Skip to main content

IP-receptors in the vasculature

  • Chapter
Prostacyclin and Its Receptors
  • 73 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Dusting GJ, MacDonald PS. Prostacyclin and vascular function: implications for hypertension and atherosclerosis. Pharmacol Ther 1990;48:323–344.

    Article  PubMed  CAS  Google Scholar 

  2. Jones RL, Qian YM, Chan KM et al. Characterization of a prostanoid EP3-receptor in guinea-pig aorta: partial agonist action of the non-prostanoid ONO-Ap-324. Br J Pharma col 1998;125:1288–1296.

    CAS  Google Scholar 

  3. Hempelmann RG, Barth HL, Mehdom HM et al. Effects of potassium channel openers in isolated human cerebral arteries. Neurosurgery 1995;37:1146–1153.

    PubMed  CAS  Google Scholar 

  4. Hadházy P, Mlaomvolgyi B, Magyar K et al. Species dependent relaxation of intrapulm onary (IPA) arteries of rabbits dogs and humans by prostacyclin. Prostaglandins 1985;29:673–688.

    PubMed  Google Scholar 

  5. Schrör K, Darius H, Matzky R. The antiplatelet and cardiovascular actions of a new carbacyclin derivative (ZK 36374)-equipotent to P G I2 in vitro. Arch Pharm acol 1981;316:252–255.

    Google Scholar 

  6. Rouaud C, Delaforge M, Anger-Leroy M et al. The cyclo-oxygenase-dependent regulation of rabbit vein contraction: evidence for a prostaglandin E2-m ediated relaxation.BrJpham aco199:126;35–44.

    Google Scholar 

  7. Armstrong RA, Jones RL, MacDermot J et al. Prostaglandin endoperoxide analogues which are both thromboxane receptor antagonists and prostacyclin mim etics.Br J Pharma col 1986;87:543–551.

    CAS  Google Scholar 

  8. Kawai Y, Ohhashi T. Effects of isocarbacyclin, a stable prostacyclin analogue, on monkey isolated cerebral and peripheral arteries. Br J Pharmacol 1994;112:635–639.

    PubMed  CAS  Google Scholar 

  9. Jones RL, Qian YM, Wise H et al. Relaxant actions of nonprostanoid prostacyclin mimetics on human pulmonary artery. J Cardiovasc Pharmacol 1997;29:525–535.

    Article  PubMed  CAS  Google Scholar 

  10. Toda N. Beraprost sodium. Cardiovasc Drug Rev 1988;6:222–238.

    Google Scholar 

  11. Williams SP, Dorn GW, Rapoport RM. Prostaglandin I2 mediates contraction and relaxation of vascular smooth muscle. Am J Physiol 1994;267:H796–H803.

    PubMed  CAS  Google Scholar 

  12. Zhao YJ, Wang J, Tod ML et al. Pulmonary vasoconstrictor effects of prostacyclin in rats: Potential role of thromboxane receptors. J Applied Physiol 1996;81:2595–2603.

    CAS  Google Scholar 

  13. Baxter GS, Clayton JK, Coleman RA et ai. Characterisation of the prostanoid receptors mediating constriction and relaxation of human uterine artery. Br J Pharma col 1995;116:1692–1696.

    CAS  Google Scholar 

  14. Bjøro K. Effects of angiotensin I and II and their interactions with some prostanoids in perfused umbilical arteries. Prostaglandins 1985;30:989–999.

    PubMed  Google Scholar 

  15. Armstrong RA, Lawrence RA, Jones RL et al. Functional and ligand binding studies suggest heterogeneity of platelet prostacyclin receptors. Br J Pharmacol 1989;97:657–668.

    PubMed  CAS  Google Scholar 

  16. Walch L, Labat C, Gascard JP et al. Prostanoid receptors involved in the relaxation of human pulmonary vessels. Br J Pharmacol 1999;126:859–866.

    Article  PubMed  CAS  Google Scholar 

  17. Qian YM, Jones RL, Chan KM et al. Potent contractile actions of prostanoid EP3-receptor agonists on human isolated pulmonary artery. Br J Pharmacol 1994;113:369–374.

    PubMed  CAS  Google Scholar 

  18. Hedlund H, Andersson KE. Contraction and relaxation induced by some prostanoids in isolated human penile erectile tissue and cavernous artery. J Urol 1985;134:1245–1250.

    PubMed  CAS  Google Scholar 

  19. Porst H. The rational for prostaglandin E1in erectile failure: a survey of worldwide experience. J Urol 1996;155:802–815.

    PubMed  CAS  Google Scholar 

  20. Werthman P, Rajfer J. MUSE therapy: preliminary clinical observations. Urology 1997;50:809–811.

    PubMed  CAS  Google Scholar 

  21. Kiriyama M, Ushikubi F, Kobayashi T et al. Ligand binding specificities of the eight types and subtypes of the mouse prostanoid receptors expressed in Chinese hamster ovary cells. Br J Pharmacol 1997;122:217–224.

    Article  PubMed  CAS  Google Scholar 

  22. Hatano Y, Kohli JD, Goldberg LI et al. Relative contracting and relaxing potencies of a series of prostaglandins on isolated canine mesenteric artery strips. Prostaglandins 1981;21:515–529.

    Article  PubMed  CAS  Google Scholar 

  23. Corsini A, Folco GC, Fumaglli R et al. (5Z)-carbacyclin discriminates between prostacyclin-receptors coupled to adenylate cyclase in vascular smooth muscle and platelets. Br J Pharmacol 1987;90:255–261.

    PubMed  CAS  Google Scholar 

  24. Parfenova H, Hsu P, Leffler CW. Dilator prostanoid-induced cyclic AMP formation and release by cerebral microvascular smooth muscle cells: inhibition by indomethacin. J Pharmacol Exp Ther 1995;272:44–52.

    PubMed  CAS  Google Scholar 

  25. Miller OV, Aiken JW, Hemker DP et al. Prostacyclin stimulation of dog arterial cyclic AMP levels. Prostaglandins 1979; 18:915–925.

    Article  PubMed  CAS  Google Scholar 

  26. Kukovetz WR, Holzmann S, Wurm A et al. Prostacyclin increases CAMP in coronary arteries. J Cyclic Nucl Res 1979;5:469–476.

    CAS  Google Scholar 

  27. Dembinska-Kiec A, Rucker W, Schonhofer PS. PGI2 enhanced cAMP content in bovine coronary arteries in the presence of isobutylmethylxanthine. Naunyn-Schmied Arch Pharmacol 1979;308:107–110.

    Article  CAS  Google Scholar 

  28. Holzmann S, Kukovetz WR, Schmidt K. Mode of action of coronary arterial relaxation by prostacyclin. J Cyclic Nucl Res 1979;6:451–460.

    Google Scholar 

  29. Oliva D, Noè A, Nicosia S et al. Prostacyclin-sensitive adenylate cyclase in cultured myocytes: differences between rabbit aorta and mesenteric artery. Eur J Pharmacol 1984;105:207–213.

    Article  PubMed  CAS  Google Scholar 

  30. MacDermot J, Barnes PJ. Activation of guinea-pig pulmonary adenylate cyclase by prostacyclin. Eur J Pharmacol 1980;67:419–425.

    Article  PubMed  CAS  Google Scholar 

  31. MacDermot J, Barnes PJ, Waddell KA et al. Prostacyclin binding to guinea pig pulmonary receptors. Eur J Pharmacol 1981;75:127–130.

    Article  PubMed  CAS  Google Scholar 

  32. Dong H, Waldron GJ, Cole WC et al. Roles of calcium-activated and voltage-gated delayed rectifier channels in endothelium-dependent vasorelaxation of the rabbit middle cerebral artery. Br J Pharmacol 1998;123:821–832.

    Article  PubMed  CAS  Google Scholar 

  33. Schubert R, Serebryakov VN, Mewes H et al. Iloprost dilates rat small arteries: role of KATP-and KCa-channel activation by cAMP-dependent protein kinase. Am J Physiol 1997;272:H1147–H1156.

    PubMed  CAS  Google Scholar 

  34. Ito T, Ogawa K, Enomoto I et al. Prostaglandins and cyclic nucleotides: effects of PGI2 and PGE1 on cardiac haemodynamic and coronary and myocardial cyclic nucleotide levels in dogs. Jpn Circ J 1980;44:755–761.

    PubMed  CAS  Google Scholar 

  35. Siegel G, Emden J, Wenzel K et al. “Potassium channel activation in vascular smooth muscle.” In Excitation-Contraction Coupling in Skeletal, Cardiac, and Smooth Muscle, Advances in Experimental & Medicinal Biology, Frank GB, Bianchi P, Keurs HEDJ et al., eds. New York: Plenum Press, 1992;53-72.

    Google Scholar 

  36. Ozaki H, Abe A, Uehigashi Y et al. Effects of a prostaglandin I2 analog iloprost on cytoplasmic Ca2+ levels and muscle contraction in guinea-pig isolated aorta. Jpn J Pharmacol 1996;71:231–237.

    PubMed  CAS  Google Scholar 

  37. Yanagisawa T, Okada Y. KCl depolarisation increases Ca2+ sensitivity of contractile elements in coronary arterial smooth muscle. Am J Physiol 1994;267:H614–H621

    PubMed  CAS  Google Scholar 

  38. Yamagishi T, Yanagisawa T, Satoh K et al. Relaxant mechanisms of cyclic AMP-increasing agents in porcine coronary artery. Eur J Pharmacol 1994;251:253–262.

    Article  PubMed  CAS  Google Scholar 

  39. Turcato S, Clapp LH. Effects of the adenylyl cyclase inhibitor SQ 22536 on iloprost-induced vasorelaxation and cyclic AMP elevation in isolated guinea-pig aorta. Br J Pharmacol 1999;126:845–847.

    Article  PubMed  CAS  Google Scholar 

  40. Ahn HY, Kang SE, Chang SE et al. Dibutyryl cyclic AMP and forskolin inhibit phosphatidylinositol hydrolysis, Ca2+ influx and contraction in vascular smooth muscle. Jpn J Pharmacol 1992;59:263–265.

    PubMed  CAS  Google Scholar 

  41. Carter TD, Hallam TJ, Pearson JD. Protein kinase C activation alters the sensitivity of agonist-stimulated endothelial-cell prostacyclin production to intracellular Ca2+. Biochem J 1989;262:1181–1190.

    Google Scholar 

  42. McGrogan I, Lu S, Sormaz HL et al. Mechanisms of cyclic nucleotide-induced relaxation in canine tracheal smooth muscle. Am J Physiol 1995;268:L407–L413.

    PubMed  CAS  Google Scholar 

  43. Fukuda S, Morioka M, Tanaka T et al. Prostaglandin E1-induced relaxation in porcine coronary arteries. J Pharmacol Exp Ther 1992;260:1128–1132.

    PubMed  CAS  Google Scholar 

  44. Cocks TM, King SJ, Angus JA. Glibenclamide is a competitive antagonist of the thromboxane A2 receptor in dog coronary artery in vitro. Br J Pharmacol 1990;100:375–378.

    PubMed  CAS  Google Scholar 

  45. Bouchard JF, Dumont E, Lamontagne D. Evidence that prostaglandins I2, E2 and D2 may activate ATP sensitive potassium channels in the isolated rat heart. Cardiovasc Res 1994;28:901–905.

    PubMed  CAS  Google Scholar 

  46. Dumas M, Dumas JP, Rochette L et al. Role of potassium channels and nitric oxide in the effects of iloprost and prostaglandin E1 on hypoxic vasoconstriction in the perfused isolated lung of the rat. Br J Pharmacol 1997;120:405–410.

    PubMed  CAS  Google Scholar 

  47. Jackson WF, Aidakan PG, Dambacher T et al. Prostacyclin-induced vasodilatation in rabbit heart is mediated by ATP-sensitive potassium channels. Am J Physiol 1993;264:H238–H243.

    PubMed  CAS  Google Scholar 

  48. Clapp LH, Turcato S, Hall S et al. Evidence that Ca2+-activated K+ channels play a major role in mediating the vascular effects of iloprost and cicaprost. Eur J Pharmacol 1998;356:215–224.

    Article  PubMed  CAS  Google Scholar 

  49. Li PL, Zou AP, Campbell WB. Regulation of potassium channels in coronary arterial smooth muscle by endothelium-derived vasodilators. Hypertension 1997;29:262–267.

    PubMed  Google Scholar 

  50. Schubert R, Serebryakov VN, Engel H et al. Iloprost activates KCa channels of vascular smooth muscle cells: role of cAMP-dependent protein kinase. Am J Physiol 1996;271:C1203–C1211.

    PubMed  CAS  Google Scholar 

  51. Sadoshima JI, Akaike N, Kanaide H et al. Cyclic AMP modulates Ca-activated K channel in cultured smooth muscle cells of rat aortas. Am J Physiol 1988;255:H754–H759.

    PubMed  CAS  Google Scholar 

  52. Chapple DJ, Dusting GJ, Hughes R et al. Some direct and reflex cardiovascular actions of prostacyclin (PGI2) and PGE2 in anaesthetised dogs. Br J Pharmacol 1980;68:437–447.

    PubMed  CAS  Google Scholar 

  53. Herman F, Hadházy P, Magyar K. Critical evaluation of the in vivo selectivity between hypotensive and platelet antiaggregating actions of iloprost and prostacyclin in beagle dogs. Arch Int Pharmacodyn Ther 1989;300:281–291.

    PubMed  CAS  Google Scholar 

  54. Steinberg H, Medvedev OS, Luft FC et al. Effect of prostacyclin derivative (iloprost) on regional blood flow, sympathetic nerve activity and baroreceptor reflex in the conscious rat. J Cardiovasc Pharmacol 1988;11:84–89.

    Article  PubMed  CAS  Google Scholar 

  55. Murata T, Murai T, Kanai T. General Pharmacology of berapost sodium. 2nd Communication: effect on the autonomic, cardiovascular and gastrointestinal systems, and other effects. Drug Res 1989;39:867–876.

    CAS  Google Scholar 

  56. Dusting GJ, Chapple DJ, Hughes R. Prostacyclin induces coronary vasodilatation in anaesthetised dogs. Cardiovasc Res 1978;12:720–730.

    PubMed  CAS  Google Scholar 

  57. Bolger PM, Eisner GM, Ramwell PW. Renal actions of prostacyclin. Nature 1978;371:467–469.

    Google Scholar 

  58. Hill TWK, Moncada S. The renal haemodynamic and excretory actions of prostacyclin and 6-oxoPGF in anaesthetized dogs. Prostaglandins 1981;17:87–98.

    Google Scholar 

  59. Jones RL, Watson ML, Ungar A. A comparison of the effects of prostaglandins E2 and I2 on renal function and renin release in salt-loaded and salt-depleted anaesthetized dogs. Quart J Exp Physiol 1981;66:1–15.

    CAS  Google Scholar 

  60. Higgs GA, Cardinal GC, Moncada S et al. Microcirculatory effects of prostacyclin (PGI2) in the hamster check pouch. Microvasc Res 1979;18:245–254.

    Article  PubMed  CAS  Google Scholar 

  61. Faber JE, Harris PD, Miller FN. Microvascular sensitivity to PGE2 and PGI1 in skeletal muscle of decerebrate rat. Am J Physiol 1982;243:H844–H851.

    PubMed  CAS  Google Scholar 

  62. Ellis EF, Enoch PW, Kontos HA. Vasodilatation of cat cerebral arterioles by prostaglandins D2, E2 and I2 Am J Physiol 1979;237:H381–H385.

    PubMed  CAS  Google Scholar 

  63. Schröder G, Beckmann R, Schillinger E. “Studies on vasorelaxant effects and mechanisms of iloprost in isolated preparations.” In Prostacyclin and its Stable Analogue Iloprost, Gryglewski RJ, Stock G, eds. Berlin: Springer-Verlag, 1987;129–137.

    Google Scholar 

  64. Karim SMM, Adaikan PG, Lau LC et al. Inhibition of platelet aggregation with intravenous and oral administration of carboprostacyclin in man. Prostagland Med 1981;6:521–527.

    CAS  Google Scholar 

  65. Hildebrand M. Bioactivation of eptaloprost in animals and man. Prostaglandins 1993;46:177–189.

    Article  PubMed  CAS  Google Scholar 

  66. Kurozumi S, Araki H, Tanabe H et al. Lipid microsphere preparation of a prostacyclin analogue. Adv Drug Deliv Rev 1996;20:181–187.

    Article  CAS  Google Scholar 

  67. Minagawa T, Kohno Y, Suwa Y et al. Species differences in hydrolysis of isocarbacyclin methyl ester (TEI-9090) by blood esterases. Biochem Pharmacol 1995;49:1361–1365.

    Article  PubMed  CAS  Google Scholar 

  68. Miyamori I, Morise T, Yasuhara S et al. Single-blind study of epoprostenol and 6-keto-prostaglandin E1 in man: effects on platelet aggregation and plasma renin. Br J Clin Pharmacol 1985;20:681–683.

    PubMed  CAS  Google Scholar 

  69. Pickles H, O’Grady J. Side effects occurring during administration of epoprostenol (prostacyclin, PGI2) in man. Br J Clin Pharmacol 1982;14:177–185.

    PubMed  CAS  Google Scholar 

  70. FitzGerald GA, Hossmann V, Hummerich W et al. The renin-kallikrein-prostaglandin system: plasma active and inactive renin and urinary kallikrein during prostacyclin infusion in man. Prostagland Med 1980;5:445–456.

    CAS  Google Scholar 

  71. Perrot B, Clozel JP, Terrier de la Chaise A et al. Electrophysiological effects of intravenous prostacyclin in man. Eur Heart J 1984;5:883–889.

    PubMed  CAS  Google Scholar 

  72. Data JL, Moloney BA, Meinzinger MM et al. Intravenous infusion of prostacyclin sodium in man: clinical effects and influence on platelet adenosine diphosphate sensitivity and adenosine 3’:5’-cyclicmonophosphate levels. Circulation 1981;64:4–12.

    PubMed  CAS  Google Scholar 

  73. Kaukinen S, Ylitalo P, Pessi T et al. Hemodynamic effects of iloprost, a prostacyclin analog. Clin Pharmacol Ther 1984;36:464–469.

    Article  PubMed  CAS  Google Scholar 

  74. Linet 01, Nishizawa EE, Schaub RG et al. Tolerance and pharmacology of ciprostene, a stable epoprostenol (prostacyclin) analogue in humans. J Clin Pharmacol 1986;26:131–140.

    PubMed  CAS  Google Scholar 

  75. Yui Y, Takatsu Y, Hattori R et al. A new stable prostacyclin analogue OP41483 (15-cyclopentyl-omega-pentanor-5(E)-carbacyclin). Jpn Circ J 1985;49:571–575.

    PubMed  CAS  Google Scholar 

  76. Kato K, Uji Y, Ohno K. Phase I trial of a new prostacyclin derivative of TRK-100. Jpn Clin Pharmacol Ther 1986;17:267–278.

    Google Scholar 

  77. Kato R, Uji Y, Matsumoto K. Phase I study of beraprost sodium (TRK 100), a prostacyclin derivative-repeated oral administration study for 10 days. Jpn Clin Pharmacol Ther 1989;20:529–539.

    Google Scholar 

  78. Tsunoo M, Minigawa T, Takahama S et al. Intravenous administration of TTC-909 in healthy male adult volunteers (2nd report)-Evaluation of safety and pharmacodynamics of repeated dose administration. Clin Resp 1995;29:77–91.

    Google Scholar 

  79. Hashimoto T. Effects of prostaglandin E2, I2 and F on systemic and renal haemodynamics, renal function and renin secretion in anaesthesied dogs. Jpn J Pharmacol 1979;30:173–186.

    Google Scholar 

  80. Gullner HG, Nicolaou KC, Bartter FC. Prostacyclin has effects on proximal and distal tubular function in the dog. Prostagland Med 1980;6:141–146.

    Google Scholar 

  81. Larsson C, Weber P, Anggard E. Arachidonic acid increases and indomethacin decreases plasma renin activity in the rabbit. Eur J Pharmacol 1974;28:391–394.

    Article  PubMed  CAS  Google Scholar 

  82. Weber P, Holgreve H, Stephen R et al. Plasma renin activity and renal sodium and water excretion following infusion of arachidonic acid in rats. Eur J Pharmacol 1975;34:299–304.

    Article  PubMed  CAS  Google Scholar 

  83. Bolger PM, Eisner GM, Ramwell PW et al. Effect of prostaglandin synthesis on renal function and renin release in the dog. Nature 1976;259:244–245.

    Article  PubMed  CAS  Google Scholar 

  84. Data JL, Gerber JG, Crump WJ et al. The prostaglandin system: a role in canine baroreceptor control of renin release. Circ Res 1978;42:454–458.

    PubMed  CAS  Google Scholar 

  85. Seymour AA, Zehr JE. Influence of renal prostaglandin synthesis on renin control mechanisms in the dog. Circ Res 1979;45:13–25.

    PubMed  CAS  Google Scholar 

  86. Levenson DJ, Simmons CE, Brenner BM. Arachidonic acid metabolism, prostaglandins and the kidney. Am J Med 1982;72:354–374.

    Article  PubMed  CAS  Google Scholar 

  87. Guay-Woodford LM. Bartter syndrome: unravelling the pathophysiologic enigma. Am J Med 1998;105:151–161.

    Article  PubMed  CAS  Google Scholar 

  88. Terragno NA, Terragno DA, Early JA et al. Endogenous prostaglandin synthesis inhibitor in the renal cortex. Effects on production of prostacyclin by renal blood vessels. Clin Sci Mol Med 1978;55:199s–202s.

    CAS  Google Scholar 

  89. McGiff JC, Wong PYK. Compartmentalization of prostaglandins and prostacyclin within the kidney. Fed Proc 1979;38:89–93.

    PubMed  CAS  Google Scholar 

  90. Henrich WL, Campbell WB. Relationship between PG and β-adrenergic pathways to renin release in rat renal cortical slices. Am J Physiol 1984;247:E343–E348.

    PubMed  CAS  Google Scholar 

  91. Schwertschlag U, Stahl T, Hackenthal E. A comparison of the effects of prostacyclin and 6-keto-prostaglandin E1 on renin release in the isolated rat and rabbit kidney. Prostaglandins 1982;23:129–138.

    Article  PubMed  CAS  Google Scholar 

  92. Whorton AR, Misono K, Hollifield J et al. Prostaglandins and renin release: I. Stimulation of renin release from rabbit renal cortical slices by PGI2. Prostaglandins 1977;14:1095–1104.

    Article  PubMed  CAS  Google Scholar 

  93. Beierwaltes WH, Schryver S, Sanders E et al. Renin release selectively stimulated by prostaglandin I2 in rat isolated glomeruli. Am J Physiol 19821;243:F276–F283.

    CAS  Google Scholar 

  94. Spokas EG, Wong PYK, McGiff JC. Prostaglandin-related renin release from rabbit renal cortical slices. Hypertension 1982;4:96–100.

    PubMed  CAS  Google Scholar 

  95. Müller D, Schneider J, Wilsmann K et al. Role of renin release in the hemodynamic, renal and dipsogenic actions of the prostacyclin analogue CG 4203 in conscious rats. Prostaglandins 1983;11:361–372.

    Google Scholar 

  96. Schölkens BA. Plasma renin activity and vasodepressor action of prostacyclins with modified-side chain in anaesthetized rats. Prostagland Med 1980;4:357–362.

    Google Scholar 

  97. Seymour AA, Davis JO, Freeman RH et al. Renin release from filtering and non-filtering kidneys stimulated by PGI2 and PGD2. Am J Physiol 1979;237:F285–F290.

    PubMed  CAS  Google Scholar 

  98. Patrono C, Pugliese F, Ciabattoni G et al. Evidence for a direct stimulatory effect of prostacyclin on renin release in man. J Clin Invest 1982;69:231–239.

    PubMed  CAS  Google Scholar 

  99. Jackson EK, Gerkens JF, Brash AR et al. Acute renal artery constriction increases renal prostaglandin I2 biosynthesis and renin release in the conscious dog. J Pharmacol Exp Ther 1982;222:410–413.

    PubMed  CAS  Google Scholar 

  100. Frolich JC, Hollifield JW, Michelakis AM et al. Reduction of plasma renin activity by inhibition of the fatty acid cyclooxygenase in human subjects: independence of sodium retention. Circ Res 1979;44:781–787.

    PubMed  CAS  Google Scholar 

  101. Freeman RH, Davis JO, Villarreal D. Role of renal prostaglandins in the control of renin release. Circ Res 1984;54:1–9.

    PubMed  CAS  Google Scholar 

  102. Vandongen R, Tunney A, Mahoney D et al. Dissociation of beta-adrenergic stimulation of renin secretion and prostaglandin synthesis in the rabbit kidney. Prostaglandins 1981;21:1007–1014.

    Article  PubMed  CAS  Google Scholar 

  103. Kopp U, Aurell M, Sjolander M et al. The role of prostaglandins in the alpha and beta adrenoceptor mediated renin release response to graded renal nerve stimulation. Pflügers Archiv-Eur J Physiol 1981;391:1–8.

    CAS  Google Scholar 

  104. Blackshear JL, Spielman WS, Knox FG et al. Dissociation of renin release and renal vasodilatation by prostaglandin synthesis inhibitors. Am J Physiol 1979;237:F20–F24.

    PubMed  CAS  Google Scholar 

  105. Berl T, Henrich WL, Erickson AL et al. Prostaglandins in the beta-adrenergic and baroreceptor-mediated secretion of renin. Am J Physiol 1979;236:F472–F477.

    PubMed  CAS  Google Scholar 

  106. Freeman RH, Davis JO, Dietz JR et al. Renal prostaglandins and the control of renin release. Hypertension 1982;4(Suppl II):106–112.

    PubMed  CAS  Google Scholar 

  107. Villarreal D, Davis JO, Freeman RH et al. Effects of meclofenamate on the renin response to aortic constriction in the rat. Am J Physiol 1984;247:R513–R519.

    Google Scholar 

  108. Francisco LL, Osborn JL, DiBona GF. Prostaglandins in renin release during sodium deprivation. Am J Physiol 1982;243:H584–H589.

    Google Scholar 

  109. Suzuki S, Franco-Saenz R, Tan SY et al. Effects of indomethacin on plasma renin activity in the conscious rat. Am J Physiol 1981;240:E286–E289.

    PubMed  CAS  Google Scholar 

  110. Campbell WB, Jackson EK, Grahan RM. Saralasin-induced renin release: Its blockade by prostaglandin synthesis inhibitors in the conscious rat. Hypertension 1979;1:637–642.

    PubMed  CAS  Google Scholar 

  111. Gerber JC, Nies AS, Olsen RD. Control of canine renin release: macula densa requires prostaglandin synthesis. J Physiol 1981;319:419–429.

    PubMed  CAS  Google Scholar 

  112. Villarreal D, Freeman RH, Davis JO et al. Effects of sodium chloride on prostacyclin-stimulated renin release in dogs with filtering and non-filtering kidneys. Proc Soc] Exp Biol Med 1982;171:34–40.

    CAS  Google Scholar 

  113. Watson ML, Goodman RP, Gill JR et al. Endogenous prostacyclin synthesis is decreased during activation of the renin-angiotensin system in man. Clin Endocrinol Metab 1984;58:304–308.

    CAS  Google Scholar 

  114. McGiff JC, Spokas EG, Wong PYK. Stimulation of renin release by 6-oxo-prostaglandin E1 and prostacyclin. Br J Pharmacol 1982;75:137–144.

    PubMed  CAS  Google Scholar 

  115. Moore PK, Hoult JRS. Prostaglandin metabolism in rabbit kidney: identification and properties of a novel prostaglandin 9-hydroxydehydrogenase. Biochim Biophys Acta 1978;528:276–287.

    PubMed  CAS  Google Scholar 

  116. Jackson EK, Herzer WA, Zimmerman JB et al.-Keto-prostaglandin E1 is more potent than prostaglandin I2 as a renal vasodilator and renin secretagogue. J Pharmacol Exp Ther 1981;216:24–27.

    PubMed  CAS  Google Scholar 

  117. Adaikan PG, Tai MY, Lau LC et al. A comparison of some pharmacological actions of prostaglandin E1, 6-oxo-PGE1 and PGI2. Prostaglandins 1984;27:505–516.

    Article  PubMed  CAS  Google Scholar 

  118. Nganele DM, Hintze TH. Prostacyclin reduces “preload” in conscious dogs via a vagal reflex mechanism. Am J Physiol 1987;253:H1477–H1483.

    PubMed  CAS  Google Scholar 

  119. Panzenbeck MJ, Hintze TH, Kaley G. 6-keto-Prostaglandin E1 is a potent coronary vasodilator and stimulates a vagal reflex in dogs. J Pharmacol Exp Ther 1988;244:814–819.

    PubMed  CAS  Google Scholar 

  120. Murata T, Ushikubi F, Matsuoka T et al. Altered pain perception and inflammatory response in mice lacking prostacyclin receptor. Nature 1997;388:678–682.

    PubMed  CAS  Google Scholar 

  121. Bunting S, Gryglewski R, Moncada S. Arterial walls generate from prostaglandin endoperoxides a substance (prostaglandin X) which relaxes strips of mesenteric and coeliac ateries and inhibits platelet aggregation. Prostaglandins 1976;12:897–913.

    Article  PubMed  CAS  Google Scholar 

  122. Moncada S, Herman AG, Higgs EA. Differential formation of prostacyclin (PGX or PGI2) by layers of the arterial wall. An explanation for the anti-thrombotic properties of vascular endothelium. Adv Prostaglandin Thromboxane Leukot Res 1977;11:323–344.

    CAS  Google Scholar 

  123. Weksler B, Marcus AJ, Jaffe EA. Synthesis of prostaglandin I2(prostacyclin) by cultured human and bovine endothelial cells. Proc Natl Acad Sci USA 1977;74:3922–3926.

    PubMed  CAS  Google Scholar 

  124. Gryglewski RJ, Bunting S, Moncada S et al. Arterial walls are protected against deposition of platelet thrombi by a substance (prostaglandin X) which they make from prostaglandin endoperoxides. Prostaglandins 1976;12:685–713.

    Article  PubMed  CAS  Google Scholar 

  125. Furchgott RF, Zawadzki JV. The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature 1980;288:373–375.

    Article  PubMed  CAS  Google Scholar 

  126. Cohen RA, Vanhoutte PM. Endothelium-dependent hyperpolarisation: Beyond nitric oxide and cyclic GMP. Circulation 1995;92:3337–3349.

    PubMed  CAS  Google Scholar 

  127. Campbell WB, Gebremedhim D, Pratt PF et al. Identification of epoxyeicosatrienoic acids as endothelium-derived hyperpolarising factors. Circ Res 1996;78:415–423.

    PubMed  CAS  Google Scholar 

  128. Randall MD, Alexander SPH, Bennett T et al. An endogenous cannabinoid as an endothelium-derived vasorelaxant. Biochem Biophys Res Commun 1996;229:114–120.

    Article  PubMed  CAS  Google Scholar 

  129. White R, Hiley CR. A comparison of EDHF-mediated and anandamide-induced relaxations in the rat isolated mesenteric artery. Br J Pharmacol 1997;122:1573–1584.

    Article  PubMed  CAS  Google Scholar 

  130. Von der Weid PY, Beny JL. Simultaneous oscillations in the membrane potential of pig coronary artery endothelial and smooth muscle cells. J Physiol 1993;471:13–24.

    PubMed  Google Scholar 

  131. Marchenko SM, Sage SO. Calcium-activated potassium channels in the endothelium of intact rat aorta. J Physiol 1996;492:53–60.

    PubMed  CAS  Google Scholar 

  132. Yamamoto Y, Fukuta H, Nakahira Y et al. Blockade by 18β-glycyrrhetinic acid of intercellular electrical coupling in the guinea-pig arterioles. J Physiol 1998;511533–548.

    Article  Google Scholar 

  133. Bodelsson G, Stjemquist M. Endothelium-dependent relaxation to substance P in human umbilical artery is mediated via prostanoid synthesis. Human Reprod 1994;9:733–737.

    CAS  Google Scholar 

  134. Wallerstedt SM, Bodelsson M. Endothelium-dependent relaxation by substance P in human isolated omental arteries and veins: relative contribution of prostanoids, nitric oxide and hyperpolarization. Br J Pharmacol 1997;120:25–30.

    Article  PubMed  CAS  Google Scholar 

  135. Okamura T, Minami Y, Toda N. Endothelium-dependent and-independent mechanisms of action of acetycholine in monkey and dog isolated arteries. Pharmacology 1989;38:279–288.

    PubMed  CAS  Google Scholar 

  136. Toda N, Konishi M, Miyazaki M. Involvement of prostaglandin I2 in the vascular action of histamine in dogs. J Pharmacol Exp Ther 1982;223:257–262.

    PubMed  CAS  Google Scholar 

  137. Holtz J, Giesler M, Pohl U et al. Flow-dependent, endothelium-mediated dilation of epicardial coronary arteries in conscious dogs: effects of cyclooxygenase inhibition. J Cardiovasc Pharmacol 1984;6:1161–1169.

    Article  PubMed  CAS  Google Scholar 

  138. Griffith TM, Edwards DH, Davies RL et al. EDRF coordinates the behaviour of vascular resistance vessels. Nature 1987;329:442–445.

    Article  PubMed  CAS  Google Scholar 

  139. Lansman J, Hallam B, Rink TJ. Single stretch-activated ion channels in vascular smooth muscle cells as mechanotransducers. Nature London 1987;325:811–813.

    Article  PubMed  CAS  Google Scholar 

  140. Schwartz G, Callewaert G, Droogmans G et al. Shear stress-induced calcium transients in endothelial cells from human umbilical cord veins. J Physiol 1992;458:527–538.

    Google Scholar 

  141. Nakache M, Gaub HE. Hydrodynamic hyperpolarization of endothelial cells. Proc Natl Acad Sci USA 1988;85:1841–1843.

    PubMed  CAS  Google Scholar 

  142. Olesen SP, Clapham DE, Davies PF. Haemodynamic shear stress activates a K+ current in vascular endothelial cells. Nature London 1988;331:168–170.

    Article  PubMed  CAS  Google Scholar 

  143. Alevriadou BR, Eskin SG, McIntire LV et al. Effect of shear stress on 86Rb+ efflux from calfpulmonary endothelium cells. Ann Biomed Eng 1993;21:1–7.

    PubMed  CAS  Google Scholar 

  144. Hutcheson IP, Griffith TM. Heterogeneous populations of K+ channels mediate EDRF release to flow but not agonists in rabbit aorta. Am J Physiol 1994;266:H590–H596.

    PubMed  CAS  Google Scholar 

  145. Lückhoff A, Busse R. Calcium influx into endothelium cells and formation of endothelium-derived relaxing factor is controlled by the membrane potential. Pflügers Archiv-Eur J Physiol 1990;416:305–311.

    Google Scholar 

  146. Koller A, Kaley G. Prostaglandins mediate arteriolar dilation to increased blood flow velocity in skeletal muscle microcirculation. Circ Res 1990;67:529–534.

    PubMed  CAS  Google Scholar 

  147. Hecker M, Mülsch A, Bassenge E et al. Vasoconstriction and increased flow: two principal mechanisms of shear stress-dependent endothelial autacoid release. Am J Physiol 1993;265:H828–H833.

    PubMed  CAS  Google Scholar 

  148. Lamontagne D, Pohl U, Busse R. Mechanical deformation of vessel wall and shear stress determine the basal release of endothelium-derived relaxing factor in the intact rabbit coronary vascular bed. Circ Res 1992;70:123–130.

    PubMed  CAS  Google Scholar 

  149. Hallam TJ, Pearson JD, Needham LA. Thrombin-stimulated elevation of human endothelial cell cytoplasmic free calcium concentration causes prostacyclin production. Biochem J 1988;251:243–249.

    PubMed  CAS  Google Scholar 

  150. Halldorsson H, Kjeld M, Thorgeirsson G. Role of phosphoinositides in the regulation of endothelial prostacyclin production. Arteriosclerosis 1988;8:147–154.

    PubMed  CAS  Google Scholar 

  151. Demolle D, Boeynaems JM. Role of protein kinase C in the control of vascular prostacyclin: study of phorbol esters effect in bovine aortic endothelium and smooth muscle. Prostaglandins 1988;35:243–257.

    Article  PubMed  CAS  Google Scholar 

  152. Carter TD, Hallam TJ, Pearson JD. Protein kinase C activation alters the sensitivity of agonist-stimulated endothelial-cell prostacyclin production to intracellular Ca2+. Biochem J 1989;262:431–437.

    PubMed  CAS  Google Scholar 

  153. Weinheimer G, Wagner B, Oswald H. Interference of phorbol esters with endothelium-dependent vascular smooth muscle relaxation. Eur J Pharmacol 1986;130:319–322.

    Article  PubMed  CAS  Google Scholar 

  154. De Nucci G, Gryglewski RJ, Warner TD et al. Receptor-mediated release of endothelium-derived relaxing factor and prostacyclin from bovine aortic endothelial cells is coupled. Proc Natl Acad Sci USA 1988;85:2334–2338.

    PubMed  Google Scholar 

  155. Buchan KW, Martin W. Modulation of agonist-induced calcium mobilisation in bovine aortic endothelial cells by phorbol myristate acetate and cyclic AMP but not cyclic GMP. Br J Pharmacol 1991;104:361–366.

    PubMed  CAS  Google Scholar 

  156. Goodman R, Stevens TM, Mantegna LR et al. Phospholipase A2 (PLA2) activity in bovine pulmonary artery endothelial cells. Agents Actions 1991;34:113–116.

    Article  PubMed  CAS  Google Scholar 

  157. Murakami M, Kudo I, Inoue K. Molecular nature of phospholipases A2 involved in prostaglandin I2 synthesis in human umbilical vein endothelial cells. J Biol Chem 1993;268:839–844.

    PubMed  CAS  Google Scholar 

  158. Graier WF, Groschner K, Schmidt K et al. Increases in endothelial cyclic AMP levels amplify agonist-induced formation of endothelium-derived relaxing factor (EDRF). Biochem J 1992;288:345–349.

    PubMed  CAS  Google Scholar 

  159. Lückhoff A, Mulsch A, Busse R. cAMP attenuates autacoid release from endothelial cells: relation to internal calcium. Am J Physiol 1990;258:H960–H966.

    PubMed  Google Scholar 

  160. Shimokawa H, Flavahan NA, Lorenz RR et al. Prostacyclin releases endothelium-derived relaxing factor and potentiates its action in coronary arteries of the pig. Br J Pharmacol 1988;95:1197–1203.

    PubMed  CAS  Google Scholar 

  161. Enokibori M, Okamura T, Toda N. Mechanism underlying substance P-induced relaxation in dog isolated superficial temporal arteries. Br J Pharmacol 1994;111:77–82.

    PubMed  CAS  Google Scholar 

  162. Norel X, Walch L, Costantino M. M1 and M3 muscarinic receptors in human pulmonary arteries. Br J Pharmacol 1996;119:149–157.

    PubMed  CAS  Google Scholar 

  163. Lawrence RN, Clelland C, Beggs D et al. Differential role of prostanoids in porcine and human isolated pulmonary arteries in response to endothelium-dependent relaxants. Br J Pharmacol 1998;125:1128–1137.

    Article  PubMed  CAS  Google Scholar 

  164. Zygmunt M, Plane F, Paulsson M et al. Interactions between endothelium-derived relaxing factors in the rat hepatic artery: focus on regulation of EDRF. Br J Pharmacol 1998;124:992–1000.

    Article  PubMed  CAS  Google Scholar 

  165. Miller VM, Vanhoutte PM. Endothelium-dependent contractions to arachidonic acid are mediated by products of cyclooxygenase. Am J Physiol 1985;248:H432–H437.

    PubMed  CAS  Google Scholar 

  166. Gambone LM, Murray PA, Flavahan NA. Synergistic interaction between endothelium-derived NO and prostacyclin in pulmonary artery: potential role for K+ATP channels. Br J Pharmacol 1997;121:271–279.

    PubMed  CAS  Google Scholar 

  167. Linde C, Quast U. Potentiation of P1075-induced K+ channel opening by stimulation of adenylyl cyclase in rat isolated aorta. Br J Pharmacol 1995; 115:515–521.

    PubMed  CAS  Google Scholar 

  168. Doni MG, Whittle BJR, Palmer RMJ et al. Actions of nitric oxide on the release of prostacyclin from bovine endothelial cells in culture. Eur J Pharmacol 1988; 151:19–25.

    PubMed  CAS  Google Scholar 

  169. Barker JE, Bakhle YS, Anderson J et al. Reciprocal inhibition of nitric oxide and prostacyclin synthesis in human saphenous vein. Br J Pharmacol 1996;118:634–648.

    Google Scholar 

  170. Ea Kim L, Javellaud J, Oudart N. Endothelium-dependent relaxation of rabbit middle cerebral artery to a histamine H3-agonist is reduced by inhibitors of nitric oxide and prostacyclin synthesis. Br J Pharmacol 1992;105:103–106.

    PubMed  CAS  Google Scholar 

  171. Parkington HC, Tare M, Tonta MA et al. Stretch revealed three components in the hyperpolarization of guinea-pig coronary artery in response to acetylcholine. J Physiol 1993;465:459–476.

    PubMed  CAS  Google Scholar 

  172. Stork AP, Cocks TM. Pharmacological reactivity of human epicardial coronary arteries: characterization of relaxation responses to endothelium-derived relaxing factor. Br J Pharmacol 1994;113:1099–1104.

    PubMed  CAS  Google Scholar 

  173. Toda N, Nakajima M, Okamura T et al. Interactions of thromboxane A2 analogs and prostaglandins in isolated dog arteries. J Cardiovasc Pharmacol 1986;8:818–825.

    PubMed  CAS  Google Scholar 

  174. Chester AH, O’Neil GS, Moncada S et al. Low basal and stimulated release of nitric oxide in atherosclerotic epicardial coronary arteries. Lancet 1990;336:897–900.

    Article  PubMed  CAS  Google Scholar 

  175. Greenberg B, Rhoden K, Barnes PJ. Endothelium-dependent relaxation of human pulmonary arteries. Am J Physiol 1987;252:H434–H438.

    PubMed  CAS  Google Scholar 

  176. Dinh-Xuan AT, Higenbottam TW, Clelland C et al. Impairment of pulmonary endothelium-dependent relaxation in patients with Eisenmenger’s syndrome. Br J Pharmacol 1990;99:9–10.

    PubMed  CAS  Google Scholar 

  177. McCormack D. Endothelium-derived relaxing factors and the human pulmonary circulation. Lung 1990;168(Suppl):35–42.

    PubMed  CAS  Google Scholar 

  178. Hermiller JB, Bambach D, Thompson MJ et al. Vasodilators and prostaglandin inhibitors in primary pulmonary hypertension. Ann Int Med 1982;97:480–489.

    PubMed  CAS  Google Scholar 

  179. Smith MC, Dunn MJ. The role of prostaglandins in human hypertension. Am J Kidney Dis 1985;5:A32–A39.

    PubMed  CAS  Google Scholar 

  180. Grose JH, Lebel M, Gbeassor FM. Imbalanced prostacyclin and thromboxane A2 production in essential hypertension. Adv Prostaglandin Thromboxane Leukot Res 1983;11:413–415.

    PubMed  CAS  Google Scholar 

  181. Chen LS, Ito T, Ogawa K et al. Plasma concentrations of 6-keto-prostaglandin F, thromboxane B2 and platelet aggregation in patients with essential hypertension. Jpn Heart J 1984;25:1001–1009.

    PubMed  CAS  Google Scholar 

  182. Uehara Y, Ishii M, Ikeda T et al. Plasma levels of 6-keto prostaglandin F in normotensive subjects and patients with essential hypertension. Prost Leukot Med 1983;10:455–464

    CAS  Google Scholar 

  183. Gotoh S, Ogihara T, Nakamuru M et al. Levels of plasma 6-keto-PGF in normotensive and essential hypertensive males with and without a family history of hypertension. Prost Leukot Med 1983;10:27–32.

    CAS  Google Scholar 

  184. Nasjletti A, Erman A, Cagen LM et al. Plasma concentrations, renal excretion, and tissue release of prostaglandins in the rat with dexamethasone-induced hypertension. Endocrinology 1984; 114:1033–1040.

    Article  PubMed  CAS  Google Scholar 

  185. Limas C, Goldman P, Limas CJ. Effect of salt on prostaglandin metabolism in hypertension-prone and-resistant Dahl rats. Hypertension 1981; 3:219–224.

    PubMed  CAS  Google Scholar 

  186. Ogihara T, Gotoh S, Tabuchi Y et al. Involvement of endogenous prostaglandins in salt-induced hypertension. Acta Endocrinol 1985; 108: 114–118.

    PubMed  CAS  Google Scholar 

  187. Numaguchi Y, Harada M, Osanai H et al. Altered gene expression of prostacyclin synthase and prostacyclin receptor in the thoracic aorta of spontaneously hypertensive rats. Cardiovasc Res 1999;41:682–688.

    Article  PubMed  CAS  Google Scholar 

  188. Osanai T, Matsumura H, Kikuchi T et al. Changes in vascular wall production of prostacyclin and thromboxane A2 in spontaneously hypertensive rats during maturation and the concomitant development of hypertension. Jpn Circ J 1990;54:507–514.

    PubMed  CAS  Google Scholar 

  189. Iwama W, Kaot T, Muramatsu M. Correlation with blood pressure of the acetylcholine-induced endothelium-derived contracting factor in the rat aorta.Hypertension 1992;19:326–332.

    PubMed  CAS  Google Scholar 

  190. Ge T, Hughes H, Junquero DC et al. Endothelium-dependent contractions are associated with both augmented expression of prostaglandin H synthase-1 and hypersensitivity to prostaglandin H2 in the SHR aorta. Circ Res 1995;76:1003–1010.

    PubMed  CAS  Google Scholar 

  191. Clesham G, Parsaee H, Joseph S et al. Activation of bovine endothelial thromboxane receptors triggers release of prostacyclin but not EDRF. Cardiovasc Res 1992;26:513–517.

    PubMed  CAS  Google Scholar 

  192. Kent KC, Collins LJ, Schwerin FT et al. Identification of functional PGH2/TXA2 receptors on human endothelial cells. Circ Res 1993;72:958–965.

    PubMed  CAS  Google Scholar 

  193. Levy JV. Changes in systolic arterial blood pressure in normal and spontaneously hypertensive rats produced by acute administration of inhibitors of prostaglandin biosynthesis. Prostaglandins 1977;13: 153–160.

    Article  PubMed  CAS  Google Scholar 

  194. Uderman HD, Workman RJ, Jackson EK. Attenuation of the development of hypertension in spontaneously hypertensive rats by the thromboxane synthase inhibitor 4’-(imidazol-1-yl)acetophenone. Prostaglandins 1982;24:238–244.

    Article  Google Scholar 

  195. Uderman HD, Jackson EK, Puett D et al. Thromboxane synthase inhibitor UK38,485 lowers blood pressure in the adult spontaneously hypertensive rat.J Cardiovasc Pharmacol 1984;6:969–972.

    PubMed  CAS  Google Scholar 

  196. Ritter JM, Barrow SE, Dokter HS et al. Thromboxane A2 receptor antagonism and synthase inhibition in essential hypertension. Hypertension 1993;22: 197–203.

    PubMed  CAS  Google Scholar 

  197. Ritter JM, Brett SE, Woods JD et al. Prostacyclin biosynthesis in essential hypertension before and during treatment. Human Hypertens 1996;10:37–42.

    CAS  Google Scholar 

  198. Nies AS, Fadul S, Gal J et al. Indomethacin-furosemide interaction: the importance of renal blood flow. Adv Prostaglandin Thromboxane Leukot Res 1983;11:529–532.

    PubMed  CAS  Google Scholar 

  199. Mackay IG, Nath K, Cumming AD et al. Haemodynamic and endocrine responses of the kidney to frusemide in mild essential hypertension. Clin Sci 1985;68:159–164.

    PubMed  CAS  Google Scholar 

  200. Murthy VS, Waldron TL, Goldberg ME. The mechanism of bradykinin potentiation after inhibition of angiotensin-converting enzyme by SQ 14,255 in conscious rabbits. Circ Res 1978;43:I-40.

    Google Scholar 

  201. Moore TJ, Crantz FR, Hollenberg NK et al. Contributions of prostaglandins in the antihypertensive action of captopril in essential hypertension. Hypertension 1981;3: 168–173.

    PubMed  CAS  Google Scholar 

  202. Pontieri V, Lopes OU, Ferreira SH. Hypotensive effect of captopril. Role of bradykinin and prostaglandin like substances. Hypertension 1990; 15:155–158.

    Google Scholar 

  203. Dusing R, Scherhag R, Landsberg G et al. The converting enzyme inhibitor captopril stimulates prostacyclin synthesis by isolated rat aorta. Eur J Pharmacol 1983;91:501–504.

    PubMed  CAS  Google Scholar 

  204. Hoffmann G, Dusing R. ACE inhibition, kinins, and vascular PGI2synthesis. Eicosanoids 1992;5 (Suppl):S60–S62.

    PubMed  Google Scholar 

  205. Guivernau M, Armijo F, Rosas R. Role of sulfhydryl groups in the stimulatory effect of captopril on vascular prostacyclin synthesis. Eur J Pharmacol 1991;198:1–6.

    Article  PubMed  CAS  Google Scholar 

  206. Goldschmidt JE, Tallarida RJ. Pharmacological evidence that captopril possesses an endothelium-mediated component of vasodilatation: effect of sulfhydryl groups on endothelium-derived relaxing factor. J Pharmacol Exp Ther 1991;257:1136–1145.

    PubMed  CAS  Google Scholar 

  207. Moroi M, Akatsuka N, Fukazawa M et al. Endothelium-dependent relaxation by angiotensin-converting enzyme inhibitors in canine femoral arteries. AmJ Physiol 1994;266:H583–H589.

    CAS  Google Scholar 

  208. Beierwaltes WH, Crretero OA. Kinin antagonist reverses converting enzyme inhibitor-stimulated vascular prostaglandin I2 synthesis. Hypertension 1989; 13:754–758.

    PubMed  CAS  Google Scholar 

  209. Watson ML, Jones RL. The contribution of PGI2 to the effects of captopril in conscious dogs in differing states of sodium balance. Clin Sci 1986;71:533–538.

    PubMed  CAS  Google Scholar 

  210. Zucker IH, Chen JS, Wang W. Renal sympathetic nerve and hemodynamic responses to captopril in conscious dogs: role of prostaglandins. Am J Physiol 1991;260:H260–H266.

    PubMed  CAS  Google Scholar 

  211. Gerber JG, Franca G, Byyny RL et al. The hypotensive action of captopril and enalapril is not prostacyclin dependent. Clin Pharmacol Ther 1993;54:523–532.

    Article  PubMed  CAS  Google Scholar 

  212. Joris I, Zand T, Nunnari JJ et al. Studies on the pathogenesis of atherosclerosis. I. Adhesion and emigration of mononuclear cells in the aorta of hypocholesterolemic rats. Am J Pathol 1983;113:341–358.

    PubMed  CAS  Google Scholar 

  213. D’Angelo VD, Villa S, Mysliwiec M et al. Defective fibrinolytic and prostacyclin-like activity in human plaques. Thromb Haemostas 1978;39:535–536.

    CAS  Google Scholar 

  214. Larrue J, Rigaud M, Daret D et al. Prostacyclin production by cultured smooth muscle cells from atherosclerotic rabbit aorta. Nature London 1980;285:480–482.

    Article  PubMed  CAS  Google Scholar 

  215. Beetens JR, Coene MC, Verheyen A et al. Biphasic response of intimal prostacyclin during the development of experimental atherosclerosis. Prostaglandins 1986;1986:319–334.

    Google Scholar 

  216. Rush DS, Kerstein MD, Bellan JA et al. Prostacyclin,thromboxane A2 and prostaglandin E2 formation in atherosclerotic human carotid artery. Atherosclerosis 1988;8:73–78.

    CAS  Google Scholar 

  217. Moncada S. Biological importance of prostacyclin. Br J Pharmacol 1982;76:3–31.

    PubMed  CAS  Google Scholar 

  218. Thorin E, Hamilton CA, Dominiczak MH et al. Chronic exposure of cultured bovine endothelial cells to oxidized LDL abolishes prostacyclin release. Arterioscler Thromb 1994;14:453–459.

    PubMed  CAS  Google Scholar 

  219. Pyke DD, Chan AC. Effects of vitamin E on prostacyclin release and lipid composition of the ischemic rat heart.Arch Biochem Biophys 1990;277:429–433.

    Article  PubMed  CAS  Google Scholar 

  220. Kunisaka M, Umeda F, Inoguchi T et al. Vitamin E binds to specific binding sites and enhances prostacyclin production by cultured aortic endothelial cells.Thromb Haemostas 1992;68:744–751.

    Google Scholar 

  221. Meydani M. Modulation of the platelet thromboxane A2 and aortic prostacyclin synthesis by dietary selenium and vitamin E. Biol Trace Element Res 1992;33:79–86.

    CAS  Google Scholar 

  222. Tran K, Chan AC. R,R,R-alpha-tocopherol potentiates prostacyclin release in human endothelial cells.Evidence for structural specificity of the tocopherol molecule. Biochim Biophys Acta 1990;1043:189–197.

    PubMed  CAS  Google Scholar 

  223. Moncada S, Gryglewski RJ, Bunting S et al. A lipid peroxide inhibits the enzyme in blood vessel microsomes that generates from prostaglandin endoperoxides the substance (prostaglandin X) which prevents platelet aggregation. Prostaglandins 1976;12:715–733.

    PubMed  CAS  Google Scholar 

  224. Mathur SN, Albright E, Field FJ. Decreased prostaglandin production by cholesterol-fed macrophages. J Lipid Res 1989;30: 1383–1395.

    Google Scholar 

  225. Hajjar DP, Weksler BB. Metabolic activity of cholesteryl esters in aortic smooth muscle cells is altered by prostaglandins I2 and E2. J Lipid Res 1983;24:1176–1184.

    PubMed  CAS  Google Scholar 

  226. Orekhov AN, Tertov VV, Mazurov AV et al. “Regression” of atherosclerosis in cell culture: effects of stable prostacyclin analogues. Drug Dev Res 1986;9: 189–201.

    Article  CAS  Google Scholar 

  227. Willis AL, Smith DL, Vigo C et al. Effects of prostacyclin and orally stable mimetic agent RS-93427-007 on basic mechanisms of atherogenesis. Lancet 1986;ii:682–683.

    Google Scholar 

  228. Willis AL, Smith DL, Vigo C et al. Orally active prostacyclin mimetic RS-93427: therapeutic potential in vascular occlusive disease associated with atherosclerosis. Adv Prostaglandin Thromboxane Leukot Res 1987; 17:254–265.

    Google Scholar 

  229. Morisaki N, Kanzaki T, Motoyama N et al. Cell cyclic-dependent inhibition of DNA synthesis of prostaglandin I2 in cultured rabbit aortic smooth muscle cells, Atherosclerosis 1988;71: 165–171.

    Article  PubMed  CAS  Google Scholar 

  230. FitzGerald GA, Smith B, Pedersen AK et al. Increased prostacyclin biosynthesis in patients with severe atherosclerosis and platetet activation. New Eng J Med 1984;310:1065–1068.

    PubMed  CAS  Google Scholar 

  231. Mikkola T, Viinikka L, Ylikorkala O.. Estrogen and postmenopausal estrogen/progestin therapy: effects on endothelium-dependent prostacyclin, nitric oxide and endothelin-1 production. Eur J Obstet Gynecol 1998;79:75–82.

    Article  CAS  Google Scholar 

  232. Knapp HR, Healy C, Lawson J et al. Effects of low-dose aspirin on endogenous eicosanoid formation in normal and atherosclerotic men. Thromb Res 1988;50:377–386.

    Article  PubMed  CAS  Google Scholar 

  233. Takacs E, Jellinek H. Early morphological changes of vessels in an experimental model system. Int Angiol 1987;6:7–19.

    PubMed  CAS  Google Scholar 

  234. Kouchi Y, Esato K, O-Hara M et al. Effect of prostaglandin I2 analogue TRK-100 on the suppression of intimal fibrous proliferation. J Vasc Surg 1992; 16:232–238.

    PubMed  CAS  Google Scholar 

  235. Braun M, Hohlfeld T, Kienbaum P et al. Antiatherosclerotic effects of oral cicaprost in experimental hypercholesterolemia in rabbits. Atherosclerosis 1993; 103:93–105.

    Article  PubMed  CAS  Google Scholar 

  236. Rucker W, Prop G, Huther AM. Antiatherosclerotic and antihyperlipidemic effects of octimibate sodium in rabbits. Atherosclerosis 1988;69: 155–160.

    Article  PubMed  CAS  Google Scholar 

  237. Harris NV, Smith C, Ashton MJ et al. Acyl-CoA:cholesterol O-acyl transferase (ACAT) inhibitors. 1. 2-(Alkylthio)-4,5-diphenyl-1H-imidazoles as potent inhibitors of ACAT. J Med Chem 1992;35:4384–4392.

    Article  PubMed  CAS  Google Scholar 

  238. Merritt JE, Hallam TJ, Brown AM et al. Octimibate, a potent non-prostanoid inhibitor of platelet aggregation, acts via the prostacyclin receptor. Br J Pharmacol 1991;102:251–259.

    PubMed  CAS  Google Scholar 

  239. Jackson B, Gee A, Black S et al. Effects of octimibate, an inhibitor of acyl coenzyme A: cholesterol acyltransferase, on cholesterol metabolism in the hamster and rat. Biochem Pharmacol 1990;39: 1487–1489.

    Article  PubMed  CAS  Google Scholar 

  240. Weisweiler P, Gopfert E. Lipid-lowering properties of the ACAT inhibitor octimibate in hypercholesterolemic subjects. Arterioscler Thromb 1991; 11:1487–1498.

    Google Scholar 

  241. Todaka T, Yokoyama C, Yanamoto H et al. Gene transfer of human prostacyclin synthase prevents neointimal formation after carotid balloon injury in rats. Stroke 1999;30:419–426.

    PubMed  CAS  Google Scholar 

  242. Namaguchi Y, Naruse K, Harada M et al. Prostacyclin synthase gene transfer accelerates reendothelialization and inhibits neointimal formation in rat carotid arteries after balloon injury. Arterioscler Thromb Vasc Biol 1999; 19:727–733.

    Google Scholar 

  243. Grant SM, Goa KL. Iloprost. A review of its pharmacodynamic and pharmacokinetic properties, and therapeutic potential in peripheral vascular disease, myocardial ischaemia and extracorporeal circulation procedures. Drugs 1992;43:889–924.

    PubMed  CAS  Google Scholar 

  244. Lievre M, Azoulay S, Lion L et al. A dose-effect study of beraprost sodium in intermittent claudication. J Cardiovasc Pharmacol 1996;27:788–793.

    Article  PubMed  CAS  Google Scholar 

  245. Kato H, Emura S, Ngashima K et al. Successful treatment of intermittent claudication due to spinal stenosis using beraprost sodium, a stable prostaglandin I2 analogue. Angiology 1997;48:457–461.

    PubMed  CAS  Google Scholar 

  246. Okuda Y, Sone H, Mizutani S et al. Acute effect of beraprost sodium on lower limb circulation in patients with non-insulin-dependent diabetes mellitus-evaluation by color Doppler ultrasonography and laser cutaneous blood flowmetry. Prostaglandins 1996;52:375–384.

    Article  PubMed  CAS  Google Scholar 

  247. Creutzig A, Bullinger M, Cachovan M et al. Improvement in the quality of life after i.v. PGE1 therapy for intermittent claudication. Vasa 1997;26: 122–127.

    PubMed  CAS  Google Scholar 

  248. Belch JJF, Bell PRF, Creissen D et al. Randomized, double-blind, placebo-controlled study evaluating the efficacy and safety of AS-013, a prostaglandin E1 prodrug, in patients with intermittent claudication. Circulation 1997;95:2298–2302.

    PubMed  CAS  Google Scholar 

  249. Balcaro G, Laurora G, Nicolaides AN et al. Treatment of severe intermittent claudication with PGE1-a short-term vs a long-term infusion plan-a 20 week, European randomized trial-analysis of efficiacy and costs. Angiology 1998;49:885–894.

    Google Scholar 

  250. Goszcz A, Grodzinska L, Kostka-Trabka E et al. Treatment of peripheral vascular disease with misoprostol (Cytotec): a pilot study. Meth Find Exp Clin Pharmacol 1998;20:439–445.

    Article  CAS  Google Scholar 

  251. Hyman AL, Kadowitz PJ. Pulmonary vasodilator activity of prostacyclin (PGI2) in the cat. Circ Res 1979;45:404–409.

    PubMed  CAS  Google Scholar 

  252. Starling MB, Neutze JM, Elliott RL. Control of elevated pulmonary vascular resistance in neonatal swine with prostacyclin (PGI2). Prostagland Med 1979;3: 105–117.

    CAS  Google Scholar 

  253. Watkins WD, Peterson MB, Crone RK et al. Prostacyclin and PGE1 for severe idiopathic pulmonary artery hypertension. Lancet 1980;i: 1083.

    Google Scholar 

  254. Higenbottam TW, Wheeldon D, Wells FC et al. Long-term treatment of primary pulmonary hypertension with continuous intravenous epoprostenol. Lancet 1984;i: 1046–1047.

    Google Scholar 

  255. Higenbottam TW, Spiegelhalter D, Scott JP. Prostacyclin (epoprostenol) and heart-lung transplantation as treatments for severe pulmonary hypertension. Br Heart J 1993;70:366–370.

    PubMed  CAS  Google Scholar 

  256. Barst RJ, Rubin LJ, McGoon MD et al. Survival in primary pulmonary hypertension with long-term continuous intravenous prostacyclin. Ann Intern Med 1994; 121:409–415.

    PubMed  CAS  Google Scholar 

  257. Barst RJ, Rubin LJ, Long WA. A comparison of continuous intravenous epoprostenol (prostacyclin) with conventional therapy for primary pulmonary hypertension. New Eng J Med 1996;334:296–301.

    PubMed  CAS  Google Scholar 

  258. Kneussl MP, Lang IM, Brenot FP. Medical management of primary pulmonary hypertension. Eur Respir J 1996;9:2401–2409.

    Article  PubMed  CAS  Google Scholar 

  259. Barst RJ. Treatment of primary pulmonary hypertension with continuous intravenous prostacyclin. Heart 1997;77:299–301.

    PubMed  CAS  Google Scholar 

  260. Bihari DJ, Smithies M, Gimson A et al. The effects of vasodilatation with prostacyclin on oxygen delivery and uptake in critically ill patients. New Eng J Med 1987;317:397–403.

    PubMed  CAS  Google Scholar 

  261. Hinderliter AL, Willis PW, Barst RJ et al. Effects of long-term infusion of prostacyclin (epoprostenol) on echocardiographic measures of right ventricular structure and function in primary pulmonary hypertension. Circulation 1997;95: 1479–1486.

    PubMed  CAS  Google Scholar 

  262. Sitbon 0, Brenot F, Denjean A et al. Inhaled nitric oxide as a screening vasodilator agent in primary pulmonary hypertension. A dose-response study and comparison with prostacyclin. Am J Respir Crit Care Med 1995;151:384–389.

    PubMed  CAS  Google Scholar 

  263. Jones DK, Higenbottam TW, Wallwork J. Treatment of primary pulmonary hypertension with epoprostenol (prostacyclin). Br Heart J 1987;57:270–278.

    PubMed  CAS  Google Scholar 

  264. Rubin LJ, Mendoza J, Hood M. Treatment of primary pulmonary hypertension with continuous intravenous prostacyclin (epoprostenol): results of a randomized trial. Ann Int Med 1990;112:485–491.

    PubMed  CAS  Google Scholar 

  265. Saji T, Ozawa Y, Ishikita T et al. Short-term hemodynamic effect of a new oral PGI2 analogue, beraprost, in primary and secondary pulmonary hypertension. Am J Cardiol 1996;78:244–247.

    Article  PubMed  CAS  Google Scholar 

  266. Haywood GA, Adams KF, Gheorghiade M et al. Is there a role for epoprostenol in the management of heart failure? Am J Cardiol 1995;75:44A–50A.

    Article  PubMed  CAS  Google Scholar 

  267. Yoshiki Y, Nakajima H, Kawai C et al. Prostacyclin therapy in patients with congestive heart failure. Am J Cardiol 1982;50:320–324.

    Google Scholar 

  268. Dzau VJ, Swartz SL, Creager MA. The role of prostaglandins in the pathophysiology of and the therapy for congestive heart failure. Heart Failure 1986;2:6–13.

    Google Scholar 

  269. Yui Y, Nakajima H, Kawai C et al. Prostacyclin therapy in patients with congestive heart failure. Am J Cardiol 1982;50:320–324.

    Article  PubMed  CAS  Google Scholar 

  270. Nishikawa H. Intravenous vasodilator therapy in patients with refractory congestive heart failure. Mie Med J 1986;36:57–83.

    Google Scholar 

  271. Auinger C, Virgolini I, Weissel M et al. Prostaglandin I2 (PGI2) increases left ventricular ejection fraction (LVEF). Prostaglandins Leukot Essent Fatty Acids 1989;36: 149–154.

    Article  PubMed  CAS  Google Scholar 

  272. Sueta CA, Gheorghiade M, Adams KF et al. Safety and efficacy of epoprostenol in patients with severe congestive heart failure. Am J Cardiol 1995;75:34A–43A.

    Article  PubMed  CAS  Google Scholar 

  273. Califf RM, Adams KF, McKenna WJ et al. A randomised controlled trial of epoprostenol for severe congestive heart failure: The Flolan International Randomized Survival Trial (FIRST). Am Heart J 1997;134:44–54.

    PubMed  CAS  Google Scholar 

  274. Montalescot G, Drobinski G, Meurin P et al. Effects of prostacyclin on the pulmonary vascular tone and cardiac contractility of patients with pulmonary hypertension secondary to end-stage heart failure. Am J Cardiol 1998;82:749–755.

    Article  PubMed  CAS  Google Scholar 

  275. Kant KS, Dosekun AK, Chandran KG et al. Deficiency of a plasma factor stimulating vascular prostacyclin generation in patients with lupus nephritis and glomerular thrombi and its correction by ancrod: in-vivo and in-vitro observations. Thromb Res 1982;27:651–658.

    Article  PubMed  CAS  Google Scholar 

  276. Patrono C, Ciabattoni G, Remuzzi G. Functional significance of renal prostacyclin and thromboxane A2 in patients with systemic lupus erythematosus. J Clin Invest 1985;76:1011–1018.

    Article  PubMed  CAS  Google Scholar 

  277. Pierucci A, Simonetti BM, Pecci G. Improvement of renal function with selective thromboxane antagonist in lupus nephritis. New Eng J Med 1989;320:421–425.

    PubMed  CAS  Google Scholar 

  278. Yoshida T, Kameda H, Ichikawa Y et al. Improvement of renal function with a selective thromboxane A2 inhibitor, DP-1904, in lupus nephritis. J Rheumatol 1996;23: 1719–1724.

    PubMed  CAS  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

(2002). IP-receptors in the vasculature. In: Prostacyclin and Its Receptors. Springer, Boston, MA. https://doi.org/10.1007/0-306-46822-0_6

Download citation

  • DOI: https://doi.org/10.1007/0-306-46822-0_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-46308-2

  • Online ISBN: 978-0-306-46822-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics