Skip to main content

IP-receptors on monocytes/macrophages and lymphocytes

  • Chapter
Prostacyclin and Its Receptors
  • 75 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ninnemann JL. “Monocytes and macrophages.” In Prostaglandins, Leukotrienes, and The Immune Response, Cambridge: Cambridge University Press, 1988;34–52.

    Google Scholar 

  2. Dougherty GJ, McBride WH. “Monocyte differentiation in vitro.” In Human Monocytes, Zembala M, Asherson GL, eds. London: Academic Press, 1989;50–58.

    Google Scholar 

  3. Bonta IL, Parnham MJ. Macrophages as targets of inhibitory effects of E-type prostaglandins in immune-related inflammation. Agents Actions 1981;11594–597.

    Article  PubMed  CAS  Google Scholar 

  4. Wenzel SE, Trudeau JB, Riches DW et al. Peritoneal lavage fluid alters patterns of eicosanoid production in murine bone marrow-derived and peritoneal macrophages: dependency on inflammatory state of the peritoneum. Inflammation 1993;17:743–756.

    Article  PubMed  CAS  Google Scholar 

  5. Elliott GR, Swaak A, Bonta IL. The adenylate cyclase of rheumatoid synovial fluid macrophages is more sensitive for dl-5E, 19,14-di dehydro-carbo-prostacyclin, a stable prostacyclin analogue, than for prostaglandin E2. Prostaglandins Leukot Essent Fatty Acids 1988;33:105–110.

    Article  PubMed  CAS  Google Scholar 

  6. Foegh M, Maddox YT, Winchester J et al. Prostacyclin and thromboxane release from human peritoneal macrophages. Adv Prostaglandin Thromboxane Leukot Res 1983;12:45–49.

    PubMed  CAS  Google Scholar 

  7. Bonta IL, Adolfs MJP, Fieren MWJA. Infectious-inflammatory environment alters prostaglandin regulation of cyclic AMP levels in human peritoneal macrophages. Adv Prostaglandin Thromboxane Leukot Res 1985;15:373–375.

    PubMed  CAS  Google Scholar 

  8. Bonta IL, Adolfs MJP, Fieren MWJA. Cyclic AMP levels and their regulation by prostaglandins in peritoneal macrophages of rats and humans. Int J Immunopharmac 1984;6:547–555.

    Article  CAS  Google Scholar 

  9. Pawlowski NA. “Arachidonic acid metabolism by human monocytes.” In Human Monocytes, Zembala M, Asherson GL, eds. London: Academic Press, 1989;273–289.

    Google Scholar 

  10. Marcinkiewicz J. In vitro cytokine release by activated murine peritoneal macrophages: role of prostaglandins in the differential regulation of tumor necrosis factor alpha, interleukin 1, and interleukin 6. Cytokine 1991;3:327–332.

    Article  PubMed  CAS  Google Scholar 

  11. Wu KK, Papp AC, Manner CE et al. Interaction between lymphocytes and platelets in the synthesis of prostacyclin. J Clin Invest 1987;79:1601–1606.

    PubMed  CAS  Google Scholar 

  12. Chiang N, Takano T, Clish CB et al. Aspirin-triggered 15-epi-lipoxin A4(ATL) generation by human leukocytes and murine peritonitis exudates: development of a specific 15-epi-LXA4 ELISA. J Pharmacol Exp Ther 1998;287:779–790.

    PubMed  CAS  Google Scholar 

  13. Humes JL, Bonney RJ, Pelus L et al. Macrophages synthesise and release prostaglandins in response to inflammatory stimuli. Nature 1977;269:149–151.

    Article  PubMed  CAS  Google Scholar 

  14. Tripp CS, Leahy KM, Needleman P. Thromboxane synthase is preferentially conserved in activated mouse peritoneal macrophages. J Clin Invest 1985;76:898–901.

    PubMed  CAS  Google Scholar 

  15. Rouzer CA, Scott WA, Hamill AL et al. Synthesis of leukotriene C and other arachidonic acid metabolites by mouse pulmonary macrophages. J Exp Med 1982;155:720–733.

    Article  PubMed  CAS  Google Scholar 

  16. Fels AOS, Pawlowski NA, Abraham EL et al. Compartmentalized regulation of macrophage arachidonic acid metabolism. J Exp Med 1986;163:752–757.

    Article  PubMed  CAS  Google Scholar 

  17. Tissot M, Strzalko S, Thuret A et al. Prostanoid release by macrophages at a distance from an inflammatory site. Br J Exp Pathol 1989;70:525–531.

    PubMed  CAS  Google Scholar 

  18. Lim WH, Stewart AG. Macrophage activation reduces mobilization of arachidonic acid by guinea-pig and rat peritoneal macrophages in vitro. Agents Actions 1990;31:290–297.

    Article  PubMed  CAS  Google Scholar 

  19. Makhlouf MA, Fernando LP, Gettys TW et al. Increased prostacyclin and PGE2 stimulated cAMP production by macrophages from endotoxin-tolerant rats. Am J Physiol 1998;274:C1238–C1244.

    PubMed  CAS  Google Scholar 

  20. Bonney RJ, Burger S, Davies P et al. Prostaglandin E2 and prostacyclin elevate cyclic AMP levels in elicited populations of mouse peritoneal macrophages. Adv Prostaglandin Thromboxane Leukot Res 1980;8:1691–1693.

    CAS  Google Scholar 

  21. Bonta IL, Adolfs MJP, Parnham MJ. Distinction between responsiveness of macrophages to cyclic-AMP elevation by prostaglandin E2 and prostacyclin. Scand J Rheumatol 1981;(Suppl 40):58–61.

    Google Scholar 

  22. Pang L, Hoult JRS. Repression of inducible nitric oxide synthase and cyclooxygenase-2 by prostaglandin E2 and other cyclic AMP stimulants in J774 macrophages. Biochem Pharmacol 1997;53:493–500.

    PubMed  CAS  Google Scholar 

  23. Opmeer FA, Adolfs MJP, Bonta IL. Competition for adenyl cyclase coupled (3H)-prostacyclin binding sites with prostaglandin E2 in rat peritoneal macrophages. Prostaglandins 1983;26:467–476.

    Article  PubMed  CAS  Google Scholar 

  24. Coleman RA, Kennedy I, Humphrey PPA et al. “Prostanoids and their receptors.” In Membranes and their Receptors Vol. 3, Hansch C, Sammes PG, Taylor JB, eds. Oxford: Pergamon Press, 1990;643–676.

    Google Scholar 

  25. Bonta IL, Adolfs MJP. Interactions between prostaglandin E2 and prostacyclin in regulating levels of cyclic AMP in elicited populations of peritoneal macrophages. Adv Prostaglandin Thromboxane Leukot Res 1983;12:13–17.

    PubMed  CAS  Google Scholar 

  26. Houdijk APJ, Van Leeuwen PAM, Adolfs MJP et al. GTP-related difference in cyclic AMP production between resident and inflammatory human peritoneal macrophages. Int J Tissue React 1991;13:279–285.

    PubMed  CAS  Google Scholar 

  27. Morley J. Prostaglandins and lymphokines in arthritis. Prostaglandins 1974;8:315–326

    PubMed  CAS  Google Scholar 

  28. Beusenberg FD, Adolfs MJP, Van Schaik A et al. Antigen challenge modifies the cyclic AMP response of inflammatory mediators and β-adrenergic drugs in alveolar macrophages. Eur J Pharmacol 1989;174:33–41.

    Article  PubMed  CAS  Google Scholar 

  29. Tanaka H, Minoshima T, Endo N. The effect of a synthetic 7-thiaprostaglandin E1 derivative, TEI-6122, on monocyte chemoattractant protein-1 induced chemotaxis in THP-1 cells. Br J Pharmacol 1995;116:2298–2302.

    PubMed  CAS  Google Scholar 

  30. Wise H, Bridge DA, Hallam TJ. The activity of octimibate at prostanoid receptors on human monocytes. Br J Pharmacol 1991;104:167P.

    Google Scholar 

  31. Kowala MC, Mazzucco CE, Hartl KS et al. Prostacyclin agonists reduce early atherosclerosis in hyperlipidemic hamsters. Arterioscler Thromb 1993;13:435–444.

    PubMed  CAS  Google Scholar 

  32. Bath PMW, Hassall DG, Gladwin A-M et al. Nitric oxide and prostacyclin: divergence of inhibitory effects on monocyte chemotaxis and adhesion to endothelium in vitro. Arterioscler Thromb 1991;11:254–260.

    PubMed  CAS  Google Scholar 

  33. Gallin JI, Sandler JA, Clyman RI et al. Agents that increase cyclic AMP inhibit accumulation of cGMP and depress human monocyte locomotion. J Immunol 1978;120:492–496.

    PubMed  CAS  Google Scholar 

  34. Coquette A, Boeynaems J-M, Vray B. Eicosanoids modulate CR1-and Fc-dependent bacterial phagocytosis. Eur J Pharmacol 1992;226: 1–4.

    PubMed  CAS  Google Scholar 

  35. Kunkel SL, Chensue SW, Phan SH. Prostaglandins as endogenous mediators of interleukin 1 production. J Immunol 1986;136:186–192.

    PubMed  CAS  Google Scholar 

  36. Grundmann H-J, Hähnle U, Hegenscheid B et al. Inhibition of endotoxin-induced macrophage tumor necrosis factor expression by a prostacyclin analogue and its beneficial effect in experimental lipopolysaccharide intoxication. J Infect Dis 1992;165:501–505.

    PubMed  CAS  Google Scholar 

  37. Ching LM, Joseph WR, Baguley BC. Stimulation of macrophage tumouricidal activity by 5,6-dimethyl-xanthenone-4-acetic acid, a potent analogue of the antitumour agent flavone-8-acetic acid. Biochem Pharmacol 1992;44: 192–195.

    PubMed  CAS  Google Scholar 

  38. Ben-Efraim S, Tak C, Bonta IL. Macrophage cytokines render WEHI-3B tumor cells susceptible to cytostasis by prostaglandins. Prostaglandins Leukot Essent Fatty Acids 1990;40:163–167.

    Article  PubMed  CAS  Google Scholar 

  39. Meja KK, Barnes PJ, Giembycz MA. Characterization of the prostanoid receptor(s) on human blood monocytes at which prostaglandin E2 inhibits lipopolysaccharide-induced tumour necrosis factor-α generation. Br J Pharmacol 1997;122: 149–157.

    Article  PubMed  CAS  Google Scholar 

  40. Crutchley DJ, Conanan LB, Toledo AW et al. Effects of prostacyclin analogues on human endothelial cell tissue factor expression. Arterioscler Thromb 1993; 13: 1082–1089.

    PubMed  CAS  Google Scholar 

  41. Knudsen PJ, Dinarello CA, Strom TB. Prostaglandins posttranscriptionally inhibit monocyte expression of interleukin 1 activity by increasing intracellular cyclic adenosine monophosphate. J Immunol 1986;137:3189–3194.

    PubMed  CAS  Google Scholar 

  42. Luttmann W, Herzog V, Virchow J-C Jr et al. Prostacyclin modulates granulocyte/macrophage colony-stimulating factor release by human blood mononuclear cells. Pulm Pharmacol 1996;9:43–48.

    PubMed  CAS  Google Scholar 

  43. Gregory SA, Morrissey JH, Edgington TS. Regulation of tissue factor gene expression in the monocyte procoagulant response to endotoxin. Mol Cell Biol 1989;9:2752–2755.

    PubMed  CAS  Google Scholar 

  44. Crossman DC, Carr DP, Tuddenham EGD et al. The regulation of tissue factor mRNA in human endothelial cells in response to endotoxin or phorbol ester. J Biol Chem 1990;265:9782–9787.

    PubMed  CAS  Google Scholar 

  45. Rivers RPA, Hathaway WE, Weston WL. The endotoxin-induced coagulant activity of human monocytes. Br J Haematol 1975;30:311–316.

    PubMed  CAS  Google Scholar 

  46. Lyberg T, Galdal KS, Evensen SA et al. Cellular cooperation in endothelial cell thromboplastin synthesis. Br J Haematol 1983;53:85–95.

    PubMed  CAS  Google Scholar 

  47. Colucci M, Balconi G, Lorenzet R et al. Cultured human endothelial cells generate tissue factor in response to endotoxin. J Clin Invest 1983;71: 1893–1896.

    PubMed  CAS  Google Scholar 

  48. Bevilacqua MP, Pober JS, Majeau GR et al. Interleukin 1 (IL-1) induces biosynthesis and cell surface expression of procoagulant activity in human vascular endothelial cells. J Exp Med 1984;160:618–623.

    Article  PubMed  CAS  Google Scholar 

  49. Nawroth PP, Stern DM. Modulation of endothelial cell hemostatic properties by tumor necrosis factor. J Exp Med 1986;163:740–745.

    PubMed  CAS  Google Scholar 

  50. Bevilacqua MP, Pober JS, Majeau GR et al. Recombinant tumor necrosis factor induces procoagulant activity in cultured human vascular endothelium: Characterization and comparison with the actions of interleukin 1. Proc Natl Acad Sci USA 1986;83:4533–4537.

    PubMed  CAS  Google Scholar 

  51. Scarpati EM, Sadler JE. Regulation of endothelial cell coagulant properties. J Biol Chem 1989;264:20705–20713.

    PubMed  CAS  Google Scholar 

  52. Dinarello CA. Interleukin-1 and interleukin-1 antagonism. Blood 1991;77: 1627–1652.

    PubMed  CAS  Google Scholar 

  53. Jäättelä M. Biologic activities and mechanisms of action of tumor necrosis factor-α/cachectin. Lab Invest 1991;64:724–742.

    PubMed  Google Scholar 

  54. Crutchley DJ, Hirsh MJ. The stable prostacyclin analog, iloprost, and prostaglandin E1 inhibit monocyte procoagulant activity in vitro. Blood 1991;78:382–386.

    PubMed  CAS  Google Scholar 

  55. Crutchley DJ, Solomon DE, Conanan LB. Prostacyclin analogues inhibit tissue factor expression in the human monocytic cell line THP-1 via a cyclic AMP-dependent mechansim. Arterioscler Thromb 1992; 12:664–670.

    PubMed  CAS  Google Scholar 

  56. Edwards RL, Rickles FR. Macrophage procoagulants. Prog Hemost Thromb 1984;7:183–209.

    PubMed  CAS  Google Scholar 

  57. Lyberg T. Clinical significance of increased thromboplastin activity on the monocyte surface. Haemostasis 1984; 14:430–439.

    PubMed  CAS  Google Scholar 

  58. Hajjar DP, Weksler BB. Modulation of arterial cholesteryl ester metabolism by prostacyclin and prostaglandin E2. Adv Prostaglandin Thromboxane Leukot Res 1985;15:249–252.

    PubMed  CAS  Google Scholar 

  59. Duff GL, McMillan GC, Ritchie AC. The morphology of early atherosclerotic lesions of the aorta demonstrated by the surface technique in rabbits fed cholesterol together with a description of the anatomy of the intima of the rabbit’s aorta and the “spontaneous” lesions which occur in it. Am J Pathol 1957;33:845–873.

    PubMed  CAS  Google Scholar 

  60. Gerrity RG, Naito HK, Richardson M et al. Dietary induced atherogenesis in swine: Morphology of the intima in prelesion stages. Am J Pathol 1979;95:775–792.

    PubMed  CAS  Google Scholar 

  61. Joris I, Zand T, Nunnari JJ et al. Studies on the pathogenesis of atherosclerosis: I. Adhesion and emigration of mononuclear cells in the aorta of hypercholesterolemic rats. Am J Pathol 1983;113:341–358.

    PubMed  CAS  Google Scholar 

  62. Faggiotto A, Ross R, Harker L. Studies of hypercholesterolemia in the nonhum an primate: I. Changes that lead to fatty streak formation. Arteriosclerosis 1984;4:323–340.

    PubMed  CAS  Google Scholar 

  63. Steinberg D, Parthasarathy S, Carew TE et al. Beyond cholesterol: Modifications of low-density lipoprotein that increase its atherogenicity. N Engl J Med 1989;320:915–924.

    Article  PubMed  CAS  Google Scholar 

  64. Diez E, Fernandez B, Martin C et al. Acetylated low density lipoproteins promote the release and metabolism of arachidonic acid by murine macrophages. Biochem Biophys Res Commun 1989;161:461–467.

    Article  PubMed  CAS  Google Scholar 

  65. Mathur SN, Albright E, Field FJ. Decreased prostaglandin production by cholesterolrich macrophages. J Lipid Res 1989;30:1385–1395.

    PubMed  CAS  Google Scholar 

  66. Yokode M, Kita T, Kikawa Y et al. Stimulated arachidonate metabolism during foam cell transformation of mouse peritoneal macrophages with oxidized low density lipoprotein. J Clin Invest 1988;81:720–729.

    Article  PubMed  CAS  Google Scholar 

  67. Goodwin JS, Webb DR. Regulation of the immune response by prostaglandins. Clin Immunol Immunopathol 1980;15: 106–122.

    Article  PubMed  CAS  Google Scholar 

  68. Phipps R, Stein SH, Roper RL. A new view of prostaglandin E regulation of the immune response. Immunol Today 1991; 12:349–351.

    Article  PubMed  CAS  Google Scholar 

  69. Plescia OJ, Racis S. Prostaglandins as physiological immunoregulators. Prog Allergy 1988;44:153–171.

    PubMed  CAS  Google Scholar 

  70. Ninnemann JL. “Lymphocyte response.” In Prostaglandins, Leukotrienes, and The Immune Response, Cambridge: Cambridge University Press, 1988;53–96.

    Google Scholar 

  71. Sasaki Y, Usui T, Tanaka I et al. Cloning and expression of a cDNA for rat prostacyclin receptor. Biochim Biophys Acta 1994;1224:601–605.

    PubMed  Google Scholar 

  72. Nakagawa O, Tanaka I, Usui T et al. Molecular cloning of human prostacyclin receptor cDNA and its gene expression in the cardiovascular system. Circulation 1994;90: 1643–1647.

    PubMed  CAS  Google Scholar 

  73. Boie Y, Rushmore TH, Darmon-Goodwin A et al. Cloning and expression of a cDNA for the human prostanoid IP receptor. J Biol Chem 1994;269:12173–12178.

    PubMed  CAS  Google Scholar 

  74. Hirata M, Ushikubi F, Narumiya S. Prostaglandin I receptor and prostaglandin D receptor. J Lipid Mediators Cell Signal 1995; 12:393–404.

    CAS  Google Scholar 

  75. Oida H, Namba T, Sugimoto Y et al. In situ hybridization studies of prostacyclin receptor mRNA expression in various mouse organs. Br J Pharmacol 1995;116:2828–2837.

    PubMed  CAS  Google Scholar 

  76. Aussel C, Mary D, Fehlmann M. Prostaglandin synthesis in human T cells: its partial inhibition by lectins and anti-CD3 antibodies as a possible step in T cell activation, J Immunol 1987; 138:3094–3099.

    PubMed  CAS  Google Scholar 

  77. Holter W, Spiegel AM, Howard BH et al. Expression of GTP-binding proteins and prostaglandin E2 receptors during human T cell activation. Cell Immunol 1991;134:287–295.

    Article  PubMed  CAS  Google Scholar 

  78. De Vries GW, Guarino P, McLaughlin A et al. An EP receptor with a novel pharmacological profile in the T-cell line Jurkat. Br J Pharmacol 1995;115:1231–1234.

    PubMed  Google Scholar 

  79. Fedyk ER, Phipps RP. Prostaglandin E2 receptors of the EP2 and EP4 subtypes regulate activation and differentiation of mouse B lymphocytes to IgE-secreting cells. Proc Natl Acad Sci USA 1996;93:10978–10983.

    Article  PubMed  CAS  Google Scholar 

  80. Marcinkiewicz J, Chain BM. Differential cytokine regulation by eicosanoids in T cells primed by contact sensitization with TNP. Cell Immunol 1993; 149:303–314.

    Article  PubMed  CAS  Google Scholar 

  81. Zeng L, An S, Goetzl EJ. Regulation of expression of matrix metalloproteinase-9 in early human T cells of the HSB.2 cultured line by the EP3 subtype of prostaglandin E2 receptor. J Biol Chem 1996;271:27744–27750.

    PubMed  CAS  Google Scholar 

  82. Costantini V, Fuschiotti P, Giampietri A et al. Effects of a stable prostacyclin analogue on platelet activity and on host immunocompetence in mice. Prostaglandins 1990;39:581–599.

    Article  PubMed  CAS  Google Scholar 

  83. Dumble LJ, Gibbons S, Tejpal N et al. 15 AU81, a prostacyclin analog, potentiates immunosuppression and mitigates renal injury due to cyclosporine. Transplantation 1993;55:1124–1128.

    PubMed  CAS  Google Scholar 

  84. Foegh ML, Alijani MR, Helfrich GB et al. “Eicosanoids and allograft rejection.” In Prostaglandins, Leukotrienes, and Lipoxins, Bailey JM, ed. New York: Plenum Press, 1985;417–422.

    Google Scholar 

  85. Ninnemann JL. “Tissue and organ transplantation.” In Prostaglandins, Leukotrienes, and The Immune Response, Cambridge: Cambridge University Press, 1988; 136–156.

    Google Scholar 

  86. MacKenzie IZ, MacLean DA, Mitchell MD. Prostaglandins in the human fetal circulation in mid-trimester and term pregnancy. Prostaglandins 1980;20:649–654.

    Article  PubMed  CAS  Google Scholar 

  87. Murata T, Ushikubi F, Matsuoka T et al. Altered pain perception and inflammatory response in mice lacking prostacyclin receptor. Nature 1997;388:678–682.

    PubMed  CAS  Google Scholar 

  88. Leithner C, Sinzinger H, Silberbauer K et al. Enhanced prostacyclin synthesis in acute human kidney transplant rejection. Proc EDTA 1980; 17:424–428.

    CAS  Google Scholar 

  89. Tobimatsu M, Ueda Y, Toyoda K et al. Effect of a stable prostacyclin analogue on canine renal allograft rejection. Ann Surg 1987;205: 199–202.

    PubMed  CAS  Google Scholar 

  90. Rowles JR, Foegh ML, Khirabadi BS et al. The synergistic effect of cyclosporine and iloprost on survival of rat cardiac allografts. Transplanation 1986;42:94–96.

    CAS  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

(2002). IP-receptors on monocytes/macrophages and lymphocytes. In: Prostacyclin and Its Receptors. Springer, Boston, MA. https://doi.org/10.1007/0-306-46822-0_8

Download citation

  • DOI: https://doi.org/10.1007/0-306-46822-0_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-46308-2

  • Online ISBN: 978-0-306-46822-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics