. Sci. USA 941:1393–11398.

    Google Scholar 

  • Nilsson, T., Jackson, M., and Peterson, P. A., 1989, Short cytoplasmic sequences serve as retention signals for transmembrane proteins in the endoplasmic reticulum, Cell 58:707–718.

    Google Scholar 

  • Nishikawa, S., Hirata, A., and Nakano, A., 1994, Inhibition of endoplasmic reticulum (ER)-to-Golgi transport induces relocalization of binding protein (BiP) within the ER to form the BiP bodies, Mol. Biol. Cell 5:1129–1143.

    Google Scholar 

  • Nishimura, N., and Balch, W. E., 1997, A di acidic signal required for selective export from the endoplasmic reticulum, Science 277:556–558.

    Google Scholar 

  • Novick, P., and Zerial, M., 1997, The diversity of rab proteins in vesicle transport, Curr. Opin. Cell Biol. 9:496–504.

    Google Scholar 

  • Ohno, H., Stewart, J., Fournier, M. C., Bosshart, H., Rhee, I., Miyatake, S., Saito, T., Gallusser, A., Kirchhausen, T., and Bonifacino, J. S., 1995, Interaction of tyrosine based sorting signals with clathrin associated proteins, Science 269:1872–1875.

    Google Scholar 

  • Oprins, A., Duden, R., Kreis, T. E., Geuze, H. J., and Slot, J. W., 1993, Beta-COP localizes mainly to the cis-Golgi side in exocrine pancreas, J. Cell Biol. 121:49–59.

    Google Scholar 

  • Orci, L., Glick, B. S., and Rothman, J. E., 1986, A new type of coated vesicular carrier that appears not to contain clathrin: its possible role in protein transport within the Golgi stack, Cell 46:171–184.

    Google Scholar 

  • Orci, L., Perrelet, A,, Ravazzola, M., Amherdt, M., Rothman, J. E., and Schekman, R., 1994, Coatomer-rich endoplasmic reticulum, Proc. Natl. Acad. Sci. USA 91:11924–11928.

    Google Scholar 

  • Orci, L., Perrelet, A,, and Rothman, J. E., 1998,Vesicles on strings: Morphological evidence for processive transport within the Golgi stack, Proc. Natl. Acad. Sci. USA 95:2279–2283

    Google Scholar 

  • Orci, L., Ravazzola, M., Meda, P., Holcomb, C., Moore, H. P., Hicke, L., and Schekman, R., 1991, Mammalian Sec23p homologue is restricted to the endoplasmic reticulum transitional cytoplasm, Proc. Natl. Acad. Sci. USA 88:8611–8615.

    Google Scholar 

  • Orci, L., Stamnes, M., Ravazzola, M., Amherdt, M., Perrelet, A., Söllner, T. H., and Rothman, J. E., 1997, Bidirectional transport by distinct populations of COPI-coated vesicles, Cell 90:335–349.

    Google Scholar 

  • Ostermann, J., Orci, L., Tani, K., Amherdt, M., Ravazzola, M., Elazar, Z., and Rothman, J. E., 1993, Stepwise assembly of functionally active transport vesicles, Cell 75: 1015–1025.

    Google Scholar 

  • Paccaud, J.-P., Reith, W., Carpentier, J.-L., Ravazzola, M., Amherdt, M., Schekman, R., and Orci, L., 1996, Cloning and functional characterization of mammalian homologues of the COPII component Sec23, Mol. Biol. Cell 71:535–1546.

    Google Scholar 

  • Palade, G., 1975, Intracellular aspects of the process of protein synthesis, Science 189:347–358.

    Google Scholar 

  • Palmer, D. J., Helms, J. B., Beckers, C. J., Orci, L., and Rothman, J. E., 1993, Binding of coatomer to Golgi membranes requires ADP-ribosylation factor, J. Biol. Chem. 268:12083–12089

    Google Scholar 

  • Pavel, J., Harter, C., and Wieland, ET., 1998, Reversible dissociation of coatomer: Functional characterization of a beta/delta-coat protein subcomplex, Proc. Natl. Acad. Sci. USA 95: 2140–2145.

    Google Scholar 

  • Pearse, B. M. F., 1975, Coated vesicles from pig brain: purification and biochemical characterization, J. Mol. Biol. 97:93–98.

    Google Scholar 

  • Pearse, B. M. F., and Robinson, M. S., 1984, Purification and properties of l00kD proteins of coated vesicles and their reconstitution with clathrin, EMBO J. 3:1951–1957.

    Google Scholar 

  • Pelham, H. R., 1990, The retention signal for soluble proteins of the endoplasmic reticulum, Trends Biochem. Sci. 15:483–486.

    Google Scholar 

  • Pepperkok, R., Scheel, J., Horstmann, H., Hauri, H. P., Griffiths, G., and Kreis, T. E., 1993, Beta-COP is essential for biosynthetic membrane transport from the endoplasmic reticulum to the Golgi complex in vivo, Cell 74:71–82.

    Google Scholar 

  • Peranen, J., Auvinen, P., Virta, H., Wepf, R., and Simons, K., 1996, Rab8 promotes polarized membrane transport through reorganization of actin and microtubules in fibroblasts, J. Cell Biol. 135:153–167.

    Google Scholar 

  • Peter, F., Plutner, H., Zhu, H., Kreis, T. E., and Balch, W. E., 1993, Beta-COP is essential for transport of protein from the endoplasmic reticulum to the Golgi in vitro, J. Cell Biol. 122:1155–1167.

    Google Scholar 

  • Pevsner, J., Hsu, S. C., Braun, J. E., Calakos, N., Ting, A. E., Bennett, M. K., and Scheller, R. H., 1994, Specificity and regulation of a synaptic vesicle docking complex, Neuron 13:353–361.

    Google Scholar 

  • Pfeffer, S. R., 1999, Transport-vesicle targeting: tethers before SNAREs, Nature Cell Biol. 1:E17–E22.

    Google Scholar 

  • Poon, P. P., Cassel, D., Spang, A., Rotman, M., Pick, E., Singer, R. A., and Johnston, G. C., 1999, Retrograde transport from the yeast Golgi is mediated by two ARF GAP proteins with overlapping function, EMBO J. 18:555–564.

    Google Scholar 

  • Premont, R. T., Claing, A., Vitale, N., Freeman, J. L., Pitcher, J. A., Patton, W. A., Moss, J., Vaughan, M., and Lefkowitz, R. J., 1998, beta2-Adrenergic receptor regulation by GIT1, a G protein-coupled receptor kinase-associated ADP ribosylation factor GTPase-activating protein, Proc. Natl. Acad. Sci. USA 95:14082–14087.

    Google Scholar 

  • Pryer, N. K., Salama, N. R., Schekman, R., and Kaiser, C. A., 1993, Cytosolic Sec13p complex is required for vesicle formation from the endoplasmic reticulum in vitro, J. Cell Biol. 120:865–875.

    Google Scholar 

  • Rambourg, A., and Clermont, Y., 1997, Three-dimensional structure of the golgi apparatus in mammalian cells, in: The Golgi Apparatus (E. G. Berger and J. Roth, eds.) Birkhauser Verlag, Basel, pp. 37–61.

    Google Scholar 

  • Rambourg, A., Clermont, Y., and Marraud, A., 1974, Three-dimensional structure of the osmium-impregnated Golgi apparatus as seen in the high voltage electron microscope, Am. J. Anat. 140:27–45.

    Google Scholar 

  • Reinhard, C., Harter, C., Bremser, M., Bruegger, B., Sohn, K., Helms, J. B., and Wieland, F., 1999, Receptor-induced polymerization of coatomer, Proc. Natl. Acad. Sci. USA 96: 1224–1228.

    Google Scholar 

  • Robinson, M. S., 1987, 100-kD coated vesicle proteins: molecular heterogeneity and intracellular distribution studied with monoclonal antibodies, J. Cell Biol. 104:887–895.

    Google Scholar 

  • Robinson, M. S., and Kreis, T. E., 1992, Recruitment of coat proteins onto Golgi membranes in intact and permeabilized cells: effects of brefeldin A and G protein activators, Cell 69:129–138.

    Google Scholar 

  • Rojo, M., Pepperkok, R., Emery, G., Kellner, R., Stang, E., Parton, R. G., and Gruenberg, J., 1997, Involvement of the transmembrane protein p23 in biosynthetic protein transport, J. Cell Biol. 139:1119–1135.

    Google Scholar 

  • Roth, J., 1997, Topology of glycosylation in the Golgi apparatus, in: The Golgi Apparatus (E. G. Berger and J. Roth, eds) Birkhauser Verlag, Basel, pp. 131–161.

    Google Scholar 

  • Roth, J., Taatjes, D. J., Lucocq, J. M., Weinstein, J., and Paulson, J. C., 1985, Demonstration of an extensive trans-tubular network continuous with the Golgi apparatus stack that may function in glycosylation, Cell 43:287–295.

    Google Scholar 

  • Roth, J., Wang, Y., Eckhardt, A. E., and Hill, R. L., 1994, Subcellular localization of the UDPN-acetyl-D-galactosamine: polypeptide N-acetylgalactosaminyltransferase-mediated O-glycosylation reaction in the submaxillary gland, Proc. Natl. Acad. Sci. USA 91:8935–8939.

    Google Scholar 

  • Roth, T. K., and Porter, K. R., 1964, Yolk protein uptake in the oocyte of the mosquito Aedes aegypti, J. Cell Bioi. 20:313–332.

    Google Scholar 

  • Rothman, J. E., and Warren, G., 1994, Implications of the SNARE hypothesis for intracellular membrane topology and dynamics, Curr. Biol. 4:220–233.

    Google Scholar 

  • Rothman, J. E., and Wieland, F. T., 1996, Protein sorting by transport vesicles, Science 272:227–234.

    Google Scholar 

  • Rowe, T., Aridor, M., McCaffery, J. M., Plutner, H., Nuoffer, C., and Balch, W. E., 1996, COPII vesicles derived from mammalian endoplasmic reticulum microsomes recruit COPI, J. Cell Bioi. l35:895–911.

    Google Scholar 

  • Sacher, M., Jiang, Y., Barrowman, J., Scarpa, A., Burston, J., Zhang, L., Schieltz, D., Yates, J. R., 3rd, Abeliovich, H., and Ferro-Novick, S., 1998, TRAPP, a highly conserved novel complex on the cis-Golgi that mediates vesicle docking and fusion, EMBO J. 17:2494–24503.

    Google Scholar 

  • Salama, N. R., Chuang, J. S., and Schekman, R. W., 1997, Sec31 encodes an essential component of the COPII coat required for transport vesicle budding from the endoplasmic reticulum, Mol. Biol. Cell 8:205–217.

    Google Scholar 

  • Salama, N. R., Yeung, T., and Schekman, R. W., 1993, The Secl3p complex and reconstitution of vesicle budding from the ER with purified cytosolic proteins, EMBO J. l2:4073–4082.

    Google Scholar 

  • Salzberg, A., Cohen, N., Halachmi, N., Kimchie, Z., and Lev, Z., 1993, The Drosophila Ras2 and Rop gene pair: a dual homology with a yeast Ras-like gene and a suppressor of its loss-of-function phenotype, Development 117:1309–1319.

    Google Scholar 

  • Sapperstein, S. K., Walter, D. M., Grosvenor, A. R., Heuser, J. E., and Waters, M. G., 1995, p115 is a general vesicular transport factor related to the yeast endoplasmic reticulum to Golgi transport factor Uso1p, Proc. Natl. Acad. Sci. USA 92:22–526.

    Google Scholar 

  • Saraste, J., and Kuismanen, E., 1984, Pre-and post-Golgi vacuoles operate in the transport of Semliki Forest virus membrane glycoproteins to the cell surface, Cell 38:535–549.

    Google Scholar 

  • Saraste, J., Palade, G. E., and Farquhar, M. G., 1987, Antibodies to rat pancreas Golgi subfractions: identification of a 58-kD cis-Golgi protein, J. Cell Bioi. 105:2021–2029.

    Google Scholar 

  • Saraste, J., and Svensson, K., 1991, Distribution of the intermediate elements operating in ER to Golgi transport, J. Cell Sci. 100:415–430.

    Google Scholar 

  • Scales, S. J., Pepperkok, R., and Kreis, T. E., 1997, Visualization of ER-to-Golgi transport in living cells reveals a sequential mode of action for COPII and COPI, Cell 90:1137–1148.

    Google Scholar 

  • Schekman, R., and Orci, L., 1996, Coat proteins and vesicle budding, Science 271:1526–1533.

    Google Scholar 

  • Scheller, R. H., 1995, Membrane trafficking in the presynaptic nervet erminal, Neuron 14:227–234.

    Google Scholar 

  • Schimmoeller, F., Singer-Krueger, B., Schroeder, S., Krueger, U., Barlowe, C., and Riezman, H., 1995, The absence of Emp24p, a component of ER-derived COPII-coated vesicles, causes a defect in transport of selected proteins to the Golgi, EMBO J. 141:329–1339.

    Google Scholar 

  • Schindler, R., Itin, C., Zerial, M., Lottspeich, F. and Hauri, H. P., 1993, ERGIC-53, a membrane proteinof the ER-Golgi intermediate compartment, carries an ER retention motif, Eur. J. Cell Bioi. 61:1–9.

    Google Scholar 

  • Schlossman, D. M., Schmid, S. L., Braell, W. A., and Rothman, J. E., 1984, An enzyme that removes clathrin coats: purification of an uncoating ATPase, J. Cell Biol. 99:723–733.

    Google Scholar 

  • Schmid, S. L., 1997, Clathrin-Coated vesicle formation and protein sorting: an integrated process, Annu. Rev. Biochem. 66:511–548.

    Google Scholar 

  • Schmid, S. L., McNiven, M. A., and DeCamilli, P., 1998, Dynamin and its partners: a progress report, Curr. Opin. Cell Biol. 10:504–512.

    Google Scholar 

  • Schweizer, A., Clausen, H., van Meer, G., and Hauri, H. P., 1994, Localization of O-glycan initiation, sphingomyelin synthesis, and glucosylceramide synthesis in Vero cells with respect to the endoplasmic reticulum-Golgi intermediate compartment, J. Biol. Chem. 269:4035–4041.

    Google Scholar 

  • Schweizer, A., Fransen, J. A., Bachi, T., Ginsel, L., and Hauri, H. P., 1988, Identification, by a monoclonal antibody, of a 53-kD protein associated with a tubulo-vesicular compartment at the cis-side of the Golgi apparatus, J. Cell Biol. 107:1643–1653.

    Google Scholar 

  • Schweizer, A., Fransen, J. A., Matter, K., Kreis, T. E., Ginsel, L., and Hauri, H. P., 1990, Identification of an intermediate compartment involved in protein transport from endoplasmic reticulum to Golgi apparatus, Eur. J. Cell Biol. 53:185–196.

    Google Scholar 

  • Serafini, T., Orci, L., Amherdt, M., Brunner, M., Kahn, R. A., and Rothman, J. E., 1991a, ADP-ribosylation factor is a subunit of the coat of Golgi-derived COP-coated vesicles: a novel role for a GTP-binding protein, Cell 67:239–253.

    Google Scholar 

  • Serafini, T., Stenbeck, G., Brecht, A., Lottspeich, F., Orci, L., Rothman, J. E., and Wieland, F. T., 1991b, A coat subunit of Golgi-derived non-clathrin-coated vesicles with homology to the clathrin-coated vesicle coat protein beta-adaptin, Nature 349:215–220

    Google Scholar 

  • Sever, S., Muhlberg, A. B., and Schmid, S. L., 1999, Impairment of dynamin’s GAP domain stimulates receptor-mediated endocytosis, Nature 39:8481–436.

    Google Scholar 

  • Shaywitz, D. A., Orci, L., Ravazzola, M., Swaroop, A., and Kaiser, C. A., 1995, Human SEC13Rp functions in yeast and is located on transport vesicles budding from the endoplasmic reticulum, J. Cell Biol. 128:769–778.

    Google Scholar 

  • Sitia, R., and Meldolesi, J., 1992, Endoplasmic reticulum: a dynamic patchwork of specialized subregions, Mol. Biol. Cell 3:1067–1072.

    Google Scholar 

  • Sjöstrand, F. S., and Hanzon, V., 1954, Ultrastructure of the Golgi apparatus of exocrine cells of mouse pancreas, Exp. Cell Res. 7:415–429.

    Google Scholar 

  • Skehel, J. J., and Wiley, D. C., 1998, Coiled coils in both intracellular vesicle and viral membrane fusion, Cell 95:871–874.

    Google Scholar 

  • Soellner, T., Bennett, M. K., Whiteheart, S. W., Scheller, R. H., and Rothman, J. E., 1993a, A protein assembly-disassembly pathway in vitro that may correspond to sequential steps of synaptic vesicle docking, activation, and fusion, Cell 75:409–418.

    Google Scholar 

  • Soellner, T., Whiteheart, S. W., Brunner, M., Erdjument, B. H., Geromanos, S., Tempst, P., and Rothman, J. E., 1993b, SNAP receptors implicated in vesicle targeting and fusion, Nature 362:318–324.

    Google Scholar 

  • Soennichsen, B., Lowe, M., Levine, T., Jamsa, E., DiracSvejstrup, B., and Warren, G., 1998, Role for giantin in docking COPI vesicles to Golgi membranes, J. Cell Biol. 140:1013–1021.

    Google Scholar 

  • Soennichsen, B., Watson, R., Clausen, H., Misteli, T., and Warren, G., 1996, Sorting by COPI-coated vesicles under interphase and mitotic conditions, J. Cell Biol. 134:1411–1425.

    Google Scholar 

  • Sogaard, M., Tani, K., Ye, R. R., Geromanos, S., Tempst, P., Kirchhausen, T., Rothman, J. E., and Soellner, T., 1994, A rab protein is required for the assembly of SNARE complexes in the docking of transport vesicles, Cell 78:937–948.

    Google Scholar 

  • Sohn, K., Orci, L., Ravazzola, M., Amherdt, M., Bremser, M., Lottspeich, F., Fiedler, K., Helms, J. B., and Wieland, F. T., 1996, A major membrane protein of Golgi-derived COPI-coated vesicles involved in coatomer binding, J. Cell Biol. 139:1239–1248.

    Google Scholar 

  • Spang, A., Matsuoka, K., Hamamoto, S., Schekman, R., and Orci, L., 1998, Coatomer, Arf1p, and nucleotide are required to bud coat protein complex I-coated vesicles from large synthetic liposomes, Proc. Natl. Acad. Sci. USA 95:11199–11204.

    Google Scholar 

  • Stamnes, M., Schiavo, G., Stenbeck, G., Sollner, T. H., and Rothman, J. E., 1998, ADP-ribosylation factor and phosphatidic acid levels in Golgi membranes during budding of coatomer-coated vesicles, Proc. Natl. Acad. Sci. USA 95:13676–13680.

    Google Scholar 

  • Stamnes, M. A., Craighead, M. W., Hoe, M. H., Lampen, N., Geromanos, S., Tempst, P., and Rothman, J. E., 1995, An integral membrane component of coatomer-coated transport vesicles defines a family of proteins involved in budding, Proc. Natl. Acad. Sci. USA 92:8011–8015.

    Google Scholar 

  • Stamnes, M. A., and Rothman, J. E., 1993, The binding of AP-1 clathrin adaptor particles to Golgi membranes requires ADP-ribosylation factor, a small GTP-binding protein, Cell 73:999–1005.

    Google Scholar 

  • Stenbeck, G., Harter, C., Brecht, A., Herrmann, D., Lottspeich, F., Orci, L., and Wieland, F. T., 1993, beta’-COP, a novel subunit of coatomer, EMBO J. l2:2841–2845.

    Google Scholar 

  • Sutton, R. B., Fasshauer, D., Jahn, R., and Brunger, A. T., 1998, Crystal structure of a SNARE complex involved in synaptic exocytosis at 2.4 A resolution, Nature 395:347–353.

    Google Scholar 

  • Terbush, D. R., Maurice, T., Roth, D., and Novick, P., 1996, The exocyst is a multiprotein complex required for exocytosis in saccharomyces cerevisiae, EMBO J. 15:6483–6494.

    Google Scholar 

  • Tisdale, E. J., and Balch, W. E., 1996, Rab2 is essential for the maturation of pre Golgi intermediates, J. Biol. Chem. 271:29372–29379.

    Google Scholar 

  • Tisdale, E. J., Plutner, H., Matteson, J., and Balch, W. E., 1997, P53/58 binds COPI and is required for selective transport throughthe early secretory pathway, J.Cell Biol. 137:581–593.

    Google Scholar 

  • Traub, L. M., and Kornfeld, S., 1997, The trans Golgi network: a late secretory sorting station, Curr. Opin. Cell Biol. 9:527–533.

    Google Scholar 

  • Unanue, E. R., Ungewickell, E., and Branton, D., 1981, The binding of clathrin triskelions to membranes from coated vesicles, Cell 26:439–446.

    Google Scholar 

  • Ungewickell, E., and Branton, D., 1981, Assembly units of clathrin coats, Nature 289:420–422.

    Google Scholar 

  • Vigers, G. P., Crowther, R. A., and Pearse, B. M., 1986, Location of the 100 kd-50 kd accessory proteins in clathrin coats, EMBO J. 5:2079–2085.

    Google Scholar 

  • von Mollard, G. F., Nothwehr, S. F., and Stevens, T. H., 1997, The yeast V-SNARE Vti1p mediates two vesicle transport pathways through interactions with the t-SNAREs Sed5p and Pepl2p, J. Cell Biol. 137:1511–1524.

    Google Scholar 

  • Waters, M. G., Clary, D. O., and Rothman, J. E., 1992, A novel 115-kD peripheral membrane protein is required for intercisternal transport in the Golgi stack, J. Cell Biol. 118:1015–1026.

    Google Scholar 

  • Waters, M. G., Serafini, T., and Rothman, J. E., 1991, “Coatomer”: a cytosolic protein complex containing subunits of non-clathrin-coated Golgi transport vesicles, Nature 349:248–251.

    Google Scholar 

  • Weber, T, Zemelman, B. V., McNew, J. A., Westermann, B., Gmachl, M., Parlati, F., Sollner, T. H., and Rothman, J. E., 1998, SNAREpins: Minimal machinery for membrane fusion, Cell 92:759–772.

    Google Scholar 

  • Weissenhorn, W., Carfi, A,, Lee, K. H., Skehel, J. J., and Wiley, D. C., 1998, Crystal structure of the Ebola virus membrane fusion subunit, GP2, from the envelope glycoprotein ectodomain, Mol. Cell 2:605–616.

    Google Scholar 

  • Weissenhorn, W., Dessen, A., Harrison, S. C., Skehel, J. J., and Wiley, D. C., 1997, Atomic structure of the ectodomain from HIV-1 gp41, Nature 387:426–430.

    Google Scholar 

  • Whiteheart, S. W., Griff, I. C., Brunner, M., Clary, D. O., Mayer, T., Buhrow, S. A., and Rothman, J. E., 1993, SNAP family of NSF attachment proteins includes a brain-specific isoform, Nature 362:353–355.

    Google Scholar 

  • Whiteheart, S. W., and Kubalek, E. W., 1995, SNAPs and NSF: General members of the fusion apparatus, Trends Cell Biol. 5:64–68.

    Google Scholar 

  • Whiteheart, S. W., Rossnagel, K., Buhrow, S. A., Brunner, M., Jaenicke, R., and Rothman, J. E., 1994, N-ethylmaleimide-sensitive fusion protein: A trimeric ATPase whose hydrolysis of ATP is required for membrane fusion, J. Cell Biol. l26:945–954.

    Google Scholar 

  • Wilkinson, B. M., Regnacq, M., and Stirling, C. J., 1997, Protein translocation across the membrane of the endoplasmic reticulum, J. Membr. Biol. 155:189–197.

    Google Scholar 

  • Wilson, D. W., Wilcox, C. A., Flynn, G. C., Chen, E., Kuang, W. J., Henzel, W. J., Block, M. R., Ullrich, A., and Rothman, J. E., 1989, A fusion protein required for vesicle-mediated transport in both mammalian cells and yeast, Nature 339:355–359.

    Google Scholar 

  • Yamakawa, H., Seog, D. H., Yoda, K., Yamasaki, M., and Wakabayashi, T., 1996, Uso1 protein is a dimer with two globular heads and a long coiled-coil tail, J. Struct. Biol. 116:356–365.

    Google Scholar 

  • Yoshihisa, T., Barlowe, C., and Schekman, R., 1993, Requirement for a GTPase-activating protein in vesicle budding from the endoplasmic reticulum, Science 259:1466–1468.

    Google Scholar 

  • Zhao, L., Helms, J. B., Bruegger, B., Harter, C., Martoglio, B., Graf, R., Brunner, J., and Wieland, F. T., 1997, Direct and GTP-dependent interaction of ADPribosylation factor 1 with coatomer subunit beta, Proc. Natl. Acad. Sci. USA 94:4418–4423.

    Google Scholar 

  • Zhao, L., Helms, J. B., Brunner, J., and Wieland, F. T., 1999, GTP-dependent binding of ADP-ribosylation factorto coatomer in closeproximity to the binding site for dilysine retrieval motifs and p23, J. Biol. Chem. 274:14198–14203.

    Google Scholar 

  • Zhu, Y. X., Traub, L. M., and Kornfeld, S., 1998, ADP-ribosylation factor 1 transiently activates high-affinity adaptor protein complex AP-1 binding siteson Golgi membranes, Mol.Biol. Cell 9:1323–1337.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

Harter, C., Reinhard, C. (2002). The Secretory Pathway From History to the State of the Art. In: Hilderson, H., Fuller, S. (eds) Fusion of Biological Membranes and Related Problems. Subcellular Biochemistry, vol 34. Springer, Boston, MA. https://doi.org/10.1007/0-306-46824-7_1

Download citation

  • DOI: https://doi.org/10.1007/0-306-46824-7_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-46313-6

  • Online ISBN: 978-0-306-46824-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics